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14th BUCC Workshop at RANLP 2021 – Preface

Comparable corpora are collections of documents that are comparable in content and form in various
degrees and dimensions. This definition includes many types of parallel and non-parallel multilingual
corpora, but also sets of monolingual corpora that are used for comparative purposes. Research on
comparable corpora is active but used to be scattered among many workshops and conferences. The
workshop series on “Building and Using Comparable Corpora” (BUCC) aims at promoting progress in
this exciting field by bundling some of its research, thereby making it more visible and giving it a better
platform.

The first 12 editions of the workshop took place in Africa (LREC’08 in Marrakech), America (ACL’11 in
Portland and ACL’17 in Vancouver), Asia (ACL-IJCNLP’09 in Singapore, ACL-IJCNLP’15 in Beijing,
LREC’18 in Miyazaki, Japan), Europe (LREC’10 in Malta, ACL’13 in Sofia, LREC’14 in Reykjavik,
LREC’16 in Portoroz, RANLP’19 in Varna) and also on the border between Asia and Europe (LREC’12
in Istanbul). Due to the corona crisis, the 13th edition took place online as an LREC’20 workshop. This
year’s 14th edition was held again online and took place as an RANLP’21 workshop.

We would like to thank all people who in one way or another helped in making this workshop once again
a success. We are especially grateful to Ruslan Mitkov, Galia Angelova, Ivelina Nikolova, Kiril Simov
and the whole RANLP team for their excellent support.

Our special thanks go to Pushpak Bhattacharyya, Tomas Mikolov and Sujith Ravi for accepting to give
invited presentations and to the members of the programme committee who did an excellent job in
reviewing the submitted papers under strict time constraints. Last but not least we would like to thank
our authors, presenters and all participants of the workshop.

Reinhard Rapp, Serge Sharoff, Pierre Zweigenbaum September 2021
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Abstract 

AI now and in future will have to grapple continuously with the problem of low resource. AI will increasingly be ML 
intensive. But ML needs data often with annotation. However, annotation is costly. 

Over the years, through work on multiple problems, we have developed insight into how to do language processing 
in low resource setting. Following 6 methods—individually and in combination—seem to be the way forward: 

1. Artificially augment resource (e.g. subwords) 

2. Cooperative NLP (e.g., pivot in MT) 

3. Linguistic embellishment (e.g. factor based MT, source reordering) 

4. Joint Modeling (e.g., Coref and NER, Sentiment and Emotion: each task helping the other to either boost 
accuracy or reduce resource requirement) 

5. Multimodality (e.g., eye tracking based NLP, also picture+text+speech based Sentiment Analysis) 

6. Cross Lingual Embedding (e.g., embedding from multiple languages helping MT, close to 2 above) 

The present talk will focus on low resource machine translation. We describe the use of techniques from the above 
list and bring home the seriousness and methodology of doing Machine Translation in low resource settings. 

Invited Presentation 
 

Machine Translation in Low Resource Setting 
 
 
 

Pushpak Bhattacharyya 
Computer Science and Engineering Department 

Indian Institute of Technology Bombay 
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Abstract

Bilingual dictionaries are essential resources
in many areas of natural language processing
tasks, but resource-scarce and less popular lan-
guage pairs rarely have such. Efficient auto-
matic methods for inducting bilingual dictio-
naries are needed as manual resources and ef-
forts are scarce for low-resourced languages.
In this paper, we induce word translations us-
ing bilingual embedding. We use the Apache
Spark® framework for parallel computation.
Further, to validate the quality of the gen-
erated bilingual dictionary, we use it in a
phrase-table aided Neural Machine Transla-
tion (NMT) system. The system can perform
moderately well with a manual bilingual dic-
tionary; we change this into our inducted dic-
tionary. The corresponding translated outputs
are compared using the Bilingual Evaluation
Understudy (BLEU) and Rank-based Intuitive
Bilingual Evaluation Score (RIBES) metrics.

1 Introduction

Digitised bilingual dictionaries primarily ex-
ist for resource-rich language pairs, such as
English-German, English- Chinese, English-Hindi,
etc. (Lardilleux et al., 2010). Such dictionaries
are helpful for many natural language processing
(NLP) tasks such as Machine Translation (MT)
for translating Out-Of-Vocabulary (OOV) words,
cross-lingual information retrieval, cross-lingual
word embedding and multilingual parts-of-speech
tagging (Wołk, 2019; Ye et al., 2016; Sharma
and Mittal, 2018). Creating a bilingual dictio-
nary requires high-quality parallel corpora and ex-
pert linguists, both of which are scarce and costly
in resource-poor languages (Hajnicz et al., 2016;
Sarma, 2019).

Previous works focus on methods that were
based on pivot languages (Tanaka and Umemura,
1994; István and Shoichi, 2009; Wushouer et al.,
2015), aligning words (Daille and Morin, 2008;
Tufiş and maria Barbu, 2002) or using dependency

relations (Yu and Tsujii, 2009). The pivot-based
dictionary induction is a contemporary method that
uses only dictionaries to and from a pivot language
(intermediate language) to generate a new dictio-
nary. This method is not very effective for highly
ambiguous languages as it yields highly noisy dic-
tionaries because lexicons of a language do not ex-
hibit transitive relationship (Wushouer et al., 2014).
Word alignment systems identify the translation
equivalence of lexical units between two sentences
that are sentence aligned (Choueka et al., 2000;
Och and Ney, 2003). Depending on the purpose,
the system may focus on the specific lexical units,
e.g. a single word or collocation (Tiedemann,
2004; Schreiner et al., 2011; Chen et al., 2009).
The dependency relation method is based on the
premise that related words in different languages
have a similar dependency relationship. These
methods require either excellent linguistic knowl-
edge or linguistic resource. The research line has
robust outcomes on bilingual lexicon induction
with the evolution of word embedding either by
independently aligning trained word embedding in
two languages or using the bilingual embedding
to induce word translation pairs through nearest-
neighbour or similar retrieval methods. In the BDI
task, given a list of ‘n’ source language words
ws1 , ws2 , ...wsn , the goal is to determine the most
appropriate translationwti , for each query word
wsi . Finding a target language word embedding
wvti is accomplished by computing the nearest
neighbour to the source word embedding wvsi in
the shared semantic space, where cosine similar-
ity is a measure between the embedding (Artetxe
et al., 2019). However, this creates a phenomenon
called hubness. In high-dimensional spaces, some
data points, called hubs, are extraordinarily close
to many other data points (Huang et al., 2019); this
results in inappropriate/noisy translation.

In this paper, a simple cartesian product of the
bilingual/cross-lingual word embedding is used
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and filters the product outcome based on some
linguistic regularities and thresholds. The gener-
ated (inducted) bilingual dictionary is used as a
separate phrase-table in an NMT system. The sys-
tem produces translations for every word in the
text; the translations are validated for quality using
the Bilingual Evaluation Understudy (BLEU) and
Rank-based Intuitive Bilingual Evaluation Score
(RIBES) metric.

2 Bilingual and Cross-lingual Word
embedding

In this paper, the terms ‘bilingual’ and ‘cross-
lingual’ for word embedding is used with varying
notions. The bilingual embedding maps the source
and target language embedding in the shared se-
mantic space. In contrast, the cross-lingual embed-
ding learns a transfer function to translate the em-
bedding from the source language semantic space
to target language space; this preserves the more ac-
tual semantics pertained to that language (Mikolov
et al., 2013). Visualisation of the embeddings is
shown in Figure 1 and Figure 2.

