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Polymer scission in turbulent flows

Polymers in a turbulent flow are subject to intense strain, which can cause their scission and thereby limit the experimental study and application of phenomena such as turbulent drag reduction and elastic turbulence. In this paper, we study polymer scission in homogeneous isotropic turbulence, through a combination of stochastic modelling, based on a Gaussian time-decorrelated random flow, and direct numerical simulations (DNSs) with both one-way (passive) and two-way (active) coupling of the polymers, modelled as bead-spring chains, and the flow. For the first scission of passive polymers, the stochastic model yields analytical predictions which are found to be in good agreement with results from the DNSs, for the temporal evolution of the fraction of unbroken polymers and the statistics of the survival of polymers. The impact of scission on the dynamics of a turbulent polymer solution is investigated through DNSs with two-way coupling (active polymers). Our results indicate that the reduction of kinetic energy dissipation due to feedback from stretched polymers is an inherently transient effect, which is lost as the polymers breakup. Thus, the overall dissipation-reduction is maximised by an intermediate polymer relaxation time, for which polymers stretch significantly but without breaking too quickly. We also study the dynamics of the polymer fragments which form after scission; these daughter polymers can themselves undergo subsequent, repeated, breakups to produce a hierarchical population of polymers with a range of relaxation times and scission rates.

Introduction

The viscoelastic properties of dilute polymer solutions are central to several applications [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF]. When the pure solvent is turbulent the most remarkable effect of the addition of polymers is a significant reduction of the turbulent drag below that of the solvent [START_REF] Procaccia | Theory of drag reduction by polymers in wallbounded turbulence[END_REF][START_REF] White | Mechanics and prediction of turbulent drag reduction with polymer additives[END_REF][START_REF] Benzi | A short review on drag reduction by polymers in wall bounded turbulence[END_REF][START_REF] Graham | Drag reduction and the dynamics of turbulence in simple and complex fluids[END_REF]. This phenomenon, also known as Toms effect [START_REF] Toms | Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[END_REF][START_REF] Toms | On the early experiments on drag reduction by polymers[END_REF], is commonly utilized to reduce the energy losses in pipelines and hence the costs associated with the transport of crude oil. However, in a turbulent flow, polymers are subject to mechanical degradation due to the fluctuating strain-rate, which stretches polymers and thus causes their scission. Since turbulent drag reduction decreases with the molecular weight of the dissolved polymers [START_REF] Virk | Drag reduction fundamentals[END_REF], the efficacy of polymers as drag reducing agents diminishes in time, with a strong impact on both industrial applications and laboratory experiments [START_REF] Paterson | Turbulent flow drag reduction and degradation with dilute polymer solutions[END_REF][START_REF] Moussa | Effect of solvent on polymer degradation in turbulent flow[END_REF][START_REF] Den Toonder | Degradation effects of dilute polymer solutions on turbulent drag reduction in pipe flows[END_REF][START_REF] Choi | Turbulent drag reduction and degradation of DNA[END_REF][START_REF] Vanapalli | Scission-induced bounds on maximum polymer drag reduction in turbulent flow[END_REF][START_REF] Vanapalli | Universal scaling for polymer chain scission in turbulence[END_REF][START_REF] Elbing | Degradation of homogeneous polymer solutions in high shear turbulent pipe flow[END_REF][START_REF] Pereira | Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device[END_REF][START_REF] Owolabi | Turbulent drag reduction by polymer additives in parallel-shear flows[END_REF], see also [START_REF] Poole | Editorial for the special issue on "Polymer degradation in turbulent drag reduction[END_REF]; [START_REF] Soares | Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[END_REF] for a recent review).

An analogous mechanical degradation and, by association, practical limitations are observed in experiments of homogeneous and isotropic turbulence with polymer additives [START_REF] Crawford | Fluid acceleration in the bulk turbulence of dilute polymer solutions[END_REF]. Indeed, even though in isotropic turbulence the mean strain rate is zero, on average line elements are stretched exponentially at a rate proportional to the inverse of the Kolmogorov dissipation time scale [START_REF] Bec | Lyapunov exponents of heavy particles in turbulence[END_REF]. At large Reynolds numbers, polymers therefore experience strong straining events that can highly distort them. This has been confirmed in experiments and numerical simulations, both directly by examination of the probability distribution of polymer extensions [START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF][START_REF] Vincenzi | Stretching of polymers in isotropic turbulence: A statistical closure[END_REF][START_REF] Vincenzi | Impact of the Peterlin approximation on polymer dynamics in turbulent flows[END_REF][START_REF] Jin | Dynamics of dissolved polymer chains in isotropic turbulence[END_REF][START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF] and indirectly through the observation of a strong polymer feedback on the flow [START_REF] Crawford | Fluid acceleration in the bulk turbulence of dilute polymer solutions[END_REF][START_REF] Ouellette | Bulk turbulence in dilute polymer solutions[END_REF][START_REF] De Angelis | Homogeneous isotropic turbulence in dilute polymers[END_REF][START_REF] Perlekar | Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence[END_REF][START_REF] Benzi | A short review on drag reduction by polymers in wall bounded turbulence[END_REF][START_REF] Xi | Elastic energy flux by flexible polymers in fluid turbulence[END_REF]Watanabe & Gotoh 2013a,b, 2014;[START_REF] De Chaumont Quitry | Concentration effects on turbulence in dilute polymer solutions far from walls[END_REF]. Furthermore, experimental measurements of polymer scission in different channel flows, by [START_REF] Vanapalli | Universal scaling for polymer chain scission in turbulence[END_REF], show that the majority of polymers reside, and therefore break up, in the bulk of the fluid, where the flow approximates isotropic turbulence, rendering the scission results independent of channel geometry.

Mechanical degradation has also been reported in the regime of elastic turbulence [START_REF] Groisman | Elastic turbulence in curvilinear flows of polymer solutions[END_REF]). Although the Reynolds number of the solution is low in this case, elastic instabilities generate a chaotic flow with highly fluctuating velocity gradients that stretch polymers up to their maximum length [START_REF] Liu | Single polymer dynamics in a random flow[END_REF].

A detailed knowledge of the statistics of polymer scission in turbulent flows is thus important for the design of experiments and the performance of realistic simulations of both turbulent drag reduction and elastic turbulence. In laminar flows, considerable progress has been made in the modelling and simulation of polymer scission (e.g. [START_REF] Cascales | Simulation of polymer chains in elongational flow. Steady-state properties and chain fracture[END_REF][START_REF] Cascales | Simulation of polymer chains in elongational flow. Kinetics of chain fracture and fragment distribution[END_REF][START_REF] Hsieh | Brownian Dynamics modeling of flow-induced birefringence and chain scission in dilute polymer solutions in a planar cross-slot flow[END_REF][START_REF] Sim | Flow-induced chain scission in dilute polymer solutions: Algorithm development and results for scission dynamics in elongational flow[END_REF][START_REF] Wu | Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach[END_REF]. However, the knowledge gained from the study of laminar flows cannot be directly applied to turbulent flows because of the different properties of the strain rate, and consequently of the flow-induced polymer stretching, in the two types of flows. In an extensional velocity field, for instance, the probability distribution of polymer extensions is dominated by a peak that shifts towards larger extensions as the strain rate increases [START_REF] Perkins | Single polymer dynamics in an elongational flow[END_REF], and therefore scission is observed only for a sufficiently large strain rate. In contrast, for turbulent flows, the distribution of the extensions has a wide power-law core due to the intensely fluctuating strain rate [START_REF] Balkovsky | Turbulent dynamics of polymer solutions[END_REF][START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF][START_REF] Liu | Single polymer dynamics in a random flow[END_REF]. Hence the scission rate may be non-negligible even at moderate Reynolds numbers (proportional to the average magnitude of the fluctuating strain rate).

Unlike the fragmentation of liquid jets, sheets, or drops [START_REF] Villermaux | Fragmentation[END_REF][START_REF] Villermaux | Fragmentation versus cohesion[END_REF], the modelling of flow-driven scission in turbulent polymer solutions is still in its infancy [START_REF] Soares | Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[END_REF]. The reason for this has to be sought in the difficulty of including the microscopic details of the scission process in constitutive models of polymer solutions. To our knowledge, the only continuum model that takes scission into account has been proposed by Pereira, Monpean & Soares (2018) and assumes that the maximum contour length is a spatio-temporal scalar field that decays due to scission while being transported by the fluid. Further development of continuum models requires an in depth understanding of the statistics of scission and the consequent reduction of the relaxation time-in addition to the decrease in the maximum contour length-of the polymer fragments.

