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This paper assesses the capability of molecular density functional theory to predict efficiently and accurately the
hydration free-energies of molecular solutes and the surrounding microscopic water structure. A wide range of
solutes were investigated including hydrophobes, water as a solute, and the FreeSolv database containing 642
drug-like molecules having a variety of shapes and sizes. The usual second-order approximation of the theory
is corrected by a third-order, angular-independent bridge functional. The overall functional is parameter-free in
the sense that the only inputs are bulk water properties, independent of the solutes considered. These inputs are
the direct correlation function, compressibility, liquid-gas surface tension, and excess chemical potential of the
solvent. Compared to molecular simulations with the same force field and the same fixed solute geometries, the
present theory is shown to describe accurately the solvation free-energy and structure of both hydrophobic and
hydrophilic solutes. Overall, the method yields a precision of order 0.5 kBT for the hydration free energies of the
FreeSolv database, with a computer speed-up of 3 orders of magnitude. The theory remains to be improved for a
better description of the H-bonding structure and the hydration free-energy of charged solutes.

I. INTRODUCTION

Solvation free energies (SFE), and especially hydra-
tion free energies (HFE), are fundamental thermodynamic
quantities. They are at the heart of a broad range of inter-
esting physical properties such as solubilities, partition co-
efficients between immiscible solvents, activity coefficients
or binding free-energies in solutions.

Computing SFE is difficult as it requires the sampling of
all the possible thermodynamic states that can be visited
during the transformation from the initial state (usually the
neat solvent) to the final one (solute in solvent). Multiple
approaches for solvation free energy calculation have been
developed along the years. These start from physically-
simple but fast implicit solvent approaches where the sol-
vent is treated as a dielectric continuum, plus a surface
area correction for cavitation free-energies. Implicit solvent
models involve methods based on the Poisson-Boltzmann
equation1, the simpler Generalized Born Approximation2,
or more sophisticated free-energy functionals coupling hy-
drophobicity, dispersion, and electrostatics3. They lack in-
formation on the microscopic solvent structure that can be
indeed an important factor of the solvation process.

Rigorous simulation-based free-energy methods have
been developed to take into account the solvent molecules
explicitly. They range from simple exponential averaging
introduced 60 years ago by Zwanzig4 to more sophisticated
methods employing non-physical intermediate states5–7,
and requiring multiple ergodic molecular dynamics (MD)
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or Monte-Carlo (MC) simulations to be run, possibly in
parallel, for a single free energy estimate. These methods
define today’s standard in terms of free energy predictions.

Other approaches accounting explicitly for the molecular
nature of the solvent have roots in the liquid state theories.
As an intermediate method, let us draw attention on the
energy-representation method, in which an energy-based
integral equation theory makes it possible to infer the sol-
vation free energy from the sampling of the solute-solvent
interaction energy distribution within only two simulations,
with and without solute8,9. Turning to ’simulation-free’
methods, the so-called morphometric approach to solva-
tion elaborates on scaled-particle theory10 and fundamental
measure theory11 to provide fast estimations of the solva-
tion free-energy of complex molecules12–14. Field theory or
classical density functional theory (cDFT) with a simpli-
fied dipolar solvent model leads to a local15 or non-local
Poisson–Boltzmann–Langevin formalisms16,17, that incor-
porate solvent and ions sizes. For more realistic molec-
ular models, such as point-charge models for water, in-
tegral equation or classical density functional theory ap-
proaches have been developed. A first class of those relies
on a reference interaction site model (RISM) that is solved
through integral equations, as in 3D-RISM18–25, or through
a classical DFT (cDFT) formalism using a site-based func-
tional26,27. These methods are having large success and are
gaining momentum because of their good balance between
precision, simplicity and speed. They have been applied to
SFE predictions27–35 as well as to a number of structural
biology problems36–41. Nevertheless, they rely on site-site
correlations only, not on a full molecular description, and
hence they require some compromises with phenomenolog-
ical corrections.

The molecular integral equation theory42–44 and molec-
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ular density functional theory (MDFT)45–48 are the only
methods based on liquid state theories that keep the
full molecular picture by solving the (angular-dependent)
molecular Ornstein-Zernike equation (MOZ)49,50. They are
known to be diagrammatically consistent and free of some
patches that are necessary in the RISM approach, for ex-
ample to get the dielectric constant correct. Since Ding et
al.51, MDFT can be solved efficiently at the hyper-netted
chain (HNC) level of approximation. In a cDFT langage,
the HNC approximation can be understood as a second-
order Taylor expansion of the (unkown) excess functional
around a reference homogeneous solvent at density ρb. It
can thus be considered as exact up to second order in
∆ρ = ρ − ρb, and can be used as a sound starting point
to be to systematically improved. This can be done by
developing so-called bridge functionals that bring terms of
order ∆ρ3 and more 52–58.