BilBOWA toolkit (Gouws et al., 2015) is used
to generate bilingual word embedding. The em-
bedding of source and target language are trained
jointly so that related words of two languages are
closer to each other in the shared space. There-
fore, the translational equivalence has higher co-
sine similarity. The model is trained with mini-
mal parallel corpus and large monolingual corpora.
However, the cross-lingual embedding is learned
with a very bare minimal resource as small as 5000
source-target word pairs. Global neighbourhood
is estimated as cross-lingual entropy. The main
advantage of this method over bilingual embedding
is that it is possible to generate embedding in the
target language semantic space instead of shared
space. In shared semantic space, the most semantic
information pertained to the language is lost and
likely to infer word vectors for related languages.

3 Implementation

The embedding size of the English word list is
∈ R8994×300 and Tamil is ∈ R10097×300. Tamil
has more number words compared to English be-
cause of the inflected forms. The dimension of
the Cartesian product of the word pair list (English
and Tamil) is 90812418× 300; this takes months
for a typical computer system to compute. This
complex computation is deployed to the cluster

Figure 1: Visualization of Bilingual Embedding using
T-SNE plot

using Apache Spark® Framework (Zaharia et al.,
2016). The word pairs are filtered in two folds, co-
sine similarity and lemmatization (Kengatharaiyer
et al., 2019), where the root word is extracted from
the surface forms. In the case of cross-lingual em-
bedding, cross-lingual entropy is used instead of
the cosine similarity measure. Figure 3 shows the
architecture.

Figure 3: Apache Spark Implementation for Bilingual
Dictionary Induction

The word embedding of Source and Target Lan-
guage is mapped to a key-value pair Resilient
Distributed Datasets (RDDs), a fundamental data
structure of Spark; the word being a key and 300-
dimensional representation as values. The Carte-
sian Product of two RDDs (En RDD and Ta RDD)
generates the Pair RDD. On the Pair RDD, cosine
similarity or cross-lingual entropy is applied to
filter top similar words. Filtered RDD is further
refined using a lemmatizer to avoid the inflected
terms. The resultant RDD is saved as text file;
this has the most similar source and target word, a
bilingual dictionary.

The OpenNMT framework (Klein et al., 2017) is
used for training an NMT system with the training
parameter as shown in Table 1. The inducted lexi-

3



(a) English Embedding Space

(b) Tamil Embedding Space

Figure 2: Visualization of Cross-lingual embedding us-
ing T-SNE plot

cons are used as a phrase-table in NMT for trans-
lating Out-Of-Vocabulary (OOV) words. Training
is done on Google Colab with GPU at backend.

Table 1: Training Parameters for English-Tamil Open-
NMT Framework

Hyper Parameters Values
Layers 3
Rnn size 512
Embedding size 512
Encoder/Decoder Type Transformers
Train steps / Validation steps 3000/ 5000
Positional Encoding True
Heads 8
Dropout 0.3
Learning rate 3
Batch size 4096
Optimiser ADAM

4 Corpora Description

For the training language model, the monolingual
Tamil corpus from the cEnTam dataset (P. et al.,
2020) is used. Likewise, for training the machine
translation systems, the English-Tamil parallel cor-

pus from the cEnTam dataset is utilised. The
specifics of the cEnTam corpus used is reported
in Table 2.

Table 2: Specification of cEnTam Corpus

Corpus Type English
(No. of sentences)

Tamil
(No. of sentences)

Monolingual 589856 563568
Parallel 56495 56495

5 Results and Discussion

Table 3 and 4 show a sample of bilingually similar
words above the cosine distance of 0.90 and 0.95.
The correct translations are given in bold letters
in Table 3 and 4. It can be inferred that the much
more words that are not semantically similar (trans-
lational equivalent) but related crowds the search
space, which might result in noisy word inductions
( into the dictionary) and ambiguity. Hence the
search space was shrunk above the cosine distance
of 0.98 as shown in Table 5. It is observed that
the inflected forms (surface forms) are closer than
the related words in the embedding space to the
query word. Unlike English, Tamil has no prepo-
sitions. Instead, it has case inflected nouns, for
example, the translation of the prepositional phrase
“in minutes” in English is equivalent to “Nimidan-
GkaLil”, a case inflected noun(NimidanGkaL + il
= minutes + in) in Tamil. Likewise, various sandhi
inflected form of the noun “kuzhanthai” are kuzhan-
thaip, kuzhanthaith, etc. The chances of getting
associated or related words in such a small space
is negligible. The inflections are removed, and the
root forms are inducted at the second stage of filter-
ing, lemmatizer. The inducted dictionary is added
as a lookup table in the NMT system.

Table 3: Sample output of bilingual words extracted
above cosine similarity (threshold) 0.90

English Tamil Cosine Similarity
go avaL 0.92
go ennai 0.90
go evvaLavu 0.90
go anGkae 0.92
go poaka 0.92
go enGkae 0.90
go un 0.90

good chariyaana 0.92
good aen 0.91
good avaL 0.90
good nanRaaka 0.94
good evvaLavu 0.91
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Table 4: Sample output of bilingual words extracted
above cosine similarity 0.95

English Tamil Cosine Similarity
forests pachumaiyaana 0.92
forests adarNtha 0.95
forests kaadukaL 0.98
flowers malar 0.95
flowers malarkaL 0.97
flowers pookkaL 0.96

Table 5: Sample output of bilingual words extracted
above cosine similarity 0.98. The exact translation of
the query word is annotated with double raised asterisk
∗∗ and their inflected forms are annotated with single
raised asterisk∗.

English Tamil Cosine Similarity
minutes NimidanGkaL ∗∗ 0.98
minutes NimidanGkaLil∗ 0.99
minutes Nimidaththil ∗ 0.97
minutes NimidanGkaLaaka∗ 0.98

The accuracy of the translated sentence of the
NMT system before and after appending the dic-
tionary as a phrase table is shown in Table 6. The
induced translation is evaluated based on both the
Bilingual Evaluation Understudy (BLEU) (Koehn,
2010) and Rank-based Intuitive Bilingual Evalua-
tion Score (RIBES) (Isozaki et al., 2010) metrics.
BLEU is the oldest and most adopted metrics to
evaluate Mt system. It rewards systems for n-grams
that have exact matches in the reference system.
The longer n-gram scores account for the fluency of
the translation in BLEU metric. In contrast, RIBES
is sensitive towards word reordering, works well
for language pairs having very different grammar
and word order. It uses rank correlation coeffi-
cients based on word order to compare hypothesis
and reference translations.

Table 6: Precision of NMT system

NMT System BLEU RIBES
Reference-Baseline 0.31 0.61
Reference-ManDic 0.33 0.66
Reference-InDic 0.34 0.71
ManDic-InDic 0.89 0.95

Although BLEU is a standard metric for
the evaluation of MT system, RIBES is better
suited for distant language pairs like English and
Tamil (Callison-Burch et al., 2006). Hence, both
measures are used for validating the NMT system
developed. In the Table 6, the score is computed
by comparing the reference translations with the

translations of the NMT system after appending
the manual and inducted dictionary (ManDic &
IndDic). The ManDic and InDic systems are com-
pared to showcase that the hypothesis translation
of InDic is highly correlated with ManDic, though
InDic has comparatively better score than ManDic
when validated against Reference translation.