We therefore investigate the dynamics of polymers in a three-dimensional homogeneous and isotropic turbulent flow focusing on the scission statistics. A polymer is described as a bead-spring chain in a time-dependent, linear velocity field. This polymer model is known as the [START_REF] Rouse | A theory of the linear viscoelastic properties of dilute solutions of coiling polymers[END_REF] model and represents one of the most common descriptions of a polymer molecule in a flow (in the case in which only two beads are considered, the Rouse model reduces to the elastic dumbbell model; see Bird et al. 1977). Even when the flow is turbulent, the assumption of a linear velocity field is justified, since the size of polymers is generally smaller than the Kolmogorov dissipation scale η K , below which viscosity strongly damps the spatial fluctuations of the velocity. We introduce scission into the Rouse model by assuming that the bead-spring chain breaks into two shorter chains as soon as the tension in one of the springs exceeds a critical threshold.

We begin by considering the statistics of the first scission. For passively transported polymers, for which the motion of the polymers does not modify the carrier velocity field, we derive qualitative analytical predictions by restricting ourselves to the Hookean dumbbell model and by using a decorrelated-in-time Gaussian stochastic velocity field (the approach is adapted from a study of droplet breakup conducted in [START_REF] Ray | Droplets in isotropic turbulence: deformation and breakup statistics[END_REF]. The theoretical predictions are compared with Lagrangian direct numerical simulations (DNSs) of the Rouse model in three-dimensional homogeneous isotropic turbulence. We then show that these results are qualitatively insensitive to the introduction of hydrodynamic and excluded volume interactions among the beads of the polymer model. For active polymers, the statistics of the first scission is studied via hybrid Eulerian-Lagrangian simulations (Watanabe & Gotoh 2013a,b, 2014), in which the feedback of (dumbbell-like) polymers onto the velocity field is taken into account. These simulations shed light on the transient nature of the dissipation-reduction effect, which owes its origin to polymer stretching and its demise to polymer scission. Finally, we analyse multiple scissions of passive polymers, via DNSs in which a hierarchy of daughter polymers arise from successive breakups, each with their own statistics.

The Rouse chain

The Rouse model describes a polymer as a chain of N inertialess beads connected to their nearest neighbors by elastic springs. We consider FENE (finitely extensible nonlinear elastic) springs with spring constant H and maximum length Q m . The fluid in which the chain is immersed is Newtonian and its motion is described by an incompressible velocity field u(x, t). The drag force of the fluid on each bead is given by the Stokes law with drag coefficient ζ; the collisions of the molecules of the fluid with a bead are described by Brownian motion. Finally, in the Rouse model hydrodynamic and excluded-volume interactions between different segments of the chain are disregarded. (These interactions do not affect the scission statistics qualitatively, as shown later in § 3.2.)

The motion of the chain is described in terms of the position of its center of mass, X c , and the separation vectors between the beads, Q i (i = 1, . . . , N -1). This set of coordinates evolves according to the equations (Bird et al. 1977;[START_REF] Öttinger | Stochastic Processes in Polymeric Fluids[END_REF])

Ẋc = u(X c (t), t) + 1 N Q 2 eq 6τ N i=1 ξ i (t), (2.1a) Qi = κ(t) • Q i (t) - 1 4τ [2f i Q i (t) -f i+1 Q i+1 (t) -f i-1 Q i-1 (t)] (2.1b) + Q 2 eq 6τ [ξ i+1 (t) -ξ i (t)], i = 1, . . . , N -1, where κ αβ (t) = ∇ β u α (X c (t), t)
is the velocity gradient evaluated at the position of the center of mass, τ = ζ/4H is the characteristic time scale of the springs, Q eq = 3k B T /H is their equilibrium root-mean-square (r.m.s.) extension (k B denotes the Boltzmann constant and T is temperature), and ξ i (t) (i = 1, . . . , N ) are independent, vectorial, white noises. The coefficients

f i = 1 1 -|Q i | 2 /Q 2 m (2.2)
characterize the FENE interactions and ensure that the extension of each spring does not exceed its maximum length Q m . Obviously, in the equations for

Q 1 and Q N -1 it is assumed that Q 0 = Q N = 0.
The end-to-end separation or extension vector of the polymer is defined as et al. 1977).

R = N -1 i=1 Q i . In a still fluid, the equilibrim r.m.s. value of |R| is r eq = Q eq √ N -1 (Bird
We modify the Rouse model in order to account for the scission of the polymer when the tension in any of the springs exceeds a critical value. Since the relation between the tension and the extension of a spring can be easily inverted [START_REF] Thiffeault | Finite extension of polymers in turbulent flow[END_REF], we can, equivalently, assume that for each spring of the chain there exists a critical scission length sc such that the spring breaks if the length of the corresponding separation vector exceeds sc (i.e. the chain breaks if |Q i | sc for any 1 i N -1). The scission process is non-stationary; the dynamics of the chain therefore depends on its initial configuration and, in particular, on its initial end-to-end separation r 0 = |R(0)|.

In the following we shall assume that sc is much greater than r 0 /(N -1) and that r 0 is equal to r eq or greater than it. (In principle, r 0 could also be taken smaller than r eq , but we have checked that this case does not differ appreciably from the r 0 r eq one.)

Finally, the size of the chain always remains smaller than η K , so that the velocity field at the scale of the chain can be considered as linear and the dynamics of the polymer is entirely determined by the velocity gradient at the location of the center of mass, consistent with the Rouse model.

To summarize, the spatial scales that characterize the system are arranged as follows:

r eq r 0 sc (N -1) < Q m (N -1) < η K .

First-scission statistics

3.1. Passive polymers

Analytical predictions

Here we make some simplifying assumptions on both the polymer model and the carrier flow in order to derive analytical predictions for the statistics of polymer scission.

First of all, we only consider the statistics of the first scission. We then restrict ourselves to the N = 2 case, also known as the dumbbell model (Bird et al. 1977;[START_REF] Öttinger | Stochastic Processes in Polymeric Fluids[END_REF], i.e., we focus on the slowest deformation mode of the polymer. Many results on single-polymer dynamics in random or turbulent flows have been obtained by using the dumbbell model (see Vincenzi et al. 2015 and references therein) and the most common constitutive models of polymer solutions, namely the Oldroyd-B [START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF] and the FENE-P [START_REF] Bird | Polymer solution rheology based on a finitely extensible bead-spring chain model[END_REF]) models, are based on it. The legitimacy of this approach is supported by the numerical simulations in [START_REF] Jin | Dynamics of dissolved polymer chains in isotropic turbulence[END_REF] and [START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF], where it is shown that, in isotropic turbulence and in the absence of scission, the statistics of the end-to-end separation of a dumbbell and that of a N = 20 chain coincide (provided, of course, that a proper mapping between the parameters of the two systems is applied). Finally, we replace the nonlinear spring with a Hookean one (f i = 1); this is because the nonlinearity of the elastic force enters into play only at extensions close to the scission length, and we shall see from our simulations in § 3.1.2 that it does not affect the qualitative properties of the scission process. For N = 2, (2.1) reduce to

Ẋc = u(X c (t), t) + 1 2 r 2 eq 3τ ζ 1 (t), (3.1a) Ṙ = κ(t) • R(t) - R(t) 2τ + r 2 eq 3τ ζ 2 (t), (3.1b)
where ζ 1 (t) and ζ 2 (t) are independent vectorial white noises. We model the flow via the smooth (also known as Batchelor) regime of the [START_REF] Kraichnan | Small-scale structure of a scalar field convected by turbulence[END_REF]) model. This model has been widely employed in the study of turbulent transport [START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF] and has yielded several theoretical results on the coil-stretch transition in random or turbulent flows (see [START_REF] Plan | Bead-rod-spring models in random flows[END_REF] and references therein). The velocity is a divergence-less and spatially smooth Gaussian vector field. It is statistically stationary in time and homogeneous, isotropic, and parity invariant in space; it has zero mean and zero correlation time. Under these assumptions, κ(t) is a tensorial white noise with two-time correlation [START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF])

κ ij (t)κ mn (t ) = K ijmn δ(t -t ), (3.2) 
where

K ijmn = λ 3 [4δ im δ jn -δ ij δ mn -δ in δ jm ] (3.3)
and λ is the maximum Lyapunov exponent of the flow. Obviously, the assumption of temporal decorrelation is a strong approximation, since an isotropic turbulent flow has Kubo number Ku = λt corr ≈ 0.6, where t corr is the correlation time of the flow [START_REF] Girimaji | A diffusion model for velocity gradients in turbulence[END_REF][START_REF] Bec | Lyapunov exponents of heavy particles in turbulence[END_REF][START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF]). However, it was shown in [START_REF] Musacchio | Deformation of a flexible polymer in a random flow with long correlation time[END_REF] that, for a stochastic flow with comparable Ku, the statistics of polymer extension is captured qualitatively by a time decorrelated velocity field.