This paper is the follow up of two recent contributions.
The first one was dedicated to MDFT in its ’crudest’ HNC
approximation59. While many of the solvation features are
satisfactorily reproduced, some limitations of the HNC ap-
proximations were also identified. In particular, the cav-
ity energies are dramatically overestimated. The scope of
the second paper was to correct the SFE for hydrophobic
solutes starting from an angular independent HNC func-
tional. Introducing a simple weighted-density approxima-
tion (WDA) bridge functional beyond HNC allows to prop-
erly reproduce the SFE of hydrophobes of various sizes,
from microscopic ones to the nanoscale.60. Here, we ex-
tend this WDA approach to hydrophobic and hydrophilic
solvation. We aim to correct the angular-dependent HNC
by adding an angular-independent WDA bridge functional,
similar to that in Ref.60. This bridge accounts in an effec-
tive manner for orders in ∆ρ higher than quadratic that
are neglected in HNC.

The outline of the paper is as follows. In section II, we
recall briefly the MDFT framework in the HNC approxima-
tion and beyond, and we introduce our WDA bridge func-
tional and its parametrisation procedure. In section III, we
apply the new functional to hydrophobic solutes and hy-
drophobic pairs. In section IV, this is extended to the spe-
cific case of water in water, and then to molecular solutes
of arbitrary 3D-shape and charge distribution, spanning
the whole range from hydrophobic to hydrophilic chemical
species. Conclusions and perspectives are drawn in sec-
tion V.

II. MOLECULAR DENSITY FUNCTIONAL THEORY IN THE
HNC APPROXIMATION AND BEYOND

A. General expression of the functional

We recall briefly the well-established results of molecular
density functional theory: the free energy of solvation of a
molecule can be written as

∆Gsolv = min (Fid[ρ] + Fext[ρ] + Fexc[ρ]) , (1)

where Fid,Fext, and Fexc are the ideal, external and excess
functionals depending on the solvent position and orienta-

tion density field, ρ(r, ω). The notation ω stands for the
three Euler angles that describe the orientation of a rigid
body in three dimensions. The whole MDFT procedure can
be summerized as how to find the spatial and angular den-
sity that minimizes the sum of the three contributions. By
virtue of the classical DFT theorems derived by Evans61,
the density minimizing the functional is also the thermo-
dynamic equilibrium density of the solvent in the external
potential created by the solute, ρeq(r, ω).

The first term of the right hand side of eq. 1 is the ideal
contribution that corresponds to the entropy of the non-
interacting liquid

Fid[ρ] = kBT

∫
drdωρ(r, ω) log(

ρ(r, ω)

ρb
)−∆ρ(r, ω), (2)

where kB is the Boltzmann constant, T is the temperature
and ρb ≡ nb/8π

2 is the homogeneous bulk solvent density
with nb the number density. The external contribution is
the direct cost of the interaction of the solute with the
solvent density, the interaction potential vext (r, ω) being
typically given by classical force fields,

Fext[ρ] =

∫
drdω vext(r, ω) ρ(r, ω). (3)

The last term of eq. 1 is the excess contribution due to
solvent-solvent interaction. As usual in liquid state theo-
ries, it is known analytically as an infinite diagrammatic
resumation of virial diagrams, but is not tractable numeri-
cally. It can be approximated by a Taylor expansion around
the homogeneous bulk solvent density ρb . Truncation at
second order in ∆ρ(r, ω) = ρ(r, ω)− ρb yields the so-called
hyper-netted chain (HNC) approximation and higher or-
ders are gently put into the so-called bridge functional, FB:

Fexc[ρ] = FHNC[ρ] + FB [ρ]

= −kBT
2

∫
drdωdr′dω′∆ρ(r, ω)

×c(2)(r − r′, ω, ω′) ∆ρ(r′, ω′) + FB[ρ], (4)

where c(2) is the two-body, direct correlation function of
the bulk solvent, which depends upon the relative position
of two solvent molecules and their respective orientations.
It is an input of the theory that needs to be calculated
once per solvent and thermodynamic condition. We use
the ones obtained by Belloni for either the transferable in-
termolecular potential 3-points (TIP3P62) or the extended
simple point charge (SPC/E63) models of water, using a
mixture of MC calculations and integral equations to invert
the simulation data and make the asymptotic behaviours
well-defined.64. Even in its simplest HNC form, the effi-
cient calculation of the excess term is a numerical chal-
lenge because of the spatial and angular convolution. For
this we use expansions of both the density and the direct
correlation function onto generalized spherical harmonics;
all technicalities are described in Ref.51. FB[ρ] involves by
definition terms of order ∆ρ3 and higher.
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B. Form and parametrization of the bridge functional

Following Ref.60, the purpose of this paper is to explore
the simplest, conceivable approximations for the bridge
functional, which amount to neglect the angular depen-
dence and suppose that FB only depends on the number
density n(r) =

∫
dω ρ(r, ω), that is to say FB[ρ] = FB[n].

