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Automated Analysis of EIS curves for PEM Fuel
Cells using Dynamic Time Warping

M. Durand1, A. Picot1, J. Régnier1, C. Turpin1, O. Crassous2, M. Scohy2, R. Stephan2, O. Abassie1,
and C. Andrieux1

Abstract—Fuel cell (FC) is a promising solution in order
to tackle global warming problems. Though, efforts are needed
for the development of reliable tools to monitor the FC state
of health and to extract useful information in order to detect
possible malfunctioning. The present paper propose an original
method based on the Dynamic Time Warping (DTW) technique
in order to process and analyze electrochemical impedance spec-
troscopy data. The proposed method extracts information on the
similarities between 2 EIS curves. This method is evaluated on
data from start-up and shut-down experimental campaign on
a high temperature PEM-FC stack. Several hundreds of EIS
curves are processed over 5 different conditions. The proposed
method reaches 92% of correct unsupervised classifications.
From the different classes identified, the ohmic resistance is
extracted in order to study the impact of 2 different start-up
and shut-down protocols on the FC performance.

Index Terms—Dynamic Time Warping; PEM Fuel Cell;
Automated Analysis; Aeronautical; Electrochemical Impedance
spectroscopy; Hydrogen; Start-up and shut-down

I. INTRODUCTION

The aeronautics industry is today driven by the prospect
of a more electric aircraft incorporating efficient and
environmentally-friendly technologies. In this context, Fuel
Cells (FC) offer a number of interesting characteristics
and are seen as a substitute for fossil fuel-based solutions
currently used [1]. Known for years, hydrogen fuel cell
technologies have been recently put again on the front of the
stage with GHG emissions reduction targets. The aeronautical
sector is particularly interested in greening its fleets as it still
represented almost 2% of global carbon dioxide emissions in
2018, according to IEA report [2].

Recently, research efforts have intensified on a particular
fuel cell technology: the high-temperature proton exchange
membrane fuel cells (HT-PEM FC) which presents notably
the advantages of simplified water management, higher im-
purities tolerance and more usable heat [3]. So that this
technology can be embedded into aircraft, progress has to be
made on both cost and durability. Part of the work involves
understanding the origins and limiting the damage caused by
the start and stop processes. In this perspective, start-up and
shut-down (SU/SD) cycling aging tests have been carried out
on a five-cell HT-PEM stack.
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The development of automated test benches allows repeat-
ing predefined SU/SD protocols in a reproducible manner.
The evolution of the stack performances can be monitored
before, during and after start and stop cycles by combining
analysis of polarization curves [4], cyclic voltammetries [5]
and electrochemical impedance spectroscopies (EIS) [6]. Par-
ticular attention is given to the study of EIS as this technique
is feasible in operation and provides a lot of information on
FC state of health and degradation behaviors.

Electrochemical Impedance Spectroscopy (EIS) is a com-
monly used measure to study the state of health of the FC. A
small amplitude sinusoidal current excitation is imposed to
the stack and its voltage response is monitored. Impedance
can thus be extracted for different signal frequencies. Com-
pared to other characterization, EIS is not much time con-
suming, is supposed to have a small impact on degradation
and gives a lot of information about running processes.

However, the repetition of aging protocols coupled with
automatic characterizations led to a large number of EIS data
files raising an issue of post-processing, as aging campaign
can last for several thousand hours [7]. A solution could be
found thanks to shape analyzing. Information extracted from
visual analysis of EIS might be difficult to transcript as one
or several indicators. Dynamic Time Warping (DTW) is an
algorithm that measures the similarity between 2 sequences.
It has been widely used for speech processing [8], [9] and
more recently for data mining [10], [11]. The present work
proposes to use the DWT technique to identify the similarities
between different EIS curves and use that as an indicator in
order to group them by likeness in order to make the global
analysis of the data easier.

The experimental test bench and PEMFC data that were
used in this work are described in section II. Then, the
proposed method is detailed through an example. The results
obtained on the experimental data are presented and discussed
in section III. Section IV concludes the paper.

II. MATERIALS AND METHOD

A. Experimental setup
The fuel cell used in this work consisted of a stack of

five commercial PBI-based membrane-electrode assemblies
(MEAs) separated by metal bipolar plates (BP) and thermally
regulated around 160∼180˚C. The stack was designed and
build by Safran Power Units. This technology is known as
High Temperature Proton Exchange Membrane Fuel Cell
(HT-PEMFC).