The Weissenberg number Wi = λτ determines to what extent polymers are stretched by the flow. In particular, the coil-stretch transition occurs when Wi exceeds the critical value Wi cr = 1/2 [START_REF] Lumley | On the solution of equations describing small scale deformation[END_REF][START_REF] Balkovsky | Turbulent dynamics of polymer solutions[END_REF]; note that our definition of τ and hence that of Wi differ from that of [START_REF] Balkovsky | Turbulent dynamics of polymer solutions[END_REF] by a factor of 2).

As the velocity field is homogeneous and isotropic in space, the statistics of R = |R| is independent of the position of the center of mass and of the direction of R. To study polymer scission, it is therefore sufficient to focus on the probability density function (p.d.f.) of R, which will be denoted as P (R, t). When κ(t) has the properties described above, P (R, t) satisfies the Fokker-Planck equation [START_REF] Chertkov | Polymer stretching by turbulence[END_REF][START_REF] Celani | Polymer transport in random flow[END_REF]:

∂ t P = LP, LP = -∂ R (D 1 P ) + ∂ 2 R (D 2 P ), (3.4)
with rescaled time t = t/2τ and coefficients

D 1 = 8 3 Wi -1 R + 2r 2 eq 3R , D 2 = 2Wi 3 R 2 + r 2 eq 3 (3.5)
(once again our definition of Wi differs from that used in [START_REF] Chertkov | Polymer stretching by turbulence[END_REF][START_REF] Celani | Polymer transport in random flow[END_REF] by a factor of 2). The appropriate boundary conditions are reflecting at R = 0 and absorbing at R = sc , i.e.

D 1 P -∂ R (D 2 P ) = 0 at R = 0 and P ( sc , t) = 0 (3.6)
for all t. The former condition ensures that the extension of the polymer stays positive, while the latter describes scission at R = sc . The analysis of (3.4) to (3.6) closely follows that in [START_REF] Ray | Droplets in isotropic turbulence: deformation and breakup statistics[END_REF] for the breakup of sub-Kolmogorov droplets in isotropic turbulence. (The results presented here are deduced directly from those in § 3 of Ray & Vincenzi 2018 by setting Ca = Wi , µ = 1, r 2 eq = Q 2 eq /3, and f 1 (µ) = f 2 (µ) = γ(µ) = 1.) We therefore skip the details of the derivations and directly present the predictions of scission statistics.

The number of unbroken polymers that survive at time t, N p (t), is related to P (R, t) as follows:

N p (t)/N p (0) = sc 0 P (R, t)dR.
(3.7) At times t τ , N p (t) therefore decays exponentially as (3.8) where the decay time T d is the reciprocal of the lowest eigenvalue of the operator L with boundary conditions (3.6). The eigenfunctions of L are hypergeometric functions with parameters depending on r eq , r 0 , Wi and form a discrete set selected by the boundary condition at R = sc . A calculation of the lowest eigenvalue shows that T d depends weakly on Wi for small Wi , decreases rapidly as Wi exceeds Wi cr , and saturates at large Wi .

N p (t) ∼ N p (0) e -t/T d ,
As we shall see below, the p.d.f. of R integrated over time,

P (R) = ∞ 0 P (R, t)dt, (3.9) 
allows us to estimate the mean lifetime of a polymer before its first scission. If the initial distribution of polymer sizes is 'monodisperse', i.e. P (R, 0) = δ(Rr 0 ), then P (R) takes the form

P (R) ∝ e -Φ(R) [φ( sc ) -φ(r 0 )] if 0 R r 0 , e -Φ(R) [φ( sc ) -φ(R)] if r 0 < R sc (3.10) with Φ(R) = ln D 2 (R) - R D 1 (ζ) D 2 (ζ) dζ, φ(R) = R e Φ (ζ) D 2 (ζ) dζ (3.11)
and hence

P (R) ∼        r -2 eq r -1 0 R 2 if 0 R r eq , |r α 0 -α sc |R -1-α if r eq R r 0 , β sc R -1-β if r 0 R sc , (3.12) 
where α = 3(Wi -1 -2)/2 and

β = α if Wi < Wi cr , 0 if Wi > Wi cr . (3.13)
Therefore, above the coil-stretch transition, the right tail of P (R) saturates to the power law R -1 . An analogous behaviour was found previously for the size distribution of sub-Kolmogorov droplets in isotropic turbulence [START_REF] Biferale | Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence[END_REF][START_REF] Ray | Droplets in isotropic turbulence: deformation and breakup statistics[END_REF]. Also note that the exponent α coincides with the one obtained by [START_REF] Balkovsky | Turbulent dynamics of polymer solutions[END_REF] for the p.d.f. of intermediate extensions in the absence of scission.

If the initial distribution of polymer sizes is broad but nonetheless admits a maximum size r 0 , then the left (R r eq ) and right (r 0 R sc ) power-law tails continue to exist, but P (R) no longer behaves as a power law for extensions r eq R r 0 . The mean time T sc it takes for a polymer to undergo its first scission can be deduced from the behaviour of P (R) via the relation:

T sc = sc 0 P (R)dR.
(3.14) Equation (3.12) then yields two different behaviours below and above the coil-stretch transition:

λ T sc ∼ ( sc /r 0 ) β if Wi < Wi cr , ln( sc /r 0 ) if Wi > Wi cr .
(3.15)

Direct numerical simulations

In this Section, we present numerical simulations of the Rouse model (2.1) in homogeneous and isotropic turbulence and compare them with the analytical predictions of § 3.1.1. The velocity field u(x, t) is the solution of the incompressible Navier-Stokes equations,

∂ t u + u • ∇u = -∇p + ν f ∆u + F , ∇ • u = 0, (3.16)
over the periodic cube [0, 2π] 3 . Here p is pressure, ν f is the kinematic viscosity, and F (x, t) is a body force that mantains a constant kinetic-energy input in . The numerical integration uses a standard, fully de-aliased pseudo-spectral method with 512 3 collocation points and, for the time evolution, a second-order slaved Adams-Bashforth scheme with time step dt = 4 × 10 -4 . The values of ν f and in are such that the Taylor-microscale Reynolds number is Re λ = 111. The Lyapunov exponent of the flow is λ = 0.15τ -1 η , where τ η denotes the Kolmogorov time scale, consistent with the value found earlier in [START_REF] Bec | Lyapunov exponents of heavy particles in turbulence[END_REF] and [START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF].

The position of the centre of mass of the polymer is obtained by integrating (2.1a) via a second-order Adam-Bashforth method with same dt as for the Navier-Stokes equations. The noise term in (2.1a) is disregarded, because it has a negligible effect when u(x, t) is turbulent. Moreover, its amplitude is smaller than that of the noise terms in the equations for the separation vectors by a factor of N . As u(x, t) is only known over a discrete grid, the integration of (2.1a) requires interpolation to reconstruct the velocity field at X c (t); a trilinear scheme is used for this purpose. The same approach allows the calculation of the velocity gradient along the trajectory of the center of mass, κ(t), and hence the integration of (2.1b) by means of the Euler-Maruyama method with time step dt. Since in this section we focus on the statistics of the first scission, a chain is removed from the simulation as soon as it breaks according to the criterion discussed above. The time origin for (2.1b) (t = 0) is taken in the statistically steady state of the carrier turbulent flow, so that the temporal dynamics of polymers is not influenced by the initial transient evolution of u(x, t). Note that, in the present context, it is not necessary to use integration schemes specifically designed to prevent the extension of the links from exceeding Q m , since the links, by construction, break well before their extension approaches Q m .

In our simulations, we consider N p (0) = 9×10 5 polymers, whose positions at time t = 0 are uniformly distributed in space. Since the statistics of polymer extension depends on the initial size of polymers but not on their orientation, for simplicity the initial condition for the separation vectors is taken to be Q

i (0) = Q 0 (1, 1, 1)/ √ 3 with Q 0 >
0 for all polymers, i.e. the polymers are in a straight configuration and

P (R, 0) = δ(R -r 0 ) with r 0 = (N -1)Q 0 .
In order to compare chains with different numbers of beads, an appropriate mapping of the chain parameters is needed. We use the mapping proposed by [START_REF] Jin | Dynamics of dissolved polymer chains in isotropic turbulence[END_REF] and also used by [START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF]. If the parameters of the individual links of a N -bead chain are τ , Q eq , Q m , sc , then the statistics of the end-to-end separation of the chain is equivalent to that of a dumbbell with the following parameters:

τ D = N (N + 1)τ 6 , Q D eq = Q eq , Q D m = Q m √ N -1, D sc = sc √ N -1, (3.17)
where the last relation is introduced for compatibility with the expression of Q D m . This mapping allows us to compare chains with different numbers of beads by using the dumbbell model as a reference.

