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Geometrical network of granular materials under isochoric cyclic shearing
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Abstract. We use three-dimensional particle dynamics simulations to investigate the microstructure evolution
of granular material subjected to isochoric cyclic shearing, driving the system to a liquefaction state. The
cyclically sheared assembly presents a realistic macroscopic response as observed in physical experiments. By
analyzing the contact network evolution in the post-liquefaction period, we show that the onset of liquefaction
state is characterized by a sudden drop of coordination number and a fragile particle connectivity network.
The simulation suggests a critical coordination number for exiting the liquefaction state. Evolution of fabric
anisotropy combined with coordination number implies the isotropic and anisotropic gain or loss of contacts at
certain durations of a post-liquefaction loading cycle.

1 Introduction

The macroscopic behavior of liquid-saturated cohesion-
less granular materials under dynamic loading has been
explored and modeled in the realm of soil mechanics in re-
cent decades [1–4]. The gradual evolution of granular ma-
terials under cyclic shearing towards liquefaction, charac-
terized by the vanishing of the mean effective stress in the
solid phase, is termed “cyclic liquefaction”. While soil liq-
uefaction arises from load transfer between soil and water,
this phenomenon does not need a saturated granular mate-
rial or dynamic conditions, but can occur in a dry granu-
lar material under isochoric (constant volume) and quasi-
static loading conditions. For this reason, isochoric cyclic
shearing, without explicitly incorporating pore fluid, has
often been used as a proxy for the undrained cyclic defor-
mation of liquid-saturated granular materials subjected to
isobaric (constant total stress) conditions [5–9].

In most related discrete element modeling (DEM)
studies, the exploration of microscopic features has been
limited to a short-term liquefaction process, not cover-
ing enough post-liquefaction period. The physical mech-
anisms governing the long-time evolution of the mi-
crostructure that underlies transition to the liquefaction
state remain to a large extent unexplored. In particu-
lar, the contact network anisotropy may increase dramati-
cally in liquefaction state, reflecting the lower values of the
coordination number and unstable particle arrangements.
While some studies show that the normal force anisotropy
prevails in the liquefaction state as compared to the fabric
and tangential force anisotropies [10, 11], these features
have never been analyzed during shear cycles before and
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after liquefaction and discussed in connection with the co-
ordination number.

In this paper, we analyze the long-time evolution of
the contact network using an extensive long-time DEM
simulation of the 3D packing composed of spherical par-
ticles under isochoric cyclic simple shearing. The simula-
tion was carried out with many time steps for adequately
covering the whole process before and after initial lique-
faction. We first describe the numerical procedures. Then,
we present the macroscopic results, followed by the mi-
croscopic investigation of the geometrical network.

2 Numerical procedure

A three-dimensional (3D) DEM program, named GR-
Flow3D [12], was used in this work. The granular as-
sembly was simulated using spheres interacting via soft-
particle laws [13, 14], including normal collision, tangen-
tial sliding, rolling, and torsion. The essential quantity
is the elastic deflection between particles, from which the
corresponding force can be evaluated using a linear spring-
dashpot model. The simulation involves two steps: prepar-
ing a particle assembly via isotropic compression condi-
tion and applying cyclic simple shear mode to the assem-
bly under isochoric conditions.

The sample consists of spheres with low polydisper-
sity, i.e., dmax/dmin = 2 where dmin = 1 mm and dmax refer
to the minimum and maximum particle diameters, respec-
tively. Between dmin and dmax, the particle size follows a
uniform distribution of particle volumes, so that the num-
ber of particles belonging to a class of diameter d is pro-
portional to d−3 [15]. Once the particles are generated,
they are placed randomly on a 3D sparse lattice to avoid
overlap. This 3D lattice is contained in a rectangular bi-
periodic cell whose top and bottom sides are rigid walls,
and four lateral sides are periodic boundaries. The samples
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Figure 1: Particle arrangements and boundary conditions
for a sample composed of 8000 particles: (a) at the end
of sample preparation; (b) during constant height cyclic
shearing. Gray particles are glued to the top and bottom
walls of the bi-periodic cell.

are compressed isotropically by translationally moving the
six sides of the cell and setting gravity to zero. The tan-
gential friction coefficient µt is tuned to achieve a certain
void ratio e, defined as the ratio of the total pore volume
to the solid volume. We adopted a simple computational
procedure modified from [16] to prepare samples compa-
rable with the laboratory ones. One can refer to [17] for
the details. Fig. 1(a) displays an isotropically compressed
sample of 8000 spheres with void ratio e = 0.647 (medium
dense) under a mean pressure of 100 kPa.