6 Conclusion and Summary

In this paper, we generated an English-Tamil bilin-
gual dictionary using both bilingual (vectors in the
same space) and cross-lingual (vectors in separate
space, mapped) word embedding. In order to val-
idate this induced dictionary, we have employed
a table driven Neural Machine Translation (NMT)
system. The goal was to measure the quality of
the translated output (Tamil as the target language)
when the original manual dictionary (ManDic) is
replaced with the induced dictionary (InDic). The
Baseline NMT system was trained on English-
Tamil parallel corpus with over 56000 entries. A
testset with 700 aligned sentences was used for vali-
dation. The translation quality is measured over the
reference translations which are available (aligned
Tamil sentences). Eventually, we will have three
categories of translated output, namely, Baseline,
ManDic and InDic. We compare each of them
with the reference translation using the RIBES and
BLEU metric (Isozaki et al., 2010; Koehn, 2010) to
ascertain their quality. It is important to note that
the quality of the translations is not of our interest
but the change in performance when using different
dictionaries. RIBES is used as the scoring model as
it is invariant to word order and morphology (Tan
et al., 2015).

Our results suggest that the induced dictionary
performs at par or better than the original manual
dictionary. This is also due to the fact that the
lexicons are rendered in a context-sensitive man-
ner from word embedding. The lookup process
is implemented using Apache Spark® Framework
in Scala language. Induction is a simple reverse
lookup using the Cartesian product of all bilingual
embedding. The size of this Cartesian product ma-
trix is 1× 107 × 300 values which makes it highly
computational. Apache Spark can run in parallel,
hence, accelerate time and optimise memory. In
this paper, bilingual embedding generated by Bil-
BOWA (Gouws et al., 2015) is mainly used, but
this methodology is also tested with cross-lingual
embedding and found equally effective (JP et al.,
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2020). The differences between them are: bilin-
gual embeddings are generated from parallel and
good quality comparable bilingual corpus, whereas
cross-lingual embedding can be learned from min-
imal bilingual data. Learning such cross-lingual
embedding for resource-poor languages can help
to generate induced dictionary resources of even
unknown words with a fair amount of accuracy.
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Abstract
Parallel sentences extracted from comparable
corpora can be useful to supplement paral-
lel corpora when training machine translation
(MT) systems. This is even more prominent
in low-resource scenarios, where parallel cor-
pora are scarce. In this paper, we present a
system which uses three very different mea-
sures to identify and score parallel sentences
from comparable corpora. We measure the ac-
curacy of our methods in low-resource settings
by comparing the results against manually cu-
rated test data for English–Icelandic, and by
evaluating an MT system trained on the con-
catenation of the parallel data extracted by our
approach and an existing data set. We show
that the system is capable of extracting useful
parallel sentences with high accuracy, and that
the extracted pairs substantially increase trans-
lation quality of an MT system trained on the
data, as measured by automatic evaluation met-
rics.

1 Introduction

High quality MT systems rely on the availability
of parallel data. In low-resource settings, where
parallel data is scarce, unsupervised methods have
been proposed, where only monolingual corpora
are used for training (Artetxe et al., 2018; Lample
et al., 2018). Kim et al. (2020) show that super-
vised and semi-supervised approaches with only a
small parallel corpus of 50K bilingual sentences
consistently outperform the best unsupervised sys-
tems for a range of languages. However, there is a
scarcity of parallel data, especially for languages
with a low number of speakers. When parallel cor-
pora are scarce, comparable corpora, which are
far more common, can be used to supplement it.
We will be working with the English–Icelandic lan-
guage pair, for which no statistical or neural MT
work had been published until last year (Jónsson
et al., 2020).

When parallel sentences are extracted from com-
parable corpora, potential parallel sentence can-
didates can usually come from anywhere in two
comparable documents. This means that a po-
tential parallel counterpart of one sentence in the
source-language document can be any sentence in
the target-language document. If the average num-
ber of sentences in a comparable document is n,
the number of potential sentence pairs that have to
be evaluated are n2. This quickly becomes over-
whelming (as n increases) and so it is imperative
to reduce the search space. Reducing the search
space should ideally result in a list of a maximum
of kxn candidates, where k is a constant number
of allowed candidates for each sentence in the com-
parable documents. To retrieve useful sentence
pairs from this list, the pairs have to be scored and
filtered.

Our approach divides the problem into two main
steps. We start by extracting parallel sentence can-
didates using an inverted index-based crosslingual
information retrieval (CLIR) tool called FaDA (Lo-
har et al., 2016), that requires a collection of doc-
uments in two languages and only a bilingual lex-
icon without the need of any MT system. In the
second step, we score the sentence candidates using
two different scores, one based on contextualized
embeddings and the other on high-precision word
alignments. A binary classifier selects sentence
pairs based on these scores.

We test our approach in three different ways. We
use two different test sets to measure precision, re-
call and F1-scores, and we also use our approach to
extract parallel sentences from Wikipedia and use
the resulting data as supplemental data for training
NMT systems. The systems are then evaluated in
terms of BLEU scores (Papineni et al., 2002) and
compared to a baseline in order to give an indica-
tion of the usefulness of the supplemental data for
NMT training.
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Our main contributions are fourfold.

• We show that the combination of three dif-
ferent measures – CLIR, and scores based on
contextualized embeddings and high precision
word alignments – can effectively extract par-
allel sentence pairs from comparable corpora.

• We introduce WAScore, a score based on high
precision word alignments and show its use-
fulness in filtering parallel sentence pairs.

• We publish two different test sets for mea-
suring the effectiveness of parallel sentence
extraction from comparable corpora for the
English–Icelandic language pair.

• We publish a set of parallel sentences ex-
tracted from Wikipedia, shown to be useful
for MT training.

2 Related Work

Comparable corpora have been shown to be a
useful source for mining parallel segments that
can help improve MT quality (Wolk et al., 2016;
Hangya and Fraser, 2019). Afli et al. (2015) ex-
tract parallel data from a multimodal comparable
corpus from the Euronews1 and TED2 web sites.
Chu et al. (2015) extract parallel texts from the
Chinese and Japanese Wikipedia and Ling et al.
(2014) employ a crowdsourcing approach to ex-
tract parallel text from Twitter data in order to find
the translations in tweets. The work of Karimi et al.
(2018) describes the approach of extracting parallel
sentences from English–Persian document-aligned
Wikipedia entries. They use two MT systems to
translate from Persian to English and the reverse
and then use an IR system to measure the similar-
ity of the translated sentences. Multilingual sen-
tence embeddings have also been applied to the
problem, obtaining state-of-the-art performance
(Schwenk, 2018; Artetxe and Schwenk, 2019b).
Recently, Ramesh et al. (2021) describe the col-
lection of parallel corpora for 11 Indic languages
from diverse comparable corpora using LaBSE em-
beddings (Feng et al., 2020), a language-agnostic
BERT sentence embedding model trained and opti-
mized to produce similar representations for bilin-
gual sentence pairs that are translations of each
other.