Various bridge functionals of this sort have been pro-
posed in the past, built in particular from the fundamental
measure theory of hard-sphere fluids65–68, and dedicated
to simple atomic fluids69 or extended to water26,27,52. In-
spired by our previous attempts53–55, and the fact that
weighted density approximations (WDA) are from its early
foundations70–72 at the heart of classical DFT, we propose
here the simplest possible WDA

FB[n] = kBTnb

∫
drfB(∆n̄(r)/nb), (5)

where n̄(r) is a weighted density using a Gaussian weighting
function

n̄(r) =

∫
dr′w(|r − r′|)n(r′) (6)

w(r) = (2πσ2
w)−3/2 exp

(
−r2/2σ2

w

)
. (7)

In contrast to Ref.60, we propose here a function fB devel-
oped at the lowest cubic order in ∆n, i.e., with x = n̄/nb
and ∆x = (n̄− nb)/nb

fB(x) = a∆x3. (8)

The parameter a is fixed by the liquid-gas coexisting condi-
tion, i.e., for an homogeneous fluid of density n, the equal-
ity of the free energy of the gas, n = 0, and of the liquid at
its bulk density, nb. Expressing the free energy functional
in eqs 2-4 for an homogeneous fluid of density ρ = n/8π2

in a volume V yields for the free energy per molecule

βF(n)/N = f(x) = x log x−x+ 1− 1

2
nbĉs(0)∆x2 +a∆x3,

(9)
with N = V nb. ĉs(0) = 1

(8π2)2

∫
dr
∫
dωdω′c(2)(r, ω, ω′)

is interpreted as the Fourier transform of the spherically
averaged direct correlation function taken at q = 0. The
liquid-gas coexistence condition yields f(0) = f(1) = 0,
thus

a = 1− 1

2
nbĉs(0) =

1

2

(
1 +

1

nbkBT χT

)
. (10)

In the second equality, we have used the known relation be-
tween ĉs(0) and the isothermal compressibility of the fluid,
namely nbkBTχT = 1/(1 − nbĉs(0))73. The parameter a
is thus unambiguously fixed by the bulk-fluid isothermal
compressibility χT , namely nbkBTχT = 0.063 for SPC/E
water and 0.0775 for TIP3P. The dimensionless free energy
curve f(x) as function of reduced density x = n/nb corre-
sponding to SPC/E water is presented in Fig. 1 together
with its HNC approximation. It has indeed the form of a
double-well with equal minima at x = 0 and x = 1, in con-
trast to the HNC version, with only a single well at bulk
density.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x = n/nb

0
1
2
3
4
5
6
7
8
9

f(x
)

HNC
HNC+WDA

Figure 1. Dimensionless free energy per molecule of bulk
SPC/E water, f(x) = βF(n)/N as a function of reduced density
x = n/nb, with and without the WDA bridge term.

The only parameter remaining to be fixed is the coarse-
graining length σw and this can be done by requiring an-
other bulk thermodynamic property to be fulfilled, namely
the liquid-vapour surface tension γ. A practical way to
evaluate γ is to study the solvation of a hard sphere of in-
creasing radius R since the solvation free energy per surface
area, ∆Gsolv/4πR

2, is known to yield asymptotically γ at
large R-values when the pressure, and hence the volumetric
term PV , are vanishing. This is the strategy adopted in the
following section. Note that in view of previous WDA ap-
proaches, one would expect that σw corresponds roughly to
a coarse-graining over the size of a water molecule, with an
equivalent hard sphere diameter σhs ' 2.8 Å, as inferred
from the oxygen-oxygen distribution function. Equating
Gaussian and hard sphere volumes (2π)3/2σ3

w = πσ3
hs/6

leads to σw ' 0.9 Å.
The present approximation of the overall functional will

be termed as HNC+WDA, with all angular correlations
considered at HNC level, and a third-order bridge func-
tional taken in an angular-independent, WDA form.

C. Technical issues

The theory developed above and corresponding algo-
rithms are implemented into an in-house high performance
Fortran code. With the above choice of bridge functional,
the difficult part remains the computation of the HNC ex-
cess free energy in eq. 4, as well as its gradients with respect
to density, that are non-local in both space and orienta-
tions. All technical details on how to handle this part ef-
ficiently were presented in Ref.51. It requires a generalised
spherical harmonic expansion of the angular densities to an
order mmax. The chosen value for mmax fixes the number
of discretised orientations to be considered on each spa-
tial grid point. For water, we take in general mmax = 3,
corresponding to 84 orientations per grid point when the
C2v symmetry is properly accounted for. This gives suf-
ficient accuracy compared to higher order expansions, e.g.
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mmax = 5 corresponding to 330 orientations. Unless stated,
the MDFT calculations presented below were performed
with mmax = 3. As a rule of thumb, going from mmax = 3
to mmax = 5 gives slightly better structural results for
highly symmetrical solutes, such as spherical ones, but less
so for arbitrary 3D-shapes or for the value of the solva-
tion free energy. The evaluation of the bridge free energy,
eqs 5-8, and of its gradients can be easily handled through
3D-spatial convolutions and adds only a small overhead to
the overall computer process.