In cyclic shearing, the sample volume is kept constant
by fixing four lateral sides and the bottom wall and keep-
ing the sample height constant. The shearing is undertaken
by moving the top wall horizontally at a constant velocity
of vx. To reduce possible slippage between the walls and
the sample, a layer of particles is glued to the top and bot-
tom walls, respectively, as indicated by gray spheres in
Fig. 1(b). The shear direction is reversed each time the
shear stress τ extracted from the calculated stress tensor,
as explained below, reaches the target amplitude τamp.

We adopted the inertial number I = γ̇d̄
√
ρ/p to main-

tain a quasistatic loading, where γ̇ = |vx|/h is the shear
rate with h the sample height, ρ the density of particles,
and d̄ the mean particle diameter. The shear is nearly qua-
sistatic if I < 10−3 [18]. We tried vx between 0.005 m/s

and 0.01 m/s and did not see noticeable change in the
macroscopic response even in the liquefaction state. In this
study, vx = 0.01 m/s is used, corresponding to a shear rate
γ̇ ≈ 0.38 s−1 and consistent with [9]. This choice makes a
faster simulation and also shearing is nearly quasistatic in
the non-liquefaction states. Even in the liquefaction state,
I does not increase beyond 0.025.

The simulation parameters are given in Table 1. The
rolling and torsion stiffnesses and friction coefficients
were set to a small nonzero value in order to make rota-
tions slightly dissipative as a simple way to account for
the effects due to aspherical particle shape [14].

3 Macroscopic response

The stress tensor σ of the granular assembly is determined
via the microscopic interactions between particles over a
selected volume V:

σ =
1
V

∑
c∈Nc

lc ⊗ f c (1)

where lc is the branch vector connecting the centres of
two particles for interior contact or connecting the parti-
cle centre and the contact point for exterior contacts, f c

is the contact force, ⊗ denotes the dyatic tensor product,
and the summation runs over all the contacts Nc in the se-
lected volume V . The selected volume shares the same
center and occupies 80% of the whole sample, excluding
the boundary layer effect from the top and bottom. The
shear stress τ and mean stress p is obtained from σ, i.e.,
τ = σzx and p = (σxx + σyy + σzz)/3. The variation of
p compared with the initial mean stress p0, is denoted by
“excess pore pressure" ∆u as ∆u = p0 − p. It can be nor-
malized by p0, thus introducing excess pore pressure ra-
tio ru, i.e., ru = ∆u/p0 = 1 − p/p0. The shear strain γ
is defined by xw/h, where xw is the cumulative horizontal
displacement of the top wall.

Fig. 2 presents the typical macroscopic behavior of
the constant volume cyclic simple shear test with τamp =

25 kPa, described in terms of stress path and stress-strain
curve. The stress path in Fig. 2(a) moves cyclically left-
ward from p = 100 kPa and τ = 0 kPa, with a de-
creasing p (increasing ru) due to the system contraction

Table 1: DEM parameters [17]

Description Value
Density, ρ 2650 kg/m3

Normal stiffness, kn 106 N/m
Normal viscosity, cn 1.15 kg/s
Tangential stiffness, kt 0.8kn

Tangential viscosity, ct 0.2cn

Tangential friction coefficient, µt 0.5
Rolling stiffness, kr 0.1kn

Rolling viscosity, cr 0.05cn

Rolling friction coefficient, µr 0.1
Torsion stiffness, ko 0.1kn

Torsion viscosity, co 0.05cn

Torsion friction coefficient, µo 0.1
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Figure 2: Macroscopic response of isochoric cyclic shear
test: (a) stress path; (b) stress-strain curve.

tendency. The first time that ru reaches 0.99 is termed
“initial liquefaction", and its corresponding number of cy-
cles is denoted as NIL. the cyclic shearing process is di-
vided into two periods, before and after initial liquefac-
tion, namely pre- and post-liquefaction periods, as colored
in gray and red in Fig. 2, respectively. The shear strain
in pre-liquefaction period is negligibly small but develops
significantly in post-liquefaction period, especially when
τ vanishes and ru approaches 1.0. Hereafter, we assume
that the system gets into liquefaction state when ru > 0.99
and it exits liquefaction state when ru < 0.99.