1https://www.euronews.com/
2https://www.ted.com/

Word alignments have previously been used for
parallel sentence extraction. Zarin, a et al. (2015)
identify parallel sentences using word alignments,
experimenting with five different alignment based
scores. They presume that if a pair of sentences
are equivalent in two languages, there should be
many word alignments between the sentences, and
non-parallel sentences should have few or no word
alignments. Stymne et al. (2013) use alignment
based heuristics to filter out sentence pairs. Lu
et al. (2020) use a word alignment based trans-
lation score as a part of their scoring ensemble
for filtering a noisy parallel corpus. Their trans-
lation score is a simplified version of the transla-
tion score introduced by Khadivi and Ney (2005).
Azpeitia et al. (2017) and Andoni Azpeitia and
Garcia (2018) describe a method using CLIR and
lexical translations obtained using word alignments,
with a simple overlap metric. They obtained the
highest results for the BUCC 2017 and BUCC 2018
shared tasks.

Our method uses an IR system to create a list
of alignment candidates, thus reducing the search
space. It then takes advantage of both LaBSE em-
beddings and word alignments. Our word align-
ment score is calculated by a simpler formula than
most of the previous work, but relies on high pre-
cision alignments. It has been shown that they can
be achieved by an ensemble method using Comb-
Align (Steingrímsson et al., 2021). A binary clas-
sifier is finally used to select acceptable sentence
pairs.

3 Data

For the language pair we are working with, English–
Icelandic, no test sets have previously been made
available for parallel sentence extraction from com-
parable corpora. Therefore, we have to build test
sets in order to be able to evaluate our approach.
We prepare the following data sets for our experi-
ments:

• CompNews: development and test sets using
available news data,

• CompWiki: a manually curated small test set
for Wikipedia data,

• CompTrain: training data for our logistic re-
gression classifier, and

• CompLex: an English–Icelandic lexicon for
word translation in an IR system.
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Figure 1: The system setup. English and Icelandic monolingual data are aligned by the CLIR system which outputs
candidate pairs which are scored and a classifier outputs parallel sentence pairs.

All the data sets are published with open licenses
on GitHub and in a CLARIN repository.

3.1 CompNews

We built development and test sets for identifying
parallel sentences in news corpora, in similar style
to the test sets compiled for the BUCC 2017 shared
task on parallel sentence identification (Zweigen-
baum et al., 2016), i.e. consisting of a small set of
known parallel sentences, as well as a larger list
of randomly sampled sentences from monolingual
corpora in the same domain, but with no known
parallel pairs. The parallel sentences used are the
2000 English-Icelandic sentence pairs made avail-
able as development data for the news translation
task in WMT 2021.3 The dev set for WMT 2021
contains 1000 sentences in each direction. The non-
parallel sentences were randomly selected from
Newscrawl 2018, and 2018 news texts sampled
from the Icelandic Gigaword Corpus (Steingríms-
son et al., 2018).

The texts were split into sentences. This resulted
in two lists of 100, 000 sentences, English and Ice-
landic, with 2% of sentences in each list known
to have a corresponding sentence in the other lan-
guage.

We made a 40/60 split, taking care that the true
parallel sentence pairs were equally distributed be-
tween the splits. The smaller part was used as a

3Available at: http://statmt.org/wmt21/
translation-task.html

development set and the larger part as a test set.

3.2 CompWiki

We randomly selected 15 Wikipedia articles avail-
able in both Icelandic and English. The texts were
split into sentences and the CLIR tool (see Section
4.1) used to obtain translation candidates for each
sentence. These sentence pairs were manually eval-
uated and marked as parallel, partially parallel or
non-parallel. Out of a total of 10, 098 sentences, 86
were marked parallel and 421 as partially parallel.

3.3 CompTrain

In order to gain some information on the kind of
scores the two scoring methods give to non-parallel
data, on the one hand, and parallel data, on the other
hand, we compiled a dataset with 50, 000 randomly
sampled pairs from the two monolingual corpora
used for CompNews and added parallel sentences
from the English–Icelandic ParIce corpus (Barkar-
son and Steingrímsson, 2019). We selected 2, 500
random sentence pairs from a development set pub-
lished with the corpus and filtered all sentences that
have a minimum length of six tokens. This resulted
in 1, 743 sentence pairs, marked as positive data
for a classifier. The resulting 51, 743 sentence pairs
are scored in the same way we score the parallel
sentence candidates (see Section 4.2) and used to
train the classifier.
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3.4 CompLex

FaDA, the cross-lingual information retrieval tool
we use to obtain parallel pair candidates, requires
a bilingual lexicon with lexical translation proba-
bilities of words. It uses the lexicon to translate the
query terms in the source language and searches
these translated terms in the target-language index
to retrieve the equivalent candidate sentences in
the target language. It is described in more de-
tails in Section 4.1. As such a lexicon did not
exist, we compiled it using a combination of ap-
proaches. We collected data that was available
online, an English–Icelandic dictionary from Aper-
tium (Brandt et al., 2011), Wiktionary entries and
Wikipedia article titles. We obtained permission
to use the bilingual ISLEX-dictionaries (Úlfarsdót-
tir, 2014), which go from Icelandic to five Nordic
languages (Danish, Faroese, Finnish, Norwegian
and Swedish) and used these to pivot to English
using the aforementioned open dictionaries. We
created word lists using word alignments to extract
pairs from the ParIce corpus after lemmatizing both
languages using SpaCy4 for English and Nefnir (In-
gólfsdóttir et al., 2019) and DIM (Bjarnadóttir et al.,
2019) for Icelandic. We selected the most likely
English equivalents for a list of Icelandic words
using crosslingual word embeddings models based
on Vecalign5 (Thompson and Koehn, 2019). In
addition, we translated both Icelandic words and
words from the Nordic ISLEX-dictionaries, using
models from OPUS-MT (Tiedemann and Thottin-
gal, 2020). This resulted in a long list of word
translation candidates which we then filtered using
a threshold that required that each candidate was
suggested by multiple sources. For each source
word, we counted how many sources suggested
that candidate and used the count to assign likeli-
hood scores to the translations. This resulted in two
files, an English–Icelandic lexicon with 140K en-
tries and an Icelandic–English lexicon with 152K
entries.

4 System Description

4.1 Sentence Alignment Using CLIR

We make use of an open source CLIR-based bilin-
gual document alignment tool called FaDA (Lo-
har et al., 2016) in the first step of the alignment
process. This tool is capable of aligning bilin-

4https://spacy.io
5https://github.com/thompsonb/vecalign

gual documents without the help of any MT sys-
tem. In contrast, the MT-based alignment systems
need additional time for translating all the source-
language sentences into the target language. There-
fore, FaDA reduces the computational overhead
by skipping the translation process. As FaDA per-
forms alignments at the document level, we con-
sider each sentence separately and store it in a
single document. Each document in our corpus
therefore contains a single line of text. We then
use the following functionalities of FaDA in our
experiment.

(i) Indexing: First, we index both the source-
language and the target-language documents,

(ii) Pseudo-query construction: Secondly, we
construct a pseudo-query6 from each source-
language document using the terms selection pro-
cedure as shown in Equation (1).