For the purpose of comparison with ’exact’ simulation
data, whenever those were not available from the litera-
ture, we have generated our own reference data for the same
rigid solute geometry and same force-field parameters as in
MDFT. To this end, we have used an original hybrid-4th-
dimension Monte-Carlo method (H4D-MC) and the asso-
ciated code developed by one of us74,75. The method was
shown to be more efficient that standard thermodynamics
integration methods and more suited to massive paralleli-
sation. Each hydration free energy calculation takes a few
tens of cpu.h to obtain a well controlled accuracy of 0.4
kJ/mol. In contrast, a typical MDFT minimisation takes
at most minutes for mmax = 3 and a spatial grid of size
723.

III. HYDROPHOBIC SOLVATION

A. Hard-sphere solute

We begin by examining the paradigmatic problem of the
solvation of a perfectly hydrophobic hard sphere, which is at
the basis the standard scaled particle theory10,76 or more
recent advances in the theory of hydrophobicity and hy-
drophobic interactions77,78. We focus first on the solvation
free-energy in SPC/E water, for which we can borrow the
reference simulation results of Hummer et al.79 and Huang
et al.77,78. In Fig. 2-a, we plot the hydration free energy of a
hard sphere of increasing radius R computed by MDFT for
different values of the coarse-graining parameter σw and
show that σw = 0.91 Å does fit perfectly the Hummer
et al. results, in perfect agreement with the rough esti-
mation given above. In Fig. 3 we plot the corresponding
solvation free energy per surface area, ∆Gsolv/4πR

2, com-
pared to the MC results of Huang et al., including their
extrapolation beyond the highest simulated value, R = 14
Å. Since the plateau value of ∆Gsolv/4πR

2 is associated
to the liquid-vapor surface tension γ it can be stated that
the WDA bridge functional in eq. 5 is parameter-free, since
fixed by the values of the bulk liquid compressibility χT and
liquid-vapor surface tension γ. In Fig. 2-b and Fig. 3 the
WDA and simulation results are compared to the bare HNC
results and to those corrected by the so-called improved
PC correction (PC+) that we have ourselves advocated to
improve the HNC results for realistic molecules80,81, and
that have been further uptaken by the RISM community31.
It simply corrects the overestimated pressure in HNC by
adding a term proportional to the partial molar volume of

the solute,

∆GPC+
solv = ∆GHNC − P exc

HNC∆V (11)

where ∆GHNC is the SFE predicted by the HNC functional
of eqs 2-4, ∆V is the equilibrium partial molar volume of
the solute

∆V =

∫
dr
neq(r)− nb

nb
, (12)

and P exc
HNC = − 1

2kBTnbĉs(0) is the bulk excess pressure
yielded by the HNC approximation. As pointed out in
Ref.82, the PC+ correction modify the SFE without chang-
ing the minimization process and it violates the DFT ansatz
in the sense that the density minimizing eq. 11 is no longer
the one obtained by minimizing eq. 1. As seen in Fig. 2-b,
PC+ underestimates the SFE for small HS radii. As for the
free energy per surface area in Fig. 3, the approximation
cannot capture the correct asymptotic physical behaviour
with a plateau and it elads to an overestimation at the
nanoscale. Note that the straight pressure correction (PC)
introduced in Ref.80,81, that amounts to considering the to-
tal HNC pressure in eq. 11 instead of only the excess one,
does yield the correct plateau behaviour but with an un-
derestimated value of γ. It leads furthermore to a larger
underestimation of ∆G than PC+ at the sub-nanoscale.59

As a further test of the WDA bridge, we plot in the top
panels of Fig. 4 the solute-water radial distribution function
(rdf), g(r), obtained for different values of R with either the
HNC or HNC+WDA functionals. In HNC, the first-peak
rises continuously to reach a high plateau around 5.5. With
WDA a maximum around 2 occurs at R = 4 Å and the peak
height further decreases continuously as the sphere grows.
This is indeed the correct behaviour when compared to the
Monte-Carlo structures provided by Huang et al. in the
bottom panels. At first sight, the agreement is seen excel-
lent. This is confirmed in Fig. 5 by plotting the value of the
maximum of g(r) and the contact value g(R) as function
of R. The values inferred from the MC simulations do fit
very well into the MDFT curves. HNC+WDA does predict
correctly a liquid depletion, characterized by g(R) < 1, for
values of R ≥ 8 Å. This depletion will eventually lead to
a dewetting transition that is predicted by MDFT in the
R ' 50 − 100 Å range –thus largely out of the simulation
range. Indeed the HNC behaviour appears physically in-
correct, except at very small R values below 2 Å.

B. Lennard-Jones solute

We now depart from perfect hydrophobicity with the
addition of solute-solvent attraction. Firstly, back to en-
ergetics, we examine the case of a Lennard-Jones spheri-
cal particle of increasing size. We rely on the molecular-
dynamics results of Fujita et al.83 obtained for a Lennard-
Jones sphere of diameter σ increasing from σ = 4 Å to
σ = 18 Å in SPC/E water. The well-depth parameter ε is
taken constant at 0.5 kJ/mol. As seen in Fig. 6, the HNC-
WDA results are quite good over the whole range of σ, with
only a slight underestimation for the highest diameter con-
sidered. The HNC approximation is indeed out of range.