Following [START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF], we define the Weissenberg number for a Rouse chain as Wi = λτ D . In our simulations, 0.4 Wi 8. (Note that small-Wi simulations are computationally more demanding, because the calculation of quantities like P (R) and T sc requires that the time evolution is long enough for all polymers to break, and the time at which the scission process is complete becomes longer and longer as Wi decreases.)

As for the choice of the other parameters, we take r eq = 1, Q D m = √ 3000 (also following Jin &[START_REF] Jin | Dynamics of dissolved polymer chains in isotropic turbulence[END_REF]Watanabe &[START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF], and, unless otherwise specified, r 0 = r eq . In addition, it is assumed that a spring breaks as soon as its extension exceeds sc = 0.8Q m . The number of beads is set to N = 10. We have also performed simulations with different sets of parameters, which support the generality of the results presented below.

It is worth mentioning that the above parameters are compatible with those of the experiment of [START_REF] Crawford | Fluid acceleration in the bulk turbulence of dilute polymer solutions[END_REF], which investigates bulk turbulence in a water solution of polyacrylamide (PAM) with molecular weight M w = 18 × 10 6 , maximum extension L = 77µm, and relaxation time τ p = 43ms. Mechanical degradation is observed at R λ = 485. For this value of R λ , the Kolmogorov time scale is reported to be τ η = 2.63ms, and hence the Weissenberg number based on the Lyapunov exponent can be estimated as Wi ≈ 2.5.

Figure 1a shows the temporal evolution of the fraction of unbroken polymers. The decay is exponential with a time scale T d that decreases rapidly as Wi exceeds its critical value (figure 1b), in agreement with the predictions of § 3.1.1. We shall see in § 3.3 that, for a dumbbell, it is possible to write an explicit expression for T d as a function of Wi .

The time-integrated p.d.f. of the end-to-end extension of unbroken polymers is shown in figure 2a for an initial polymer size r 0 = r eq and different values of Wi . The p.d.f. displays a power-law behaviour for both R r eq and r 0 = r eq R sc (N -1). The left tail is proportional to R 2 , because the small separations are dominated by thermal fluctuations. The right tail rises as a function of Wi , until the power law saturates to R -1 for Wi > Wi cr . A third power law emerges for intermediate extensions if r 0 > r eq (figure 2b). In this case, the exponent -1 -α changes from negative to positive as Wi increases and saturates to 2 at large Wi . To appreciate the coexistence of these three power laws more clearly, in figure 3a we also consider P (R) for a much larger value of Q D m and a larger separation between r eq , r 0 , and (N -1) sc . All these results confirm the predictions reported in § 3.1.1.

The p.d.f.s presented so far correspond to a "monodisperse" initial state P (R) = δ(R-r 0 ) in which all polymers have the same end-to-end distance. However, as mentioned in § 3.1.1, the behaviour of P (R) for intermediate extensions is expected to change if the initial distribution of polymer extensions is broad. To confirm this prediction, we have considered an initial state in which the end-to-end distance of polymers is distributed uniformly between r eq and a maximum initial extension r 0 > r eq . The time-integrated p.d.f.s given in figure 3b show that only the left and right power-law tails persist in this case, while P (R) does not behave as a power law for intermediate extensions.

We now turn to the statistics of the lifetime T sc of a polymer. The DNSs suggest that the p.d.f. of T sc has an exponential tail with a time scale γ -1 that, beyond Wi cr , decreases . of the end-to-end extension of unbroken polymers for Q D m = 10 4 , req = 1, r0 = 5 × 10 2 , Wi = 1, and an initial size distribution that is either monodisperse (dotted magenta line) or uniform (between req and r0; solid gray line). In both panels, the p.d.f.s are normalized to unity for the sake of comparison. The inset compares the decay time of the fraction of unbroken polymers, the mean lifetime of a polymer, and the time scale γ -1 in the exponential tail of the p.d.f. (P (Tsc) ∼ e -γTsc for Tsc/τη 1) as a function of Wi/Wicr; (b) mean lifetime as a function of sc/Q0 below the coil-stretch transition. T sc is a fitting parameter for the dashed lines. The data for Wi = 0.4 (resp. Wi = 0.45) are multiplied by a factor of 10 2 (resp. 10) in order to make the three lines more easily distinguishable; (c) the same as in (b) above the coil-stretch transition.

rapidly as a function of Wi (figure 4a). For all values of the Weissenberg number, γ -1 is approximately the same as the decay time T d of the fraction of unbroken polymers owing to the exponential decay of the latter at long times (see § 3.1.1). However, γ -1 differs from T sc , because the exponential behaviour of the p.d.f. of T sc sets in only at relatively large values of T sc . For a fixed Wi , the mean lifetime T sc behaves as a power of sc /Q 0 below the coil-stretch transition and as the logarithm of sc /Q 0 beyond that (see figures 4b and 4c); we remind the reader that Q 0 is the initial length of any link of the chain. Small deviations are only observed for sc Q 0 . Moreover, we have checked that, for Wi < Wi cr , the exponent β that gives the dependence of T sc on sc /Q 0 is the same as the exponent that describes the right tail of P (R), i.e. P (R) ∝ R -1-β for r 0 R (N -1) sc , in agreement with (3.15). Thus, the statistics of T sc in a turbulent flow is correctly described by the predictions of § 3.1.1.

We also note that the exponential tail of the distribution of T sc originates from the fact that scission is caused by the cumulative action of the fluctuating strain-rate. This is in contrast to the fragmentation of sub-Kolmogorov inextensible fibres, for which the internal tension depends on the instantaneous velocity gradient projected along the fibre. The p.d.f. of the scission time for fibres, therefore, reflects the intermittent statistics of the velocity gradient and is strongly non-exponential [START_REF] Allende | Dynamics and fragmentation of small inextensible fibers in turbulence[END_REF].

Figure 5 presents further results on the statistics of the scission process. As previously observed in experiments [START_REF] Horn | Midpoint scission of macromolecules in dilute solution in turbulent flow[END_REF], scission preferentially happens at the midpoint of the polymer. However, the probability of scission happening at the middle link decreases with Wi . The reason for this is that, for small Wi , the chain is most of the time in a coiled state and scission occurs because of a sequence of very strong fluctuations of ∇u, whereas for large Wi all links are consistently stretched near to the scission length. The insets of figure 5 show that the probability of more than one link breaking simultaneously is generally very small.

Finally, it was mentioned in § 3.1.1 that, in the absence of scission, the dumbbell model (N = 2) captures the statistics of the end-to-end extension of a full chain remarkably well, provided the mapping in (3.17) is applied (see [START_REF] Watanabe | Coil-stretch transition in an ensemble of polymers in isotropic turbulence[END_REF]. We have performed an analogous comparison in the presence of scission. The time-integrated p.d.f.s in figure 6a show that, after the parameters of the chain are suitably rescaled, the time-independent statistics of the end-to-end distance is independent of N , except for small deviations close to the maximum extension. Indeed, for a dumbbell, scission is defined in terms of the end-to-end separation, whereas chains with larger N break before all the links can stretch up to sc . These small differences however have a significant impact on time-dependent quantities, such as the fraction of unbroken polymers: small-N chains capture the temporal decay qualitatively, but underestimate the scission rate (see figure 6b). The results also suggest that the discrepancies between chains with N -1 and N beads diminish as N increases (figure 6b) as well as when Wi increases (not shown).

We conclude that it is important to consider the dynamics of a full bead-spring chain in order to accurately describe the scission process and achieve quantitative agreement between experiments and models of polymer solutions.