τ(t, d) = λ
tf(t, d)

len(d)
+ (1− λ) log( N

df(t)
) (1)

tf(t, d) refers to the term frequency of a term t in a
document d. len(d) denotes the length of d, and N
and df(t) represents the total number of documents
and the number of documents in which t occurs, re-
spectively. τ(t, d) denotes the term-selection score
which is a linear combination of the normalised
term frequency of a term t in d, and the inverse
document frequency (idf) of the term. The parame-
ter λ controls the relative importance of tf and idf .
We recommend the work of Lohar et al. (2016) for
more details on pseudo-query construction.

(iii) Word translation: We then translate all
the pseudo-query terms into the target-language
with an English–Icelandic dictionary and search
the translated query terms in the target-language
index,

(iv) Document retrieval: Finally, we retrieve
the top-n7 target-language documents that are se-
mantically equivalent to the source-language docu-
ments according to the IR-based retrieval.

4.2 Sentence Scoring
In the first step, the application of FaDA provides
10 (default value) target-language sentence candi-
dates for each source-language sentence. This is

6A pseudo-query is the modified version of the original
query to improve the ranking of document retrieval. The terms
in a pseudo-query are considered to be suitably representative
of a document

7Note that n = 10 is the default value of n in FaDA.
This means that the tool retrieves the top 10 candidate target-
language documents by default.
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done in both translation directions. We assume
that most truly parallel sentences would be found
in either direction and thus we create a subset of
the FaDA outputs that contains an intersection of
the candidate list for both directions. In order to
test this hypotheses, we also create a union of both
outputs when working with one of the test sets,
CompNews.

We score our candidate lists using two meth-
ods, LaBSE (Feng et al., 2020), and WAScore, a
word alignment-based score of our own device.
Feng et al. (2020) show that LaBSE gives good
results on the BUCC mining task when working
with high-resource languages. However, the accu-
racy is reduced when working with less-resourced
languages. In order to increase the accuracy of
our extraction method, we use it together with an-
other scoring mechanism that uses a very differ-
ent approach. WAScore is calculated by collecting
high precision word alignments using CombAlign
(Steingrímsson et al., 2021). CombAlign uses a
set of word alignment tools to perform the align-
ment and it has settings to aim for high precision
or high recall, taking advantage of the fact that
different alignment tools tend to make different
guesses unless the alignment probabilities are high.
We aim for high precision, thus removing most
alignments that are not very likely to be correct.
As this can be achieved by CombAlign, it makes
WAScore an effective mechanism for measuring
parallelism. CombAlign uses the following tools in
our experiment; (i) AWESoME (Dou and Neubig,
2021), (ii) eflomal (Östling and Tiedemann, 2016),
and (iii) fast_align (Dyer et al., 2013). WAScore is
calculated for each sentence using Equation (2):

(sa/s) ∗ (ta/t) (2)

where s is the number of words in the source sen-
tence and sa is the number of source words that
are aligned to some word in the target sentence, t
is the number of words in the target sentence, and
ta is the number of target words that are aligned to
some word in the source sentence.

With a set of highly likely alignments for each
sentence pair, the WAScore tends to favour sen-
tences of similar length as a much longer sentence
on one side usually has proportionately few align-
ment edges on that side which lowers the score
substantially. In contrast, if a shorter sentence on
one side has all tokens aligned to a longer sentence
on the other side, it can result in a reasonable score.

CompNews
Set Pr. Rc. F1

Intersection 0.95 0.80 0.87
Union 0.92 0.86 0.86

Table 1: Precision, Recall F1-measure and number of
extracted sentences for a union and intersection of the
FaDA output.

Such pairs are often partially parallel and using
the CompWiki test set (Section 5.2) we see that our
approach is suitable for extracting partially parallel
pairs as well as truly parallel ones.

Finally, we use logistic regression to classify
whether a sentence is parallel or not. All sen-
tences accepted by the classifier are labelled as
parallel sentences. The classifier is trained on the
CompTrain training set, detailed earlier in Section
3.3.

5 Evaluation

We evaluate our system by calculating precision,
recall and F1-scores using our (i) CompNews test
set and (ii) CompWiki test set; and (iii) by train-
ing, testing and calculating BLEU scores for NMT
systems, both with and without parallel sentences
extracted from all Wikipedia articles that are avail-
able in both English and Icelandic.

5.1 Testing on News Data
The first experiment is on the CompNews test data,
with the simple goal of extracting as many parallel
sentence pairs as can be found from the two lists
of 100K sentences in English and Icelandic. After
running FaDA we obtain 10 candidates for each of
the 100K sentences in each language. We create
two different candidate sets, one by taking an inter-
section of both directions, en→is and is→en, and
the other by taking a union of the two directions.

The intersection set contains 135K sentence
pairs and an inspection of the set revealed that it

CompWiki
Set Pr. Rc. F1

Parallel 0.39 0.90 0.54
+partially 0.84 0.33 0.47

Table 2: Precision, Recall and F1-measure as measured
when only looking at the sentence pairs marked as par-
allel in the test data, and when the partially parallel
have been added to the desired output.
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Wikipedia Training
Training Supplemental TestEEA TestEMA TestOS Combined
Data Sentences
ParIce50K 0 9.0 9.0 1.6 8.1
ParIce50K+WikiMatrix 313, 875 5.6 5.2 2.3 5.1
ParIce50K+Our approach 55, 744 13.9 15.9 7.0 13.7

Table 3: BLEU scores for MT systems trained on parallel data and sentences extracted from comparable corpora.

included 1, 693 of the total 2, 000 known parallel
sentence pairs in the data. The union set on the
other hand had a total of 1.86 million pairs and
1, 871 of the 2, 000 correct sentence pairs.

We calculate LaBSE scores and WAScore for
each of the candidates and apply our logistic re-
gression classifier on the scores. The F-scores for
both approaches were similar, but using the union
data set obtains higher recall while using the inter-
section data obtains better precision. Table 1 shows
the final results for the CompNews test set.

5.2 Testing on Wiki Data

The preparation of CompWiki was described in Sec-
tion 3.2. It contains texts from 15 Wikipedia article
pairs with a total of 10, 098 sentence pairs. We
score the sentences in the same way as discussed
before, using LaBSE and WAScore, and run our
classifier on the scores. 200 sentence pairs are
deemed parallel by our classifier. 77 of them are
marked parallel in the test set, 90 are marked par-
tially parallel and 33 are marked non-parallel. As
can be seen in Table 2, our method achieves high
recall on the sentences marked parallel, and 84%
of our systems output is either marked parallel or
partially parallel.

5.3 Parallel Sentence Extraction and MT
Training

We collect all texts from Wikipedia articles that
are linked and available both in English and Ice-
landic. The collection contains 412,442 Icelandic
sentences and 4,259,150 English sentences from
35,690 article pairs. In our setup, FaDA searches
for the parallel candidates in the paired documents.
The candidate pairs are then scored as before and
classified as parallel or non-parallel. Our system
yields 55,744 sentence pairs that are classified as
parallel sentences.