5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
R (Å)

0

10

20

30

40

50

60
G

so
lv

 (k
J/m

ol
)

(a)

w = 0.91 Å

w = 0.8 Å

w = 1.0 Å
Hummer et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
R (Å)

0

10

20

30

40

50

60

G
so

lv
 (k

J/m
ol

)

(b)
HNC+WDA, = 0.91 Å
HNC
HNC-PC+
Hummer et al.

Figure 2. Hydration free energy of a hard sphere as function of
HS radius R. The MDFT results are compared to the Monte-
Carlo results of Hummer et al.79: (a) For the HNC+WDA func-
tional and different values of the coarse-graining parameter σw

in eqs 5-7. (b) According to the different approximations de-
scribed in the text.

In agreement with our previous studies for Lennard-Jones
particles or assembly of Lennard-Jones particles, the HNC-
PC+ a-posteriori correction largely improves it, although
still underestimating the simulation results for small σ’s
and doomed to overestimate them at the nanoscale. Similar
conclusions concerning HNC or its close Kovalenko-Hirata
(KH) variant were also reached by Fujita et al. using 3D-
RISM. They never found such agreement as the one that we
obtain with HNC+WDA with any of the numerous versions
of 3D-RISM that they tried.

As far as structure is concerned, we compare in the top
panels of Fig. 7 the radial distribution functions obtained
either by MDFT or MD simulations for two microscopic
spherical solutes of different size, namely a one-site united-
atom representation of methane (σ = 3.73 Å, ε = 1.23
kJ/mol) and of neopentane, C(CH3)4 (σ = 6.15 Å, ε = 3.49
kJ/mol), immersed in SPC/E water. The HNC approxima-
tion tends to systematically overestimate the first and sec-
ond peaks and slightly displace them to lower values. This

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
R (Å)

0

20

40

60

80

100

G
so

lv
/4

R
2 (

m
J/m

2 )

Huang et al.
HNC+WDA, w = 0.91 Å
HNC
HNC-PC+

Figure 3. MDFT hydration free energy per surface area as func-
tion of HS radius compared to the Monte-Carlo results of Huang
et al.77 according to the different approximation described in the
text. The green and orange indicators appearing on the right
y-axis give the plateau values that would have been obtained for
σw = 0.8 Å or σw = 1.0 Å, respectively. See the corresponding
curves in Fig. 2-a.

is nicely corrected by the WDA bridge, with no visual dif-
ference between MDFT and simulation for methane and a
little one for neopentane. In the bottom panels, we consider
a 5-site model of CH4 described by the GAFF force field,
thus including partial atomic charges, in TIP3P water. The
deficiencies of HNC for both the C-Ow and H-Ow rdf’s, es-
pecially in the first peak, are corrected too, with only a
small difference appearing in the first small peak/shoulder
in the H-Ow rdf. Here the calculations were performed with
a value mmax = 5, which gives slightly better converged re-
sults than mmax = 3.

C. Hydrophobic pairs

We now turn to so-called hydrophobic interactions,
namely the effective interaction between two hydrophobic
entities in water, which is known to play a key role in many
phenomena, for example in biomolecular recognition. We
leave the discussion of the simplest paradigmatic case, the
potential of mean force (PMF) between two methanes, to
the Supplementary Material. Rather, we borrow from Fu-
jita et al.83 a slightly more complex test system that they
have explored using both 3D-RISM and simulation83. It
consists in a pair of coronene molecules which are sepa-
rated by a varying distance R while keeping the plane of
each molecule orthogonal to the R-direction. In Fig. 8 is
plotted the solvent-induced PMF, computed for a center-
center distance R as ∆Gsolv(R)−∆Gsolv(∞). It is seen that
HNC+WDA reproduces correctly the overall behaviour of
the simulation curve. HNC is improved by the pressure
correction but the agreement remains far below that of
HNC+WDA. In particular, the solvent-induced free-energy
barrier for association, i.e the barrier encountered when go-
ing from the solvent-separated to the contact pair, is essen-
tially correct for HNC+WDA whereas it is overestimated
by ∼ 90 kJ/mol by HNC and ∼ 20kJ/mol by HNC-PC+.
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Figure 4. Radial solute-water pair distribution function for val-
ues of R = 2, 4, 6, 8, 10 Å (black, red, green, blue and brown
lines, respectively). The top panels compare the HNC and
HNC+WDA approximations whereas the bottom ones confronts
HNC-WDA to the Monte-Carlo results of Huang et al.77,78. The
top-right and bottom-left panels are redundant but presented at
different scales for comparison.