Effect of hydrodynamic and excluded-volume interactions

When modelling the rheological properties of dilute polymer solutions, it is important to include hydrodynamic interactions (HI) between the beads of the Rouse model in order to capture effects such as the dependence of solution viscosity on the molecular weight and strain-rate, and a non-zero second normal stress difference ( Öttinger 1996). However, HI have no qualitative impact on the stretching dynamics of individual polymers in laminar flows [START_REF] Jendrejack | Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions[END_REF][START_REF] Schroeder | Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment[END_REF]). Moreover, these forces weaken as a polymer is stretched so that elongated polymers are nearly unaffected by HI [START_REF] Stone | Polymer dynamics in a model of the turbulent buffer layer[END_REF]. This is also true for excluded volume (EV) interactions [START_REF] Cifre | Steady-state behavior of dilute polymers in elongational flow. Dependence of the critical elongational rate on chain length, hydrodynamic interaction, and excluded volume[END_REF][START_REF] Stone | Polymer dynamics in a model of the turbulent buffer layer[END_REF]. Thus, we expect the qualitative nature of scission statistics to be unaffected by both HI and EV forces. Indeed, this has been demonstrated for polymers with HI in laminar flows [START_REF] Cascales | Simulation of polymer chains in elongational flow. Steady-state properties and chain fracture[END_REF][START_REF] Knudsen | Conformation and fracture of polystyrene chains in extensional flow studied by numerical simulation[END_REF][START_REF] Sim | Flow-induced chain scission in dilute polymer solutions: Algorithm development and results for scission dynamics in elongational flow[END_REF], where the only effect of HI is a quantitative decrease in the scission rate.

All the studies mentioned above, however, have been conducted in non-turbulent flows. Therefore it is important to check whether the effects of HI and EV forces on polymer scission remain purely quantitative even in turbulent flows. Towards this end, we modify the model in § 2 to incorporate both HI and EV forces, as described in the Appendix. This introduces two non-dimensional parameters, h (related to the bead radius) and ν, which determine the magnitude of the HI and EV forces respectively. Setting these parameters to zero recovers the Rouse model of § 2.

Our DNS calculations for these HI+EV chains (with N = 10 beads) show that, while the scission statistics remain qualitatively the same, the scission rate is decreased by HI while it is increased by EV forces. These effects are clearly demonstrated by figure 7a and figure 7b, which depict the evolution of the fraction of surviving polymers and the distribution of polymer lifetimes, respectively. These figures present results for Wi = 0.9 for three cases: without HI and EV (red), with only HI (green), and with HI and EV (blue). The decay of the number of unbroken polymers, as well as the distribution of lifetimes, remains exponential in nature even after including HI and EV interactions. However, the scission rate clearly reduces when HI are included and then increases again once EV are also considered. Thus, HI and EV effects oppose each other, reducing their overall impact.

The effects of HI and EV forces diminish as Wi is increased, as shown by the inset of figure 7a, which presents the evolution of the number of unbroken polymers for a larger value of the Weissenberg number (Wi = 2) than the main panel. This occurs because polymers stretch-out with increasing ease as Wi increases, while both HI and EV forces are significant only when polymers are coiled and have small extensions. The impotence of these forces, especially EV, at large extensions is reinforced by figure 7c which presents the time-integrated p.d.f. of polymer extension for all three cases. The three curves are seen to nearly overlap at large extensions, with significant differences arising only for R R eq . Indeed, HI and EV affect the scission rate by modifying the initial stretching dynamics of small coiled polymers. HI are known to inhibit and delay the uncoiling of a coiled polymer in laminar flows [START_REF] Sim | Flow-induced chain scission in dilute polymer solutions: Algorithm development and results for scission dynamics in elongational flow[END_REF]. We find that this is true even in a turbulent flow, as illustrated by the inset of figure 7b which compares two typical time traces of the end-to-end extension for polymers with and without HI. Thus, HI typically increase the time it takes for a polymer to reach large extensions and thereby reduce the scission rate in an ensemble of polymers. EV interactions, in contrast, promote the elongation of a coiled polymer and thus hasten its scission. The dynamics near the scission event, however, are unaffected by HI and EV forces, and we therefore find that the distribution of broken link locations (not shown) remains the same as that for Rouse chains (cf. figure 5).

Having seen that HI and EV interactions have no qualitative impact on the scission statistics, we disregard them in the subsequent sections, wherein the computational burden increases significantly due to either the inclusion of polymer feedback onto the flow or the tracking of broken polymer fragments as they undergo repeated scissions.

Active polymers

We now investigate the implications of the results obtained so far for the two-waycoupling regime in which polymers perturb the surrounding flow.

When polymers break, their effective relaxation time τ D decreases according to (3.17) and the solution, at any point in time, consists of polymers with different τ D . We can then introduce a mean Weissenberg number Wi (t), which is defined as the average of λτ D over all polymers that compose the solution at time t. Studying the evolution of Wi (t), in a one-way-coupling simulation, helps us forsee how the effect of polymer-feedback on the flow would decay due to scission.

Let us, for the sake of simplicity, consider the case of dumbbells (N = 2) and take an initial ensemble of N p (0) dumbbells with Weissenberg number Wi 0 . When a dumbbell breaks it forms two beads which formally have zero Weissenberg number. Thus, at time t, the system consists of N p (t) dumbbells with Wi = Wi 0 and 2[N p (0) -N p (t)] single beads with Wi = 0. Hence, for an ensemble of dumbbells,

Wi (t) = N p (t) 2N p (0) -N p (t) Wi 0 . (3.18)
The temporal evolution of Wi is obtained by calculating N p (t) from the Lagrangian database used in § 3.1.2 and is shown in figure 8a for different values of Wi 0 > Wi cr . Dumbbells with larger Wi 0 have a larger scission rate, and therefore Wi vanishes rapidly. In contrast, dumbbells with smaller Wi 0 break relatively slowly and the mean Wi of the solution remains nonzero for a longer time. We note, en passant, that Wi becomes approximately equal to Wi cr at t ≈ 50τ η for all Wi 0 . By substituting (3.8) into (3.18), we thus deduce the following empirical expression for the scission rate of dumbbells (see figure 8b):

τ η T d ∝ ln 1 2 1 + Wi Wi cr . (3.19)
The behaviour of Wi shown in figure 8a suggests that a large value of Wi 0 will produce a polymer feedback that is initially strong but short-lived, decaying rapidly due to scission.

In contrast, a moderate value of Wi 0 yields a feedback that, albeit weaker, should last for a longer time and may therefore be more effective.

To investigate this point in a two-way-coupling simulation, we take the hybrid Eulerian-Lagrangian approach proposed by Watanabe & Gotoh (2013a,b, 2014), which consists in seeding the fluid with a large number of FENE dumbbells and calculating the reaction force exterted by the dumbbells upon the fluid. This amounts to adding the term ∇ • T p to the right-hand side of the Navier-Stokes equations (3.16), where T p is the polymeric contribution to the stress tensor:

T p = ν f ηL 3 N p (0) Np(0) n=1 1 τ (n) f R (n) Q D m 3R (n) ⊗ R (n) r 2 eq -I δ x -X (n) c . (3.20)
In the expression of T p , L is the linear size of the domain and η is the ratio of the polymer to the solvent contribution to the total viscosity of the solution (η is proportional to the volume fraction of dumbbells). The vectors

X (n) c
and R (n) are the positions of the centre of mass and the end-to-end separation of the n-th dumbbell, respectively, I is the identity matrix, and (3.21) where t

1 τ (n) = τ -1 for t < t (n) sc 0 for t t (n) sc ,
(n) sc is the smallest time such that R (n) = sc . Thus, the dumbbells stop affecting the velocity field after breaking. The evolution of the position and the configuration of each dumbbell is given by (3.1). The computational domain is a three-dimensional periodic box with L = 2π. A pseudospectral method with 128 3 grid points and the second-order Runge-Kutta algorithm are used for the integration of the Navier-Stokes equations in space and in time, respectively. The equation for the dumbbells is solved by using the Euler-Maruyama scheme. The turbulent flow is maintained by a forcing with Fourier transform F (k, t) = A(t) û(k, t) for 1 |k| 2 and zero otherwise, where A(t) is such that the kinetic-energy input rate in is constant. We take in = 0.5 and ν f = 0.015, which yields Re λ = 51 in the absence of polymer feedback (for more details on the simulation, the reader is referred to Watanabe & Gotoh 2013a).

We first evolve the velocity field alone with η = 0 and then, once a statistically steady flow is obtained, we disperse N p (0) = 4 × 10 8 polymers with η = 4 × 10 -2 into the fluid. The time at which the polymers are added to the flow is marked as t = 0. As in § 3.1, Q D m /r eq = √ 3000, sc = 0.8Q D m and r 0 /r eq = 1. We shall consider three values of the Weissenberg number, Wi = λτ = 0.6, 0.8, 1.0, where λ is the Lyapunov exponent of the Newtonian flow. A set of one-way-coupling simulations (η = 0), at the same values of Wi , are also performed for comparison.