There have been previous efforts in extracting
parallel sentence from the Wikipedia corpus. One
of the largest such efforts is the WikiMatrix project

(Schwenk et al., 2021) that mined parallel sen-
tences in 1, 620 language pairs. When we compare
the en–is language pair in WikiMatrix to the output
of our system, the first obvious difference is that
the WikiMatrix dataset has a lot more data, 314K
sentence pairs compared to our 56K. To compare
the usefulness of the datasets, we trained an NMT
system using Marian MT (Junczys-Dowmunt et al.,
2018) in one direction, is→en, on 50K sentence
pairs randomly sampled from the ParIce corpus
and compared it to a system where WikiMatrix was
added as supplemental data, and to a system where
the results of our approach was used to supplement
the ParIce data, using the same hyperparameters.

We compare BLEU scores for the different se-
tups on a combination of three test sets (Barkarson
and Steingrímsson, 2020), as well as on each of
the test sets individually: TestEEA - containing
sentence pairs from European Economic Area reg-
ulatory documents; TestEMA - containing sentence
pairs from EMA drug descriptions; and TestOS -
containing sentence pairs from OpenSubtitles. Test-
EEA and TestEMA are extracted from rather spe-
cialized texts, and generally have long sentences,
while TestOS is from a rather open domain and
tends to have shorter sentences. The test sets are
used as filtered by Jónsson et al. (2020). All the
sentence pairs in the test sets have been manually
checked for correctness.

The fact that each of these three test sets are
domain specific and that our NMT systems are not
trained specifically on data from these domains,
together with how small the training data sets are,
results in low BLEU scores. But while the BLEU
scores are quite low, the effect of our approach is
evident.

We can see from Table 3 that when the Wiki-
Matrix data is added to the 50K parallel sentences,
the translation system trained on this augmented
data set produces significantly lower BLEU scores
as compared to the other two systems for the two
test sets (TestEEA and TestEMA). However, it ob-
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tains higher BLEU scores than the baseline system
(i.e, the system which is trained with only the 50K
data) for the third test set (TestOS). In contrast, the
system trained on the concatenation of the 50K
sentence pairs and the data obtained from our ap-
proach significantly improves the BLEU scores for
all the test sets, even though the number of sentence
pairs in our data is less than 20% of the number of
sentence pairs in WikiMatrix. This is most likely
due to noise in WikiMatrix, as it has been shown
that NMT is sensitive to noise in the training data
(Khayrallah and Koehn, 2018).

Upon manual inspection of our data we see that
our classifier accepted some sentence pairs even
though they have a very low WAScore. We there-
fore train a number of NMT models using our data
but apply thresholds for WAScore. As seen in Fig-
ure 2, the BLEU score rises when a low threshold is
set, and then fluctuates when the threshold is raised,
reaching the highest BLEU score for our combined
test sets at a WAScore threshold of around 0.14.
A WAScore of 0.14 means that if we have a pair
of sentences containing ten tokens each, three to-
kens in one sentences align with four tokens in the
other. If there are fewer alignments the sentence
pair will not be accepted. At this threshold level we
extract 34K parallel pairs to use for training. With
further threshold filtering, we lose more beneficial
data than detrimental data, and the BLEU score
starts slipping down. This is an indicator of the
usefulness of this scoring mechanism for MT train-

ing, showing that the score correlates with sentence
pair parallelism, raising the BLEU score when it is
used for filtering, and keeping it raised even though
supplemental training data is reduced.

All of our data sets, for training and testing are
available on Github, as well as a description of
MarianMT training setup8.

6 Conclusions and Future work

We have shown that our method, combining cross-
lingual information extraction, contextualized em-
beddings and word alignments, is efficient at find-
ing parallel segments in comparable corpora. Fur-
thermore we introduce WAScore, a metric of trans-
lational equivalence based on high-precision word
alignments, and show that as well as being a useful
part of a binary classifier, it can be used effectively
to filter out detrimental segments from parallel cor-
pora. Finally, we publish two new test sets for
extracting parallel sentences from comparable cor-
pora, an automatically generated English–Icelandic
lexicon with probability scores and a set of auto-
matically extracted parallel segments that we show
are useful for training MT systems.

When testing on the CompWiki test set we saw
that while our method is efficient in finding parallel
segments in comparable corpora, it also selects par-
tially parallel segments. Although these segments
seem to have information useful for training MT

8https://github.com/steinst/
bucc2021-en-is
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over the combined test sets.
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systems, it is difficult to know to what extent they
are useful and when they may become detrimental.
For this reason, we plan to study these kinds of data
further and investigate how they affect translation
quality of an NMT system trained on it. Based on
that, we want to explore more sophisticated ways
to segment or concatenate alignment candidates
in order to be able to build a data set that only
contains segment pairs that are useful for training
MT systems. There is previous work on parallel
fragment extraction using word alignments (Yeong
et al., 2019), and we will use their approach as a
baseline to proceed further.

While the combination of the two scores used to
measure the quality of the sentence pairs resulted
in a list of sentence pairs that we show are use-
ful for MT training, it still contains pairs that are
detrimental, as shown by the simple filtering based
on WAScore threshold. Other parallel sentence
pairs may also remain to be found in the Wikipedia
data. In order to improve our approach, more scores
could be added to our classifier. While we opted
to use raw LaBSE cosine similarity scores, shown
by (Feng et al., 2020) to be more accurate than
cosine similarity scores from other models, the
margin-based ratio score proposed by Artetxe and
Schwenk (2019a) has also been shown to be very
effective for this task. Other scores to consider
could include BLEU or ChrF (Popović, 2015), al-
though they need reasonably good MT systems to
be useful, margin-based cosine distance (Artetxe
and Schwenk, 2019a), or Mahalanobis distance
(Mahalanobis, 1936) as described in Littell et al.
(2018). Doing an ablation study on the scores could
help determine which are the most useful. Work-
ing with these scores, a comparison of applying
different classifiers while using the same scoring
mechanisms may be helpful. It is also to be noted
that we extracted only 10 target-language candi-
date pairs in the first step, which is the default
value used in FaDA as it gave optimal performance
in their work. It also has the benefit of reducing the
computational complexity in the next steps. How-
ever, we also plan to explore other higher values
of candidate extraction in future and to investigate
how it affects the overall system performance. Fi-
nally, we plan to conduct our experiments on other
language pairs.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, AK Raghavan,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee,
J. Mahalakshmi, Divyanshu Kakwani, Navneet Ku-
mar, Aswin Pradeep, Kumar Deepak, Vivek Ragha-
van, Anoop Kunchukuttan, Pratyush Kumar, and
M. Khapra. 2021. Samanantar: The Largest Pub-
licly Available Parallel Corpora Collection for 11 In-
dic Languages. ArXiv, abs/2104.05596.

Holger Schwenk. 2018. Filtering and Mining Paral-
lel Data in a Joint Multilingual Space. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 228–234, Melbourne, Australia.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021. Wiki-
Matrix: Mining 135M Parallel Sentences in 1620
Language Pairs from Wikipedia. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 1351–1361, Online.

Steinþór Steingrímsson, Sigrún Helgadóttir, Eiríkur
Rögnvaldsson, Starkaður Barkarson, and Jón Guð-
nason. 2018. Risamálheild: A Very Large Icelandic
Text Corpus. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), pages 4361–4366, Miyazaki,
Japan.

Steinþór Steingrímsson, Hrafn Loftsson, and Andy
Way. 2021. CombAlign: a Tool for Obtaining High-
Quality Word Alignments. In Proceedings of the
23rd Nordic Conference on Computational Linguis-
tics (NoDaLiDa), pages 64–73, Reykjavik, Iceland
(Online).