D. Hydrophobic molecules dataset

As in Ref.60, we conclude this section devoted to hy-
drophobic solvation by testing the predictive power of the
present HNC-WDA functional for the hydration free ener-
gies of an extended dataset of hydrophobic solutes. To this
end, we consider the calculation of the non-electrostatic
contribution to the hydration free-energy of drug-like
molecules, a quantity that is systematically computed
in free-energy perturbation methods (growing slowly the
Lennard-Jones potential before introducing the charges),
and that is a main source of error when using MDFT-
HNC. We refer to Mobley’s FreeSolv database, containing
642 drug-like molecules for which the experimental solva-
tion free-energies, and more importantly here, the solvation
free-energies computed by simulation and decomposed into
their non-electrostatic and electrostatic contributions, are
available84,85. We have generated ourselves our own refer-
ence data with the same force-field parameters and start-
ing solute geometries as in Mobley’s FEP calculations, but
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Figure 5. Maximum value of the hard-sphere/water-oxygen pair
distribution function g(r), and its value at contact g(R), as
a function of HS radius R. The corresponding MC results of
Huang et al.77,78 for radii up to 10 Å are given by the star and
square symbols, respectively.
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Figure 6. Hydration free energy of a spherical Lennard-Jones
particle of increasing diameter σ. The dots represent the MD
simulation results of Fujita et al.83 whereas the lines correspond
to different MDFT approximations explained in the text.

keeping the solute geometries fixed in order to compare
directly with MDFT. This was done using the H4D-MC
method and the associated code74,75. We are thus testing
our approach on a dataset of virtual hydrophobic molec-
ular solutes with a large variety of shapes and sizes. In
Fig. 9 we compare the MC results obtained for the non-
electrostatic contribution to the solvation free-energy (all
partial charges put to zero) to the same quantities obtained
with MDFT in its present HNC+WDA version. In Ref.60
this was done using a fully angular-independent functional,
i.e., using an angular-independent HNC reference inferred
from the water structure factor, complemented by a WDA
bridge functional similar to that defined in eqs 5-8. Scan-
ning the whole ’hydrophobic’ Mobley database we found
in that study a mean absolute error (MAE) of 0.35 kBT
between the MDFT and Monte-Carlo hydration free ener-
gies. As it appears in Fig. 9, this error is now decreased to
0.25 kBT when using the full angular-dependent HNC ref-
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Top panels: a one-site unified-atom representation of methane
and neopentane in SPC/E water. Bottom panels: a five-site
model of methane in TIP3P water, with the C-Ow and H-Ow

site-site pair distribution functions represented.

erence. The mean slope is very close to unity. This is much
better than that was obtained previously using the HNC
approximation and the best pressure correction, equivalent
to HNC-PC+59. That yielded a mean slope of 0.55 and a
MAE of 0.7 kBT ; see the top panel of Fig. 9. Note that an
isolated, utmost outlier appears around +20kJ/mol in the
HNC+WDA results; it concerns the ethion molecule, com-
posed of 41 atoms, the largest molecule in the database,
that is curiously better described by HNC-PC+.

We conclude here our application to hydrophobic solva-
tion, although many other features remain to be studied
within our MDFT framework: the entropy-enthalpy con-
tributions to the solvation free energy and the temperature
effects, the cross-over between the so-called enthalpic and
entropic solvation regimes, the effective interaction between
nanoscale hydrophobic objects.... We reserve this to future
work. For now, we have already in hand many clues in-
dicating that our HNC+WDA version of MDFT is able to
capture the main physical features of hydrophobic solvation
at a qualitative and even quantitative level. How does this
extend to hydrophilic solvation ? This is the matter of the
next section.
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Figure 8. Top: Representation of two interacting coronene
molecules distant by R and kept perpendicular to the R-
direction. Bottom: Solvent-induced PMF as function of the
center-to-center distance R. The MD results are taken from
Ref.83.

IV. HYDROPHOBIC TO HYDROPHILIC SOLVATION

A. Water as a solute

As the paradigm for a hydrophilic solute, we begin with
the water molecule itself, i.e., we consider a water molecule
immersed in the same water model. Immediately appears a
limitation of the HNC+WDA functional developed above:
the computed solvation free energy turns out to be −16.2
and −15.8 kJ/mol for SPC/E and TIP3P, respectively,
whereas our reference Monte-Carlo values are −29.5 and
−23.3 kJ/mol. There is a clear underestimation of the elec-
trostatic contribution to the free energy. To correct that
deficiency, we propose the simplest conceivable patch cor-
recting the theory, which is to slightly reinforce the solvent
electrostatic potential through an additional bridge term
that has the form

Felec
B [ρ(r, ω)] =

∫
drdr′

ρsolute(r)λρw(r′)

4πε0 |r − r′|
, (13)

where ρsolute(r) denotes the solute charge density and
ρw(r) the solvent charge density defined by

ρw(r) =

∫
dr′dω σ(r − r′, ω)ρ(r′, ω) (14)
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Figure 9. Correlation between the MDFT and Monte-Carlo sol-
vation free energies for FreeSolv dataset of 642 drug-like organic
molecules with all partial charges put to zero. Top: MDFT in
the HNC-PC+ approximation (results are taken from Ref.59).
Bottom: Using the HNC+WDA functional developped in this
work. The mean absolute errors (MAE) are indicated.