We begin by examining the time evolution of N p (t)/N p (0), which is depicted in Figure 9a, for both active (thick lines) and passive (thin lines) polymers. We see that, with polymer feedback, scission proceeds in two stages: (i) an early-time regime in which active polymers break up much slower than passive polymers, and the fraction of unbroken active polymers decays linearly rather than exponentially, and (ii) a long-time regime in which active polymers show the same exponential decay as passive polymers. The initial linear-decay regime is more clearly visible in figure 9b, wherein straight lines (black) of the form 1 -k(tt ) provide an excellent fit for the early-time active polymer data. Increasing Wi is seen to increase the linear decay rate k (cf. caption of figure 9), as well as hasten the onset of the exponential decay regime.

This behaviour is a consequence of the way the feedback of an ensemble of polymers evolves as a result of scission. In isotropic turbulence, the dispersion of polymers into a Newtonian solvent reduces the fluid dissipation rate by a factor proportional to the polymer concentration [START_REF] Kalelkar | Drag reduction by polymer additives in decaying turbulence[END_REF][START_REF] De Angelis | Homogeneous isotropic turbulence in dilute polymers[END_REF][START_REF] Perlekar | Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence[END_REF]; 

(t) = ν f L 3 [0,L] 3 |∇u(x, t)| 2 dx (3.22)
is shown in figure 10, along with the polymer dissipation rate

p (t) = 1 L 3 [0,L] 3 T p (x, t) : S(x, t) dx, (3.23)
where S is the strain tensor. (Note that under statistically stationary conditions, we would have in = (t) + p (t), where the overbar denotes the time averaged value.) At short times, the polymer feedback is fairly strong and causes a significant reduction of (t) [and a corresponding increase of p (t)] compared to the value for the Newtonian flow. The reduction of (t) is associated with a decrease in the amplitude of the velocity gradient and hence entails weaker polymer stretching and a lower probability of scission. For this reason, the scission rate is initially small. As time progresses, however, the concentration of unbroken polymers keeps decreasing, until the effect of polymers on the flow becomes negligible and (t) returns to its Newtonian value (along with p (t) going to zero). This is accompanied by a growth of the velocity gradient and thus a faster decay of the fraction of unbroken polymers. The fact that the exponential decay regime of active polymers matches that of passive polymers (cf. figure 9) implies that the local feedback of an individual polymer onto the flow in its immediate vicinity does not affect its scission statistics. It is only the combined feedback by all polymers (which is concentration dependent) that can modify scission statistics, by effecting a global change in the dissipation-rate of the flow.

Since polymers break more easily for higher values of Wi , the time needed for the polymer feedback to vanish decreases with increasing Wi . So for Wi = 1, while the reduction of energy dissipation is initially stronger, the return to the Newtonian regime is faster; for Wi = 0.6 scission proceeds extremely slowly and the dissipation reduction, albeit smaller, lasts for a much longer time.

One important consequence of this analysis is that, for a given experiment, an optimal, not necessarily very large, value of Wi exists that maximizes the energy-dissipation reduction integrated over the duration of the experiment.

Multiple scission statistics

We now return to passive polymers and examine how a population evolves when polymers can undergo multiple, repeated scissions. When a polymer chain composed of several beads undergoes its first scission (whose statistics was analysed in § 3.1), it results in two daughter polymers, each containing a smaller number of beads. These daughter polymers can themselves undergo further scissions to produce a tertiary generation, and so on, until, in case of complete breakage, we are left with only individual beads which represent small, inextensible polymer fragments. In this section, we study how this hierarchy of daughter polymers evolves, owing to multiple breakups of the parent polymers. After every scission event, we discard the broken link, form two new daughter polymers, and then follow their evolution along the trajectories of their respective centres of mass, which typically separate exponentially in time due to the positive Lyapunov exponent of the turbulent flow.

In the simulations for first-scission statistics, described earlier in § 3.1.2, we treated the centre of mass and the separation vectors of the polymer chains as the dynamical variables. This formulation becomes inconvenient when dealing with multiple scissions, because new trajectories would have to be spawned after each scission event. So, instead, we adopt the following approach. Consider N p (0) parent polymer chains, each of which is composed of N 0 beads. Thus, the total number of beads in the simulation, which remains constant in time, is N b = N 0 N p (0). We assign to the beads distinct labels from 1 to N b and follow the time evolution of their positions. In addition, we maintain an array which records the labels of the first and last beads of every polymer chain in the simulation. So when a polymer chain undergoes a scission, we simply update this array: the broken chain is assigned all the beads preceding the broken link (and thereby becomes the first daughter polymer), while the remaining beads are assigned to a new entry in the array (to form the second daughter polymer). This procedure allows us to simulate the growing population of polymer chains without increasing the number of dynamical variables. For a given chain with N beads, we still use (2.1) to evolve its dynamics, by calculating X c and Q i from the position vectors of the beads, X 1 , . . . , X N :

X c = N i=1 X i and Q i = X i+1 -X i (1 i N -1). (4.1)
All other aspects of these simulations follow the description given for the first-scission simulations in § 3.1.2, except that we now simulate the turbulent flow with a more moderate value of Re λ = 90, by using 256 3 collocation points and a time step of dt = 10 -3 . The reason for this is that multiple scission simulations require the polymers to be evolved simultaneously along with the flow (whereas a precomputed set of Lagrangian trajectories were used to obtain all first-scission statistics), thus necessitating a new flow computation for each variation of the polymer parameters. At time t = 0, the parents polymers are composed of N 0 beads. As a result of scissions, at later times polymers with different numbers of beads will be found in the flow. We thus denote by N P (t, N ) the number of polymers that, at time t, are composed of N beads.

We begin by examining how N P (t, N ) evolves due to the repeated scission of an initial population of N P (0, N 0 ) parent polymer chains, each with N 0 = 10 beads. Figure 11 presents results for various values of the parent-polymer Weissenberg number, Wi 0 = (a) 0.8, (b) 1.0, (c) 2.0, and (d ) 4.0. Each N -bead parent/daughter polymer is represented by a different curve, as indicated in the legend. We observe that for the small values of Wi 0 in panels (a) and (b), only 10-bead polymers break. As shown in figure 5, most of the daughter polymers have 5 beads (along with a few non-5-bead polymers due to rare off-centre scissions), because scission typically occurs at the central link for small W i 0 .

For the larger values of Wi 0 in panels (c) and (d ), the daughter polymers also undergo scissions and the population is eventually dominated by small polymers and individual beads (inextensible polymer fragments).

Clearly, the extent to which polymers can undergo repeated scissions depends on the Wi 0 of the parent polymers. This is because each subsequent scission produces daughter polymers with a smaller relaxation time, which can be quantified by using (3.17) to calculate the effective Weissenberg number of the N -bead daughter polymer:

Wi = N (N + 1) N 0 (N 0 + 1) Wi 0 , (4.2)
where 2 N < N 0 , and Wi 0 is the Weissenberg number of the parent polymer with N 0 beads. Note that Wi ≡ 0 for individual beads (N = 1). An approximate condition for a significant fraction of any given generation of daughter polymers to breakup is Wi > Wi cr = 1/2. So, if N 0 = 10, (4.2) implies that 5-bead daughter chains will not breakup, unless Wi 0 > 1.83. The results in figure 11 agree with this estimate: 5-bead daughters experience a slow rate of scission for Wi 0 = 2.0 (panel (c)), but no scission at all for Wi 0 = 0.8 and 1.0 (panels (a) and (b) respectively). Furthermore, for Wi 0 = 4.0, equation (4.2) leads us to expect scissions of daughter polymers that have N = 4 beads (Wi = 8/11 > 1/2) or more, but certainly not if they are composed of only 2 beads (Wi = 12/55 < 1/2). This is exactly what we observe in figure 11 (panel (d)). Thus, the condition Wi > Wi cr , in conjunction with (4.2), provides a simple way of estimating the number of beads of the smallest polymer that can be formed by repeated scissions, given Wi 0 . Panels (c) and (d) of figure 11 show that the evolution of the number of daughter polymers typically have two regimes. First, there is an enrichment phase, during which daughter polymers are formed due to the rapid breakup of the 10-bead parent polymer. Daughter polymers with various number of beads can be formed, especially at large Wi for which off-centre breakups are quite frequent (figure 5). An exponential decay phase then appears for the daughter polymers that have enough beads to undergo further scission, e.g., N = 7, 6, 5, 4 in panel (d). These secondary breakups produce a second phase of mild enrichment for the smallest polymers that do not breakup, e.g., N = 2 in panels (c) and (d).