Sara Stymne, Christian Hardmeier, Jörg Tiedemann,
and Joakim Nivre. 2013. Tunable Distortion Limits
and Corpus Cleaning for SMT. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 225–231, Sofia, Bulgaria.

Brian Thompson and Philipp Koehn. 2019. Vecalign:
Improved Sentence Alignment in Linear Time and
Space. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1342–1348, Hong Kong, China.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT – Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 479–480, Lisboa, Portugal.

Þórdís Úlfarsdóttir. 2014. ISLEX — a Multilingual
Web Dictionary. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 2820–2825, Reyk-
javik, Iceland.

Krzysztof Wolk, Emilia Rejmund, and Krzysztof
Marasek. 2016. Multi-domain machine trans-
lation enhancements by parallel data extraction
from comparable corpora. In Ewa Gruszczyńska
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Abstract

It is well-established that the preferred mode
of communication of the deaf and hard of hear-
ing (DHH) community are Sign Languages
(SLs), but they are considered low resource
languages where natural language processing
technologies are of concern. In this paper we
study the problem of text to SL gloss Machine
Translation (MT) using Transformer-based ar-
chitectures. Despite the significant advances
of MT for spoken languages in the recent cou-
ple of decades, MT is in its infancy when it
comes to SLs. We enrich a Transformer-based
architecture aggregating syntactic information
extracted from a dependency parser to word-
embeddings. We test our model on a well-
known dataset showing that the syntax-aware
model obtains performance gains in terms of
MT evaluation metrics.

1 Introduction

Access to information is a human right and crossing
language barriers is essential for global information
exchange and unobstructed, fair communication.
However, we are still far from the goal of making
information accessible to all a reality. The World
Health Organisation (WHO) reports that there are
some 466 million people in the world today with
disabling hearing loss1; moreover, it is estimated
that this number will double by 2050. According to
the World Federation of the Deaf (WFD), over 70
million people are deaf and communicate primarily
via a sign language (SL).

It is well-established that the preferred mode of
communication of the deaf and hard of hearing
(DHH) community are SLs (Stoll et al., 2020), but
they are considered extremely low resource lan-
guages (Moryossef et al., 2021), and lag further

1https://www.who.int/
news-room/fact-sheets/detail/
deafness-and-hearing-loss

behind in terms of the provision of language tech-
nologies available to DHH people. 150 SLs have
been classified around the world (Eberhard et al.,
2021) while there may be upwards of 400 accord-
ing to SIL International2. Creating accessible-to-all
technological solutions may also mitigate the effect
of more variable reading literacy rate in the DHH
community (Berke et al., 2018). The written lan-
guage is usually the ambient spoken language in the
geographical area signers are found (e.g. English
in the British Sign Language area), and providing
resources in native SL could benefit the provision
and uptake of sign language technology.

Machine translation (MT) (Koehn, 2009) is a
core technique for reducing language barriers that
has advanced, and seen many breakthroughs since
it began in the 1950s (Johnson et al., 2017), to
reach quality levels comparable to humans (Hassan
et al., 2018). Despite the significant advances of
MT for spoken languages in the recent couple of
decades, MT is in its infancy when it comes to SLs.

The output of MT between spoken languages
tends to be text, but there are further considerations
for researchers doing Sign Language translation
(SLT). Full writing systems exist for SL (e.g. Ham-
NoSys (Hanke, 2004), SiGML (Zwitserlood et al.,
2004)), but are not always the output or used at all
in SLT. SL glosses are a lexeme-based representa-
tion of signs where classifier predicates, manual
and non-manual cues (Porta et al., 2014) are dis-
tilled into a lexical representation, usually in the
ambient spoken language. The articulators in SLs
include hand configuration and trajectory, facial
articulators including lip position and eyebrow con-
figuration, and spatial articulation including eye
gaze and body position (Mukushev et al., 2020)
- all used to convey meaning. Glosses, and the
Text2Gloss process, are an essential step in the MT

2https://www.sil.org/sign-languages
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pipeline between spoken and sign languages - even
though they are considered a flawed representation
which hinder the extraction of meaning by some
researchers (Yin and Read, 2020). Although some
current approaches to SL translation follow an end-
to-end paradigm, translating into glosses offers an
intermediate representation which could drive the
generation of the actual virtual signs (e.g. by an
avatar) (Almeida et al., 2015; López-Ludeña et al.,
2014). A growing number of researchers (Jantunen
et al., 2021) have been using innovative methods
to leverage the limited supply of SL gloss corpora
and resources for SL technology.

In spite of the impressive results achieved by
Neural Machine Translation (NMT) when massive
parallel data-sets are available for training using
just token level information, recent research (Ar-
mengol Estapé and Ruiz Costa-Jussà, 2021) shows
that morphological and syntactic information ex-
tracted from linguistic processors can be of help
for out-of-domain machine translation or rich mor-
phology languages.

In this work, we make transformer models for
NMT ‘syntax-aware’ - where syntactic informa-
tion embeddings are included as well as word em-
beddings in the encoder part of the model. The
rationale behind including syntactic embeddings
draws from the success of word embeddings im-
proving natural language processing tasks includ-
ing syntactic parsing itself (Socher et al., 2013),
and from context-sensitive embeddings pioneered
in transformer models (Vaswani et al., 2017; De-
vlin et al., 2019; Liu et al., 2020). We posit that
encoding syntactic information will in turn boost
the performance of Text2Gloss as we show with
our experimental results.

The rest of the paper is organised in the follow-
ing way: in the next section we briefly introduce
the project in the context of which this work is
being carried out. Then, in Section 3, we present
related work on SL translation and background on
NMT and in Section 4 we describe the NMT ar-
chitecture we use in our experiments. In Section 5
we describe the experimental methodology includ-
ing data and evaluation metrics while in Section 6
we present quantitative results. Section 7 analyses
the results while Section 8 closes the paper and
discusses further work which could expand this
avenue of research.

2 The SignON project

SignON3 is a Horizon 2020 project which aims to
develop a communication service that translates
between sign and spoken (in both text and audio
modalities) languages and caters for the commu-
nication needs between DHH and hearing individ-
uals (Saggion et al., 2021). Currently, human in-
terpreters are the main medium for sign-to-spoken,
spoken-to-sign and sign-to-sign language transla-
tion. The availability and cost of these profession-
als is often a limiting factor in communication be-
tween signers and non-signers. The SignON com-
munication service will translate between sign and
spoken languages, bridging language gaps when
professional interpretation is unavailable. A key
piece of this project is the server which will host
the translation engine, which imposes demanding
requirements in terms of latency and efficiency.

3 Related Work

The bottleneck to creating SL technology primarily
lies in the training data available, such as from ex-
isting corpora and lexica. Certain corpora may be
overly domain-specific (San-Segundo et al., 2010),
containing only sentence fragments or example
signs as part of a lexicon (Cabeza et al., 2016), have
little variation in individual signers or the framing
of the signer in 3D space (Nunnari et al., 2021),
or simply too small in size to be applied to large
neural models alone (Jantunen et al., 2021).

The next section describes current methods to
mitigate the data-scarcity problem, and state-of-
the-art models and studies with sign language gloss
data - including Text2Gloss, Gloss2Text, and ef-
forts towards end-to-end (E2E) SLT.