The stack temperature was dynamically regulated with
a Presto A40 thermoregulator from Julabo connected to an
external oil circuit. The heating and cooling phases took
about 20 minutes each. To ensure the repeatability of the
measures and make comparison between start or stop pro-
tocols possible, an automated control of the test bench in
terms of gases flows, temperatures, pressures and currents
imposed to the fuel cell was developed. Hydrogen, air and
nitrogen flows were controlled and measured with mass flow
controllers from Brooks. The current was imposed by two
active loads, one EA-EL 9080-400 from Elektro-Automatik
for the floor part, and a PBZ60-6.7 from Kikusui for dynamic
excitation during EIS.

Fig. 1 displays the experimental bench with the instru-
mented stack in the middle. The computer that supports the
HMI is on the left, in a specific tower besides the bench.
This part also house the FC thermoregulator (in its bottom)
as well as the electrical power management system. Other
specific equipment were also used for characterizations : a
Diagnostack, previously developped in collaboration with He-
lion, controlling the load during polarization curves and EIS
plotting, and an Origalys system used for cyclic voltametry.

Figure 1. Aging test-bench for start-up & shut-down cycling.

B. Data campaign

The data used in this work are extracted from SU/SD
cycling campaigns. The fuel cell is repeatedly subjected
to thermal cycles to reproduce mission stresses. On start-
up, when a sufficient temperature is reached, current is
progressively imposed. A wait for thermal stabilization under
constant flows and current conditions is then done. When
stability is achieved, measurements are taken to monitor
performance trends. Once data are collected, the FC is turned
off by gradually reducing the current before flushing the
electrodes with nitrogen or air depending on the protocol
chosen.

Two different SU/SD protocols were tested: P1 and P2.
On one hand, P1 is a laboratory-oriented SU/SD protocol

with no specific constraint developed to minimize the impact
of SU/SD on the FC. On the other hand, P2 was designed
in collaboration with Safran Power Units in respect with FC
industrial constraints.

In order to confirm the observation of degradations by
limiting the impact of singularities, each protocol combina-
tion was repeated 50 times in a row. Before and after each
of these cycling block, the fuel cell was characterized specif-
ically by cyclic voltammetry cell by cell and a polarization
curve was plotted. These performance curves were voluntary
limited in the current density range explored in order to lessen
the impact of charcterization itself on aging. Each time, six
points were taken from 0.1 to 0.6 A/cm2. It was also decided
to only carry out these measurements between cycles of 50
repeated start-stops.

Parallel to this observation, in-operation measurements
could be carried out using electrochemical impedance spec-
troscopy (EIS): a small amplitude sinusoidal excitation is
over-imposed on current and the stack voltage response
is acquired. For different sinusoidal frequencies it is then
possible to plot the real and imaginary parts of the fuel cell
impedance. In this study, a constant excitation amplitude of
0.77 A peak-to-peak was used. The spectrum of frequencies
explored extendend from 5 kHz to 0.1 Hz. These plots reveal
information on fuel cell performances and state of health
during start-stop cycling. Among extractable indicators, the
high frequency resistance, defined as the first intersection
of the impedance plot with the real axis on a Nyquist
diagram, characterizes the performances in terms of electrical
charge transfer (either positive or negative). Monitoring this
parameter thus reveals information on fuel cell performances
and state of health during start-stop cycling. Those data
can also be used for model fitting in order to improve our
understanding of aging phenomena.

Please note that EIS were carried out automatically every
5 minutes as current could be imposed to the stack. This led to
variability in operation conditions between characterizations
even if the same conditions were achieved at the end of
stabilization step. Thus, the data from each protocol can be
divided into 2 classes: stabilized PXs and unstabilized PXu,
where X is the protocol number. Moreover, the data from
the break-in phase (BI) were kept in the dataset. A total of
383 EIS curves is obtained. The number of curves in each
condition is summed up in table I.

Table I
NUMBER OF EIS CURVES IN EACH CONDITION.