σ(r, ω) being the charge density of a single water molecule
located at origin with orientation ω. The additional bridge
term appears thus as a functional of the full angular density
ρ(r, ω). The parameter λ is fixed by requiring the correct
solvation free energy for water in water, i.e., the correct ex-
cess chemical potential of the bulk solvent. This condition
yields λ = 0.18 for SPC/E, and 0.14 for TIP3P. The new
term amounts to slightly renormalize (increase) the solvent
charges seen by the solute while keeping the water-water
interactions unchanged. From now on, the modified func-
tional including this new electrostatic term on top of WDA
bridge of eqs 5-8 will be referred to as HNC+WDA*. How
does it affect the liquid structure? It can be seen in Fig. 10
that the effect of the new electrostatic term is not spectac-
ular and does not solve completely the known limitations of
HNC59: a first peak of gOO(r) that is too broad, a second
one that is misplaced, a first peak of gHO(r) that is un-
derestimated. It can be seen, however, that HNC+WDA*
slightly improves both the HNC and HNC+WDA results,
with for example a first peak of gOO(r) that is narrower
and better located.

B. Test sets of organic molecule

At this point, it has to be checked how the HNC+WDA*
functional, somewhat phenomenological but parametrized
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Figure 10. OOw and HOw radial distribution functions for a
TIP3P molecule in TIP3P water (subscript w). The different
approximations of MDFT described in the text are compared to
simulation results.

on the sole properties of water, extends to the solubility
prediction of other hydrophilic molecules. To make a first
quick assessment, we have constructed a reduced dataset of
19 test organic molecules, including the standard dataset
constituted by 14 amino-acid side-chain analogs, quinoline
(see below), plus 4 special molecules picked in the Mobley’s
dataset (the two molecules having the smallest, negative
’hydrophobic’ SFE, and the two having the largest positive
ones. This includes the largest molecule in the dataset,
ethion). See the SM for a more detailed description of the
test set. Five of them, including part of the amino-acid
analogs, turn out to be hydrophobic while eleven solutes
can be referred to as hydrophilic with markedly negative
SFE’s. Compared to reference simulation results obtained
with the H4D-MC method74,75, it is seen in Fig. 11 that
the trend of the SFE’s when going from hydrophobic to
largely hydrophilic solvation is reproduced quantitatively,
with a mean absolute error of 0.75 kBT over this rather
reduced dataset. The highest discrepancy is observed for
molecule 19, namely Ethion, that was already pointed out
as an outlier for the hydrophobic contribution to the SFE
in Fig. 9.

As for the solvent microscopic structure, it seems illusory
to test visually tens of molecules. In Fig. 12 we have se-
lected as a typical example the quinoline molecule, already
studied in Ref.59. Looking at the different solute-site/water
radial distribution functions, we can claim that the agree-
ment between MDFT and simulation is quite good, and
that HNC+WDA* does improve the structure with respect
to straight HNC –the HNC+WDA results (not shown) are
rather close to the HNC+WDA* ones. As can be antic-
ipated, the largest discrepancy appears for the nitrogen
atom, wearing a strong negative charge, for which the H-
bond structuring effect is better accounted for compared to
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star). The MDFT results, obtained with a HNC+WDA* func-
tional adjusted on the sole properties of water, are compared to
simulation results obtained with the H4D-MC method74,75. The
molecules are numbered from 1 to 20 and are sorted by decreas-
ing solvation free energies (see the Supplementary Material).

HNC, but appears still underestimated.
We conclude this section devoted to neutral molecules

by now spanning the FreeSolv database, i.e., the whole 642
drug-like molecules wearing their full partial charges84,85.
The results concern in fact 635 molecules, since 7 out of the
642 (1 % of the database) lead to convergence problems. In
Fig. 13, we show the correlation between the HNC+WDA*
hydration free energies and those that we have obtained
through the H4D-Monte-Carlo method for the same rigid
molecule geometries. We find a slope very close to 1, and
a mean absolute error of 0.45 kBT (∼ 1 kJ/mol) over the
whole database, thus far below 4 kJ/mol that is considered
as chemical accuracy for such thermochemical quantities.