A post-liquefaction cycle C is highlighted in Fig. 2,
with six characteristic states. C0 is the first time τ ≥ 0
distinguishing loading from unloading, C0′ is the exit from
liquefaction state, and C1 is τ reaching τamp. C2, C2′ , and
C3 are similar to C0, C0′ , and C1, respectively, in terms of
shearing along the negative x direction (see Fig. 1(b)).

4 Granular microstructure

In this section, the granular microstructure is investigated
in terms of particle connectivity and fabric anisotropy. The
coordination number zg, considering non-floaters (parti-
cles with contacts) and force-bearing contacts, is adopted:

zg =
2Nc

Np − N0
p

(2)

where Np is the total number of particles, N0
p is the num-

ber of floaters, and Nc is the number of contacts. Fig. 3
displays the evolution of zg with the fractional number of
cycles N (another way representing time), where the time
history is colored by the value of ru. The number of cycles
reaching initial liquefaction NIL is marked by the vertical
dashed line. We see that zg decreases from its initial value
zg ' 4.76 with small oscillations in pre-liquefaction period
and drops below 4.0 when the system approaches initial
liquefaction. In the post-liquefaction period, zg stays be-
low 4.0 and fluctuates significantly down to values as low
as 1.5 with a negative static redundancy, implying insuffi-
cient constraints to hold the system stable. A zoomed-up
window is added to present details of zg evolution in cycle
C. The horizontal dashed line for zg = 3.6 corresponds
to the inflection point of zg as a function of N, coinciding
with the exit of liquefaction state (C0′ and C2′ ). It may
be considered the percolation threshold of the particles al-
lowing for force transmission across the system through
the contact network.

The connectivity of particles Pc is defined as the pro-
portion of particles with exactly c contacts. Its distribu-
tion at the characteristic states of cycle C shown in Fig. 4
provides more detailed information about the microscopic
state than zg. C0 and C2 exhibit a high proportion of parti-
cles with c < 4, implying a fragile contact network. This
fragile network disappears only when the system exits the
liquefaction states as shown by {Pc} at C0′ and C2′ . Given
large shear strain development between C0 and C0′ or C2
and C2′ , one can infer that sample deformation rebuilds
the fragile network resulting from unloading (compare C1
and C2) although p does not increase markedly. The sys-
tem stays stable at C1 and C3 while C0 and C2 represent
the states with the weakest contact network in the post-
liquefaction cycle.

We use a scalar ac to quantify the contact network
anisotropy, defined as

ac = sign(S c)

√
3
2

ac : ac, (3)

where S c = ac : s/(
√

ac : ac
√

s : s) is the normalized first
joint invariant between the fabric anisotropy tensor ac, as

Figure 3: Evolution of coordination number zg during
cyclic shearing.
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Figure 4: The connectivity Pc of the contact network in
the post-liquefaction cycle C.

defined in [19], and the deviatoric stress tensor s. The sign
of scalar ac determines the coaxiality between the devia-
toric stress tensor and the fabric tensor. Fig. 5 presents ac

versus zg during the cyclic shearing process, a picture of
the reorganizations of the contact network in response to
external loading [20], with cycle C being highlighted. The
diagram starts from the rightmost part with a high value
of zg and ac ' 0, and follows a path towards to the left
with oscillations between ac ' 0 and a maximum value of
ac that increases gradually with N. The non-liquefaction
states belong to the region of zg ≥ 3.6. In liquefaction
states, both zg and ac vary significantly and follow long
paths exemplified by that from C0 to C0′ , corresponding to
anisotropic gain of contacts. When the system exits liq-
uefaction state and reaches τamp (between C0′ and C1), or
unloading back to liquefaction (between C1 and C2) while
zg either increases or declines, ac is nearly constant, im-
plying isotropic gain or loss of contacts.

Figure 5: Evolution of the fabric anisotropy ac versus co-
ordination number zg during cyclic shearing.

5 Conclusions

This paper investigated the evolution of geometrical
network during isochoric cyclic simple shearing using
discrete-element numerical simulations. The macroscopic
behavior is characterized by gradual reduction of mean

stress until the system enters a liquefaction state. In the
transition to liquefaction state, the coordination number
drops significantly due to isotropic loss of contacts, and
the force-bearing network collapses. Large deformation
in the liquefied states leads to rebuilding the contact net-
work and exiting the liquefaction state at the coordination
number of 3.6 corresponding to the geometrical percola-
tion threshold of the contact network.
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