BI P1u P1s P2u P2s
33 67 108 64 111

Added to the large number of starts and stops studied, a
solution had to be developed in order to automatically process
the data of the hundreds of EIS carried out. Thus the purpose
of this work consists of separating the numerous EIS curves
obtained under different operating conditions over aging time.



C. Dynamic Time Warping

Dynamic Time Warping (DTW) is well-known technique
for measuring similarity between two time-dependent se-
quences that might vary in speed. It has been first developed
for speech recognition [8] and then successfully used in other
domain such as data mining where it was used as a metric
to replace the Euclidian distance [10]. The interest of such
a technique is to take into account the possible shifting and
distortion between to signals. Over the years, the weaknesses
of the algorithm in terms of complexity and scale adaptability
have been answered to make the DTW more reliable [12].

Let X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yM ) be
2 sequences of respective size N and M . The purpose of
the DTW algorithm is to find the optimal match between
the points of X and Y . This is done by computing first the
accumulative cost matrix C = [cij ] of size N ×M where
each element cij represents the minimum accumulative error
between xi and yj . This is achieved recursively according to
eq. (1).

cij = d(xi, yj) +min(ci−1,j−1; ci−1,j ; ci,j−1) (1)

In this equation, d(xi, yj) is the distance between xi and
yj . This distance is calculated as expressed in eq. (2). Here,
the error between the derivative at instant i and j is also
taken into account, where ∂xi and ∂yj are the derivative of
X and Y at instant i and j respectively.

d(xi, yj) = |xi − yj |+ |∂xi − ∂yj | (2)

In order to increase the computation time, only the points
in the “Sakoe-Chiba band” are computed [8]. This means
that the warping path is looked up in a window w around the
diagonal i = j. Once the cost matrix C has been computed,
the optimal warping path p = (p1, p2, . . . , pL) with pk =
(i, j) ∈ [1..N ] × [1..M ] giving the correspondence between
each elements xi and yj of both sequences is built following
3 criteria:

• Boundaries: the first and the last points of the warping
path are the first and last points of the sequences.

• Monotonicity: the path points pk are set by increasing
order of i and j.

• Step size: from pk to pk+1, i and j can not be increased
of more than 1.

The optimal warping path computation is detailed in
algorithm 1.

Fig. 2 shows an example of the obtained matching be-
tween 2 EIS curves. Both EIS curves were obtained on the
same fuel cell for different current conditions. The blue and
red curves were recorded at two different current densities.
The dotted lines display the corresponding points.

It seems obvious from Fig. 2 that the obtained matching
between the 2 curves is coherent. In particular, it can be
noticed that the local minimum and maxima are correctly
matched. From this match, it is now possible to compute the
distance along Re(Z) and along Im(Z). These distances are
respectively noted DistX and DistY in the following. Fig.

Algorithm 1 Optimal Warping Path
p = (N,M)
i = N , j = M
while (i > 1) and (j > 1) do

if i == 1 then
j = j − 1

else if j == 1 then
i = i− 1

else
m = min(ci−1,j−1; ci−1,j ; ci,j−1)
if m == ci−1,j then

i = i− 1
else if m == ci,j−1 then
j = j − 1

else
i = i− 1, j = j − 1

end if
end if
p = ((i, j); p)

end while

Figure 2. Example of DTW matching for 2 EIS curves.

3 displays both DistX and DistY for the example shown
in Fig. 2. In this figure, the distance is presented depending
on the path index but it could also be displayed depending
on the EIS frequencies. Here, the blue curve is used as the
reference.

The analysis of distance curves displayed in Fig. 3 is
consistent with the observations that can be made on Fig.
2. Along Re(Z), one can notice that the matching points
are very near till the first maximum where they start being
shifted. This shifting stabilizes after the local minimum. This
is exactly the evolution that is described by DistX . It is first
very close to 0, then increases until it stabilizes. The same
observation can be made on Im(Z). The matching points
are very close till the first maximum where the red curve
is higher than the blue one. The level of the 2 curves are
similar again around the local minimum and then the red
curve becomes lower than the blue one before reaching the
same level again. This evolution is well depicted by DistY
which is almost constant around 0, then shows an increase,



Figure 3. Distances DistX and DistY for the example given in Fig. 2.

goes back to 0, and then describes a decrease before going
back to 0 again.