C. Charged species

We have shown in the previous sections that with the
appropriate bridges MDFT is able to quantitatively pre-
dict the solvation properties of hydrophobic and hydrophilic
neutral molecules, we now turn to ionic species. In Fig. 14,
we display the water structure obtained with MDFT-HNC
and using the WDA* bridge for a typical monovalent
cation, K+, and a typical monovalent anion, Cl−. There we
plot either the reduced number density, equivalent to the
rdf, g(r) = n(r)/nb, or the reduced polarisation density, de-
fined here as P (r) =

∣∣∫ dωω̂ρ(r, ω)/nb
∣∣ where, for every ori-

entation ω, ω̂ represent the unitary vector along the dipole
direction. Again, compared to MC results, HNC+WDA*
does slightly improve the HNC predictions, in particular in-
creasing the first peak height which is a little bit too small
in HNC. Overall the structure around the cation is very
satisfactorily reproduced, be it in terms of number density
or polarisation density. This is less so for the anion, for
which a shift of the second peak occurs, reminiscent to that
observed for water. Overall, the structural differences be-
tween HNC+WDA*, HNC+WDA (not represented here)
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Figure 12. Top: Picture of the quinoline molecule with its car-
bon atoms numbered. Bottom: site-water oxygen radial dis-
tribution functions for a selection of different atomic sites of
quinoline. The color code is the same as in Fig. 10: the simu-
lation curves are in black; the MDFT ones within the HNC or
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Figure 13. Correlation between the MDFT and Monte-Carlo
hydration free energies for the FreeSolv dataset of drug-like or-
ganic molecules. The mean absolute error is indicated.

and HNC are relatively small. This is not the case for the
solvation free energies, as can be seen in Table I. There
we report our previous results obtained with HNC and its
a-posteriori PC+ correction (which has here a minor in-
fluence). Here we find that HNC+WDA underestimate in
absolute value the SFE’s of both the cation and the anion,
and more so for the anion. On the other hand HNC+WDA*
accounting for the electrostatic bridge correction of eq. 13
largely overestimates them. The λ-factor selected to yield
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MC HNC HNC+WDA HNC+WDA* HNC-PC+

Cl− -360 -317 -328 -403 -317
K+ -315 -293 -294 -384 -304

Table I. Absolute hydration free energies in kJ/mol obtained for different approximations of MDFT and compared to Monte-Carlo
results.
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Figure 14. Water structure around a cation and an anion com-
puted within different MDFT approximations and compared to
MC simulation results. The top panels display the ion-water ra-
dial distribution function, g(r) = n(r)/nb, whereas the bottom
ones display the reduced polarization density, as defined in the
text.

the correct chemical potential of water, and further applied
to arbitrary neutral molecules, obviously does not extend
to ionic species. If any λ-factor to be defined, it should
take a smaller value for charged species, and furthermore a
different one for negative or positive charges. Despite the
fair amount of successes that we have reported so far for
both hydrophobic and hydrophilic solvation, we reach here
the caveats and the limits of the simple bridge functional
approach developed conscientiously in the paper.

V. CONCLUSIONS AND PERSPECTIVE

In a previous work we have explored the capability of
molecular density functional theory at its lowest, second-
order, theoretical level, namely in the HNC approximation,
to predict the hydration free-energies of molecular solutes
and the surrounding microscopic solvent structure.59 In the
present work, following Ref.60, we have proposed a simple,
third-order, angular-independent bridge functionals, com-
plementing the fully angular-dependent HNC functional,
that was shown to be extremely powerful to describe the
solvation of hydrophobic entities, avoiding the need of any
a-posteriori corrections. This lead to the further defini-

tion of a simple angular-dependent correction that extends
the predictability of the theory to hydrophobic solvation.
Among many positive features described in the paper, man-
aging to reproduce the simulation solvation free-energies
for the whole FreeSolv database with an accuracy of half
a kBT , below what can be considered as chemical accu-
racy, moreover with a functional adjusted only on bulk
liquid properties and not on any part of the database to
be studied, is a success. We thus consider that, with
the present version, the molecular density functional the-
ory of water has reached a sufficient degree of maturation
and predictability to be diffused and applied to relevant
chemical problems where water plays a key role, for ex-
ample hydration effects in the structure and function of
biomolecules, molecular recognition, or in QM/MM ap-
proaches to describe explicit water around quantum me-
chanical solutes86–88. Let us also recall that, even in its
crudest HNC approximation, MDFT and associated liquid-
state theories are known to work much better for non-
associated liquids42,46, i.e., many of the non-polar or polar
aprotic solvents that are used in chemistry. As often, de-
spite the extremely simple chemical structure of its com-
ponents, and their simple point charge representation in
models such as SPCE/E or TIP3P, the description of liq-
uid water is the problem.

Indeed, the work presented in this paper is not the end
of the story of MDFT for water. It does not make it pos-
sible to describe ionic species consistently. Furthermore,
the simple angular-dependent, additional bridge functional
proposed in eq.. 13, although solving part of the problem
for hydrophilic solvation, remains ad-hoc and marginaly
improves the description of the H-bonding water structure.
The ultimate bridge functional for water should be sought
from the start as an angular-dependent functional, as ev-
idenced by a previous study for neat water64. A positive
indication emerging from this study, in particular the form
of the WDA functional that was chosen in eqs 5-8, is that a
systematic third-order theory, thus involving a reasonable
approximation of the three-body direct correlation function
c(3)(1, 2, 3) in addition to the two-body one contained in the
HNC functional, might prove sufficient. This is a direction
for future improvements.
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