The decay time T d of the number of daughter polymers, in the exponential decay regime, is larger for smaller N , as evidenced by the shallower slopes of the corresponding curves (e.g., N = 7, 6, 5, 4 in panel (d)). This variation follows from figure 1b, provided that the decay time of each daughter polymer can be estimated from figure 1b by using (4.2) to calculate Wi . However, the use of figure 1b for daughter polymers is permissible only if the scission kinetics of a N -bead daughter polymer is the same as the firstscission kinetics of a parent polymer that starts with N beads. To check if this is the case, we ran a separate simulation to calculate the distribution of survival times of 5bead parent polymers (N 0 = 5, N = 5). In figure 12a, this result (black) is compared with the survival time distribution of 5-bead daughter polymers (red), which form due to the breakup of 10-bead parent polymers. The corresponding distribution for the 10-bead parent polymers (black) is also shown for comparison. Remarkably, we see that daughter polymers have a much higher probability of breaking at early times than parent polymers with the same number of beads. This is because daughter polymers are formed from scission events: they typically start out in a stretched configuration and so have a much higher probability of breaking quickly than a randomly initialized, coiled parent polymer with the same number of beads. The effect of this fades quite quickly, though, and for times larger than the Lagrangian decorrelation time T L ≈ 10τ η (for Re λ ∼ 10 2 ; see [START_REF] Yeung | Lagrangian investigations of turbulence[END_REF] the survival time p.d.f of the daughter polymers begins to resemble that of the parent polymers with the same number of beads. The time scales associated with the two exponential tails is therefore approximately the same, and one can indeed estimate the long-term decay time scale (or equivalently the decay rate) of an N -bead daughter polymer, formed due to multiple scissions, by using just the first-scission statistics of a parent polymer with the same number of beads.

Can the early-time, high scission probability of daughter polymers be ignored? This depends on the Wi of the daughter polymers. From figure 1b, we expect T d T L for small Wi 1; the number of polymers that would breakup during the initial time T L will then be relatively small, and may be ignored. However, for larger Wi 4, we have T d ≈ T L and a significant fraction of daughter polymers would break before they forget their stretched initial conditions. Therefore, for large Wi 0 (which would produce daughter polymers with large Wi ), it becomes important to simulate multiple scissions in order to faithfully describe the decay of the polymer population. Such simulations would have to be repeated if the number of beads of the parent polymer changes. The situation simplifies considerably, however, for small Wi 0 as one can then use first-scission statistics, calculated for a range of N , to describe the decay of daughter polymers, regardless of the number of beads of the parent polymer.

The evolution of Wi averaged over all polymers, which represents the mean effective Wi of the entire population, is shown in figure 12b, for various values of Wi 0 of the parent polymers. This is the analogue of figure 8a, but for N 0 = 10 rather than 2. We see that Wi decreases rapidly while the parent polymers are breaking. After this, the slower scission rates of the daughter polymers lead to a more gradual decrease in Wi , which eventually will saturate to a value less than W i cr , corresponding to daughter polymers that cannot be broken up further by the flow. This effect cannot be captured by dumbbells, which directly breaks into beads (figure 8).

The reduction of Wi with time has a strong influence on the evolution of the mean end-to-end extension of the polymers R , as shown in figure 12c. After an initial stretching phase, R begins to decrease, owing to both the scission of highly stretched polymers and the smaller Wi of the resulting daughter polymers. After all scissions cease, we are left with relatively in-extensible daughter polymers whose extensions fluctuate near r eq . Interestingly, the curve for Wi 0 = 2.0 shows two regimes in the decay of R . The first fast-decay regime is due to the rapid scission of 10-bead parents (see figure 11c); the second slow-decay regime results from the much slower breakup of 5bead daughter polymers, for which Wi = 0.55 barely satisfies the condition for secondary scission (Wi > Wi cr = 1/2). This second slow regime is not seen for either smaller or larger Wi 0 : in the former case, secondary breakups do not occur, whereas in the latter case secondary breakups occur very quickly (see figure 11).

Concluding remarks

Polymers, even in small quantities, have a dramatic impact on a turbulent flow, reducing drag or dissipation and suppressing small-scale motion. However, because these effects originate from polymer stretching (and the resultant feedback forces), the polymers which exert the strongest influence on the flow are also the most susceptible to strain-induced scission. Therefore, to achieve effective flow modification, one must strike a balance between these opposing tendencies, which in turn demands a detailed understanding of the scission process and the factors that influence the rate of scission.

In this work, we have analysed the scission of polymers in homogeneous isotropic turbulence, with a focus on the temporal decay of unbroken polymers, and the statistics of their survival times. By using direct numerical simulations, we have quantified the decay time (or scission rate) as a function of Wi , which can serve as inputs for coarsegrained models. Importantly, all the key qualitative features of the numerical results can be predicted analytically by replacing the fluctuating, turbulent velocity gradient by a time-decorrelated Gaussian random flow. This is possible because scission is caused by the cumulative action of fluctuating strain, and not by sudden stretching in high-strain regions of the flow.

The scission statistics have been shown to be qualitatively insensitive to the strength of hydrodynamic and excluded volume interactions among the beads of the polymer chain model. Quantitatively, these two interactions have opposing effects, with hydrodynamic (excluded volume) interactions suppressing (enhancing) the scission rate by delaying (hastening) the uncoiling of coiled polymer chains. Another finding, relevant for future computations, is that a multi-bead polymer chain cannot be replaced by a dumbbell model without incurring quantitative errors in the prediction of breakup rates. However, the results appear to converge as N b increases, so we expect N b ∼ O(10) to be sufficient even if a polymer model may strictly demand many more beads.

Our study of the scission of active polymers has shown that there is an intermediate value of Wi for which the overall, time-integrated, reduction of the kinetic-energy dissipation rate is maximum: for small Wi the polymers do not stretch and the feedback is weak, whereas for large Wi the stretching and feedback is initially strong, but the resultant dissipation reduction is lost rapidly as the polymers break up very quickly. This study also demonstrates the usefulness of the hybrid Eulerian-Lagrangian method for the simulation of scission in turbulent polymer solutions. This approach indeed directly applies a suitable scission criterion to individual polymer molecules instead of modelling the effect of scission on the polymer-conformation tensor field. In the hybrid simulations presented here, the description of the polymer phase was necessarily restricted to the elastic-dumbbell model, because a very large ensemble of molecules is required to obtain an appreciable feedback on the flow. However, it is hoped that in future it will possible to use more refined polymer models.

We have shown that in a sufficiently strong turbulent flow (large Wi ) polymers can breakup repeatedly. However, because the fragments in each successive generation have a smaller relaxation time, the breakup process eventually ceases once the effective Wi of the surviving polymer fragments becomes less that Wi cr . From this condition, we can estimate the number of beads in the largest surviving chains as N (N + 1) 6Wi cr τ η /τ [using (3.17)]. Now, as N is linearly related to the mass of a polymer, this condition allows us to estimate how the weight-averaged molar mass (biased towards the largest chains) of the surviving polymers M ws scales with the Reynolds number Re. For large N , we have

N 2 ∼ τ η /τ ∼ Re -3/2 ν f /D 2 τ, (5.1)
where D is the large length-scale of the flow system. Therefore, for a specified polymer, solvent and system geometry we obtain M 2 ws ∼ Re -3/2 . This scaling is consistent with the experimental data of [START_REF] Vanapalli | Universal scaling for polymer chain scission in turbulence[END_REF], who obtain a power-law exponent close to -3/2 for a variety of polymers and system geometries (these results are reported in terms of the squared, weight-averaged polymer length which is linearly related to M 2 ws , as described in the Data Analysis section of [START_REF] Vanapalli | Universal scaling for polymer chain scission in turbulence[END_REF]. The same scaling was extended to higher Reynolds numbers by [START_REF] Elbing | Degradation of homogeneous polymer solutions in high shear turbulent pipe flow[END_REF].

The flow of a polymer solution in the elastic-turbulence regime shares many similarities with the viscous range of Newtonian turbulence [START_REF] Steinberg | Elastic stresses in random flow of a dilute polymer solution and the turbulent drag reduction problem[END_REF]. However, the above argument for estimating M ws cannot be easily adapted to elastic turbulence, because the amplitude of the fluctuating strain rate decays along with the concentration of unbroken polymers. Thus, M ws depends on the time evolution of the chaotic flow, which is not known a priori.

The multiple-scission statistics of a polymer also show a non-monotonic dependence on Wi . Small Wi polymers break only once, if at all, whereas large Wi polymers undergo a rapid succession of breakups and quickly reach their limiting generation (fragments which are no longer stretched by the flow). However, for intermediate Wi , the firstscission occurs quickly, but then the daughter polymers breakup much more slowly. This introduces multiple time-scales into the decay of Wi , the average effective Wi of the polymer population. This average quantity and its evolution are relevant to coarse-grained continuum models of polymer solutions which typically contain a single mean polymer-relaxation-time parameter. Indeed, the development of continuum models that incorporate scission is essential for predicting the long-time dynamics of turbulent polymer solutions in complex applications. The quantitative results as well as physical insights gained from this study should aid in the development of such models.