This example demonstrates that the DTW can be a
powerful tool to describes the visual comparison that can
be made between 2 curves.

III. RESULTS AND DISCUSSIONS

A. Evaluation process

The DTW method is applied on the EIS extracted from
the experimental data presented in II-B. These EIS curves are
depicted in Fig. 4.

Figure 4. EIS curves from the experimental data campaign.

It can be observed in Fig. 4 that it seems to be 5 groups
of EIS curves. To differentiate them, these groups have been
plotted with 5 different colors: blue, red, black, magenta
and green. From the FC perspective, these 5 groups are
corresponding to different experimental conditions:

• Red (1): Break-in period of the FC (BI).
• Blue (2): SU/SD protocol 1, EIS are performed before

the temperature is stabilized (P1u).
• Black (3): SU/SD protocol 1, EIS are performed after

the temperature is stabilized (P1s).
• Green (4): SU/SD protocol 2, EIS are performed before

the temperature is stabilized (P2u).

• Magenta (5): SU/SD protocol 2, EIS are performed after
the temperature is stabilized (P2s).

It should be noted that if three temporal phases can
be distinguished depending on wether the characterization
is carried out during break-in, first or the second cycle of
SU/SD, there is no predetermined order in the sequence of
EIS within the same SU/SD cycle. From a temporal point
of view, the datasets colored in black and blue in Fig. 4
(respectively green and red) are completely mixed.

The proposed method is evaluated on its ability to classify
the 5 groups that were visually identified. To do so, the aver-
age absolute distances mean(|DistX|) and mean(|DistY |)
are computed from the results of the DTW algorithm on
each curve. Then, an unsupervised classification algorithm
is performed on mean(|DistX|) and mean(|DistY |). The
classification algorithm used here is a classic k-means clus-
tering with 5 classes [13]. This algorithm was chosen for its
simplicity. This choice will not be discussed furthermore in
the paper.

B. Classification results

The results of the classification is displayed on Fig. 5. It
can be seen in this figure that 5 groups are identified. The
colors used in this figure are the same as in Fig. 4.

Figure 5. Classification results on the average distances of the DTW results
on the EIS curves.

From Fig. 5, one can notice that the classes identified
seem to match the visually identified groups. The first EIS
(the one the more on the left in 4) is taken as the reference.
The red crosses are very close to 0 and then shift to the
right with almost no change on mean(|DistY |). It is the
same behavior for the red EIS observed in 4. Then, another
class is identified as the blue crosses, characterized by a
shifting on the mean(|DistX|) axis and a tiny increase on
mean(|DistY |), which is what is observed on the blue EIS
curves: they are shifted on the Re(Z) axis with a slight
increase on amplitude. On the right of the blue crosses class
comes the green squares class with still a shifting on the
right and a small increase on mean(|DistY |), which is once
again similar to one can observe on the green EIS curves.
Concerning the black EIS curves, their position is similar



to the blue ones on the Re(Z) axis but their amplitude is
highly decreased. On Fig. 5, the black stars class have above
the blue crosses one, showing a similar distance on Re(Z)
but more distance on −Im(Z). The fact that an increase is
observed on mean(|DistY |) is due to the absolute operator
that is used to compute the distance. However, it indicates an
important change in amplitude which is the case here. The
same observations can be done on the magenta triangles class
compared to the green squares one.

The joined analysis of the EIS curves and the classifi-
cation on the DTW distances demonstrates that DTW is a
very interesting tools to transcript the observations one can
visually make.

Table II presents the confusion matrix of the classification.
A performance of 92.2% correct classifications is reached.

Table II
CONFUSION MATRIX OF THE EIS CURVES CLASSIFICATION.

Target
BI P1u P1s P2u P2s

O
ut

pu
t BI 14 0 0 0 0

P1u 19 59 0 0 0
P1s 0 0 105 0 0
P2u 0 8 0 64 0
P2s 0 0 3 0 111

Rate 42.4% 88.1% 97.2% 100% 100%

The classification rates are very good except for Class
BI where only 42.4% are correctly classified. Moreover,
misclassified EIS curves are the one on the boundary to
another class (BI to P1u, P1u to P2u, and P1s to P2s). As
an example, Fig. 6 displays the EIS curves of Class BI (red)
and the beginning of Class P1u (blue).

Figure 6. EIS curves of Class BI (red) and the beginning of Class P1u
(blue).

It can be noticed from Fig. 6 that the first EIS curves
in Class P1u are mixed up with some EIS curves of Class
BI. As a consequence it is difficult to separate them visually
which explains why the proposed method does not achieve
to separate them and class them correctly.

C. Experimental data analysis

EIS is a interesting measure on FC because it gives
information on the FC performance [14]. It is achieved in
particular through the tracking of the ohmic resistance RHF

that can be extracted when the EIS crosses the Re(Z) axis
at high frequency, i.e. on the left of the curve. The lower this
resistance, the better performance of the FC [15]. The RHF

is extracted from the different EIS curves and displayed in
Fig. 7 according the classification results presented in section
III-B, using the same colors as previously. For confidentiality
reasons, normalized values are presented here.

Figure 7. Normalized RHF extracted from the EIS curves according their
class (1: BI, 2: P1u, 3: P1s, 4: P2u, 5: P2s).

First, one can remark that the end of the break-in phase
(Class 1 - first 33 recordings) have been misclassified, as
mentioned in the previous section. From a global point of
view, RHF increases of about 50% along the 2 SU/SD phases
(from recording 34 till the end), which represents about 120
h. This fact indicates that the conditions imposed to the FC
had a strong impact on the performance in terms of electrical
charge transfers.

More specifically, the analysis of RHF during the 2
SU/SD phases shows that RHF is more stable when the
temperature is stabilized (black and magenta curves) as RHF

values fluctuates more on the blue and the green curves.
This underlines the major influence of the temperature on
the RHF .

It is interesting to notice that the method was able to
classify the EIS curves when the temperature was stable
which are more interesting to exploit. Studying the trend
of the black and the magenta curves shows indeed that
the performance decrease is not the same for the 2 SU/SD
strategies. The slope of each curve (black and magenta) was
fitted as a first order polynomial. The computed values are
displayed in table III.

Table III
SLOPE OF THE RHF EVOLUTION IN STABILIZED TEMPERATURE

CONDITIONS.

P1s P2s
+ 0.0027 + 0.0021



Tab. III confirms that the slope is lower in the case of P2
(magenta) than for P1, which would indicate that P2 is less
degrading than P1. This result is quite surprising considering
that the P1 protocol is supposed to be more careful with
the FC. This result should indeed be studied more deeply
to determine if this difference is really due to the change of
SU/SD strategy and is linked neither to the general impact of
cycling nor specific to a component aging of the FC prototype
used. The strong degradation of the RHF is indeed also an
indicator of bipolar plates corrosion, which could explain the
trend observed.

IV. CONCLUSIONS

With the consideration of a significant development of
hydrogen technologies and an increase in research work,
the development of relevant analysis tools is more useful
than ever. As part of the aging monitoring of HT-PEM FC
subjected to repeated start-stop cycles, numerous EIS data
were generated. The method without a-priori presented in
this article is an efficient way to classify Nyquist plots based
on shape evolution recognitions.

A method based on Dynamic Time Warping was pre-
sented for the automated analysis of EIS curves. This method
allows getting a measure of similitude between 2 curves. This
method was evaluated on data from a high-temperature PEM
Fuel Cell under 2 different conditions of Start & Stop cycling.
The database represents 120 h of working.

The proposed method has proven to be efficient to give
numerical indications that confirm the visual observations
made on the different curves. The mean distance on Re(Z)
and −Im(Z) resulting from the proposed method were used
for unsupervised classification of the EIS curves using a
classic k-means classifier. The proposed method reaches 92%
correct classifications on 383 EIS curves and the misclassified
curves are mainly the ones that were not possible to visually
distinguish.

From this classification, RHF was extracted from the
different EIS curves. The DTW-based classification allowed
separating the temperature stabilized and unstabilized EIS
curves, which enlightened the impact of temperature on the
quality of the RHF extraction. Moreover, the RHF analysis
seems to fully benefit from this information.

However, work remains to be done in order to validate
the method with new EIS data from the end of the presented
aging campaign and from other campaigns on different fuel
cell and with other operating conditions. To another extent,
the method could be used for on-line diagnosis as EIS can be
done during fuel cell operation and the automated analysis
can detect degradation signatures.
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