Finally, the present study is based on a coarse-grained description of a polymer molecule and of the scission process. In the context of laminar flows, a fine-grained model of polymer scission has been proposed by [START_REF] Sim | Flow-induced chain scission in dilute polymer solutions: Algorithm development and results for scission dynamics in elongational flow[END_REF]. Here, the polymer is modelled by a chain of a large number of beads joined by rigid rods, which more faithfully represents the entropic coiling process than a bead-spring model. Scission is based on the tension exerted by the flow on the rods, but is implemented as a stochastic event, respecting the stochasticity of both covalent bond breakup and the fluctuating rod-tension. We hope that with future increases in computational power, it will become possible to use such fine-grained polymer models in Lagrangian simulations of polymers in turbulent flows and thus reach a deeper understanding of the scission process.

tensor, and implements excluded-volume interactions using a repulsive, narrow Gaussian potential. We follow the formulation given in [START_REF] Schroeder | Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment[END_REF], but rewrite the equations in terms of the notation and parameters of § 2. The equation for the motion of the centre of mass remains the same as (2.1a). The evolution of the separation vectors Q i , however, is now governed by Qi = κ(t)

• Q i + 1 4τ N j=1 (D i+1,j -D i,j ) • F E j + F EV j (A 1) + Q 2 eq 6τ i+1 j=1
(B i+1,j -B i,j ) • ξ j (t), i = 1, . . . , N -1.

Here,

F E i = f i Q i -f i-1 Q i-1
is the net FENE spring force exerted on bead i, with the coefficients f i still given by (2.2) (Q 0 and Q N must be replaced by zero to obtain the forces on the first and last bead respectively). The net force due to excluded volume interactions acting on bead i, F EV i , is given by

F EV i = - N j=1;j =i ν 3 4 2 5/2 π 3/2 Q m Q eq 4 exp - 9 2 X 2 ij Q 2 eq X ij , (A 2)
where ν is a non-dimensional parameter that sets the magnitude of the excluded volume forces, X i is the position vector of bead i, X ij = X j -X i is the displacement vector between beads i and j, and X ij = |X ij |. The Rotne-Prager-Yamakawa mobility tensor D i,j is given by D i,j = I if i = j, (A 3)

D i,j = 6a 8X ij 1 + 2a 2 3X 2 ij I + 1 - 2a 2 X 2 ij X ij X ij X 2 ij
if i = j and X ij 2a, (A 4)

D i,j = 1 - 9X ij 32a I + 3 32 X ij X ij aX ij if i = j and X ij < 2a, ( A 5) 
where I is the 3 × 3 identity tensor and a is the radius of the beads, which defines the non-dimensional hydrodynamic interaction parameter: 6) This definition implies that physically meaningful values of h should be 1/2 [START_REF] Schroeder | Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment[END_REF]).

h = a Q eq 3 π 1/2 . ( A 
Finally, the coefficient matrix B i,j is related to the positive definite mobility tensor by

D i,j = N l=1 B i,l • B T j,l , ( A 7) 
where the superscript T denotes the transpose. To compute B i,j , we first combine the N 2 different D i,j matrices into a 3N × 3N block matrix, and then carry out a Cholesky decomposition to obtain a lower triangular block matrix that yields the B i,j matrices [START_REF] Jendrejack | Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions[END_REF]. Note that B i,j = 0 if j > i.

Equations (A 1) to (A 7), along with (2.1a), constitute the bead-spring chain model with hydrodynamic and excluded volume interactions, the magnitudes of which are set by the two new parameters h and ν respectively, such that substituting h = ν = 0 yields the Rouse model of § 2.

FIG. 1 .

 1 FIG. 1. Passive polymers: (a) exponential decay of the fraction of unbroken polymers for different values of Wi; (b) decay time of the fraction of unbroken polymers rescaled by the Kolmogorov time τη as a function of Wi/Wicr.

  FIG. 2. Passive polymers: (a) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for r0 = req and for different values of Wi. The inset shows the value of β, which determines the exponent of the right tail of the p.d.f. (i.e. P (R) ∝ R -1-β for r0 R sc), as a function of Wi/Wicr; (b) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for r0 = 40req and for different values of Wi. The inset shows the value of α, which determines the power-law behaviour of the p.d.f. for intermediate extensions (i.e. P (R) ∝ R -1-α for req R r0), as a function of Wi/Wicr. In both panels (a) and (b), the p.d.f.s are normalized to unity for the sake of comparison.

  FIG. 3. Passive polymers: (a) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for Q D m = 10 4 , req = 1, r0 = 10 2 , and different values of Wi; (b) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for Q D m = 10 4 , req = 1, r0 = 5 × 10 2 , Wi = 1, and an initial size distribution that is either monodisperse (dotted magenta line) or uniform (between req and r0; solid gray line). In both panels, the p.d.f.s are normalized to unity for the sake of comparison.

  FIG. 4. Passive polymers: (a) p.d.f. of the lifetime of a polymer for different values of Wi.The inset compares the decay time of the fraction of unbroken polymers, the mean lifetime of a polymer, and the time scale γ -1 in the exponential tail of the p.d.f. (P (Tsc) ∼ e -γTsc for Tsc/τη 1) as a function of Wi/Wicr; (b) mean lifetime as a function of sc/Q0 below the coil-stretch transition. T sc is a fitting parameter for the dashed lines. The data for Wi = 0.4 (resp. Wi = 0.45) are multiplied by a factor of 10 2 (resp. 10) in order to make the three lines more easily distinguishable; (c) the same as in (b) above the coil-stretch transition.

  FIG. 5. Passive polymers: probability of polymer scission occuring at the jsc-th link for different values of Wi. The insets shows the probability of nL links breaking simultaneously.

FIG. 7 .

 7 FIG. 7. Passive polymers with HI and EV: Comparison of the scission statistics for polymers without HI and EV (h = 0, ν = 0), with only HI (ν = 0), and with HI and EV [legend in panel (c)]. Wi = 0.9 in all three cases. Panel (a) presents the decay of the fraction of unbroken polymers, with its inset showing the corresponding results for a larger value of Wi = 2.0. Panel (b) presents the distribution of lifetimes Tsc, while its inset compares typical time traces of the end-to-end extension of polymers with and without HI. Panel (c) shows the time-integrated p.d.f of the end-to-end extension.

FIG. 8 .

 8 FIG. 8. Passive polymers: (a) mean Weissenberg number as a function of time for N = 2 and different values of Wi0; (b) reciprocal of T d (multiplied by the Kolmogorov time scale) as a function of 1 + Wi/Wicr. The dashed line is proportional to ln[(1 + Wi/Wicr)/2].

FIG. 9 .

 9 FIG. 9. Active polymers: (a) Fraction of unbroken polymers as a function of time on a semi-logarithmic scale. The thin curves refer to the passive simulations (η = 0), while the thick curves refer to the active ones (η = 4 × 10 -2 ). Panel (b) is a zoom of the initial decay of the fraction of unbroken polymers on a linear scale. The black lines are 1 -k(t -t ) with t /τη = 23 and kτη × 10 3 = 0.315, 1.10, 2.41 for W i = 0.6, 0.8, 1.0 respectively.

FIG. 10 .

 10 FIG. 10. Active polymers: (a) fluid and (b) polymer dissipation rates as a function of time for different values of Wi. The horizontal line in panel (a) represents in, which is the time-averaged value of the fluid dissipation for the Newtonian fluid. The inset in panel (b) is a zoom of the main plot over the initial stage of the evolution.

  FIG. 11. Passive polymers undergoing multiple scissions: evolution of the number of polymers, NP (t, N ), categorized according to the number of constituent beads N , due to the repeated scission of NP (0, 10) 10-bead parent polymers with (a) Wi0 = 0.8, (b) Wi0 = 1.0, (c) Wi0 = 2.0 and (d ) Wi0 = 4.0.

  FIG. 12. Passive polymers undergoing multiple scissions: (a) probability distributions of the lifetime of a parent 10-bead polymer, a daughter 5-bead polymer formed because of the scission of a 10-bead polymer (N0 = 10) and a parent 5-bead polymer (N0 = 5) with same Wi0 = 4; (b) decay of Wi, averaged over the entire population of polymers, for various values of the initial Wi0 of the 10-bead parent polymers; (c) evolution of the averaged end-to-end extension R of the polymers for various Wi0 of the parent polymers.
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Appendix A

In this appendix, we present a modified version of the bead-chain model ( § 2) that takes into account hydrodynamic interactions, using the Rotne-Prager-Yamakawa mobility