3.1 Transformer models for NMT

Transformer architecture has been successful in
covering a large amount of language pairs with
great accuracy in MT tasks, most notably in mod-
els such as BART (Lewis et al., 2020) and mBART
(Liu et al., 2020). mT5 (Xue et al., 2021) also per-
forms well with an even larger set of languages,
many of which are considered low-resource. These
models are also highly adaptable to other NLP tasks
by means of finetuning (Lewis et al., 2020). In addi-
tion, recent work has shown that transformer mod-
els including embeddings with linguistic informa-
tion in a low-resource language pair improve model

3https://signon-project.eu/
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Table 1: T2G production examples

Spoken Später breiten sich aber nebel oder
hochnebelfelder aus
(EN) Later, however, fog or high-fog
fields are widening

Gloss ABER IM-VERLAUF NEBEL HOCH
NEBEL IX4

(EN) BUT IN-COURSE FOG HIGH
FOG IX

performance by 1.2 BLEU score (Armengol Estapé
and Ruiz Costa-Jussà, 2021) over a baseline - and
when using arbitrary features derived from neural
models (Sennrich and Haddow, 2016). Their ‘Fac-
tored Transformer’ model inserts embeddings for
lemmas, part-of-speech tags, lexical dependencies,
and morphological features in the encoder of their
attentional encoder-decoder architecture.

In this work, a syntax-aware transformer model
is proposed for Text2Gloss translation - one step
in the SLT pipeline. Although current steps to-
wards E2E SLT using transformer-based NMT sys-
tems look promising (Nunnari et al., 2021), using
glosses as an intermediate representation still im-
prove performance even in these state-of-the-art
systems (Camgoz et al., 2020; Yin and Read, 2020).
Our model exploits lexical dependency information
to assist in learning the intrinsic grammatical rules
that involves translating from text to glosses. Un-
like other works, we consider model simplicity a
key feature to fulfil efficiency requirements in the
SignON Project. Thus, we applied an easy aggre-
gation scheme to inject syntactic information to the
model and chose a relatively simple neural architec-
ture. Using only lexical dependency features also
allows us to examine the impact of this individual
linguistic feature on model performance.

4 System Overview: A Syntax-aware
Transformer for Text2Gloss

Our model is an Encoder-Decoder architecture
which consists of augmenting the input embeddings
to the Encoder via including lexical dependency
information. As can be noted from Table 1, gloss
production from spoken text is essentially based
on word permutations, stemming and deletions.
In many cases, those transformations depend on
the syntactical functions of word, for example de-
terminers are always removed to produce glosses.
Consequently, we believe that word dependency
tags might assist in modelling syntactic rules which
are intrinsic in gloss production.

Importantly, our Text2Gloss model has been de-
veloped considering the efficiency requirements
demanded for the SignON Project. Therefore, the
size of the architecture has been selected to produce
accurate but also lightweight translations. Figure
1 shows the different modules composing our sys-
tem.

The neural architecture employed is based on
multi-attention layers (Vaswani et al., 2017), which
has produced excellent results when modelling
long input sequences. More specifically, the En-
coder and Decoder are composed by three multi-
attention layers with four attention heads. The in-
ternal dimensions for the fully connected network
are set to 1024 and the output units to 512. The
Encoder transforms inputs to latent vectors, whilst
the Decoder produces word probabilities from the
encoded latent representations.

Our system augments the discriminative power
of the embeddings inputted to the Encoder by ag-
gregating syntactic information to word embed-
dings. Unlike (Armengol Estapé and Ruiz Costa-
Jussà, 2021) (which added encoders to manage
injected features), we integrate an additional table
that contains the vector embeddings for the syn-
tactic tags. The word and syntax embeddings are
sum up producing an aggregated embedding that is
input to the Encoder. Both tables were set to have
a vector length of 512.

To accommodate input text to the neural model,
we process it employing subword tokenisation and
dependency tags are produced using the model
de core news sm available in the spaCy5 library.
The dependency tags we incorporate are from the
TIGER dependency bank (Albert et al., 2003), in-
cluded in the German model, and designed specifi-
cally to categorise words in German (Brants et al.,
2004). An example of these tags with a German
sentence is shown in Figure 2. Then, word and
syntax tokens were aligned with the correspond-
ing words as shown in Figure 1. For the tokeniser,
a Sentence Piece model (Kudo and Richardson,
2018) was trained using only the training corpus
with a vocabulary size of 3000, keeping some to-
kens for control.

Regarding the training, Adam optimiser with a
learning rate of 10−5 and a batch size of 64 was
applied to optimise Cross Categorical Entropy for
500 epochs. Text generation was carried out using

4IX gloss indicates that the signer needs to point to some-
thing or someone.

5https://spacy.io/
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Figure 1: Syntax-Aware Text2Gloss model

Figure 2: Lexical dependency tree diagram of the sentence “On the weekend it gets a little warmer”. Key to tags:
ep = expletive es, mo = modifier, nk = noun kernel element, pd = predicate

Beam Search Decoding with 5 beams.

5 Methods & Materials

In this section, we present the methods and mate-
rials used in this research. Firstly, we introduce
the dataset used and performance metrics and other
implementation details are described.

5.1 Dataset: RWTH-PHOENIX-2014-T

The parallel corpus selected for our experiments
is the RWTH-PHOENIX-2014-T (Camgoz et al.,
2018). It is publicly available 6, and is widely-
adopted for SLT research. This dataset contains
images, and transcriptions in German text and Ger-
man Sign Language (DGS) glosses of weather fore-
casting news from a public TV station. The large
vocabulary (1,066 different signs) and number of
signers (nine) make this dataset promising for SLT

6https://www-i6.informatik.rwth-aachen.
de/˜koller/RWTH-PHOENIX-2014-T/

Table 2: Data partitions Information

#Samples #Words #Glosses
Train 7096 2887 1085

Dev 519 951 393

Test 642 1001 411

research, in an albeit limited semantic domain. In
this study, we only consider the text and gloss tran-
scriptions.

The authors included development and test par-
titions in their dataset with unseen patterns in the
training data. We used the development subset to
control overfitting and performances are reported
on the test subset. The information about the differ-
ent subsets included in RWTH-PHOENIX-2014-T
is presented in Table 2.
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5.2 Performance Metrics

In order to fairly evaluate our approach, we have
selected performance metrics that are extensively
used in NMT. Consequently, the metrics used are
introduced below:

Translation Edit Rate (TER): TER (Snover
et al., 2006) measures the quality of system transla-
tions by counting the number of text edits needed
to transform the produced test into the reference.

SacreBLEU: SacreBLEU (Post, 2018) is a very
popular metric for NMT. It facilitates the imple-
mentation of BLEU (Papineni et al., 2002) and
standardises input schemes to the metric by means
of tokenisation and normalisation. This in turn
makes comparing scores from other works more di-
rectly comparable and straightforward. BLEU aims
to correlate a ‘human-level’ judgement of quality
by using a reference translation as part of its calcu-
lation.

ROUGE-L F1: ROUGE-L (Lin, 2004) was pri-
marily conceived for evaluating text summarisation
models, however it has become popular for other
NLP tasks. It measures the longest sequence in
common between the given reference and model
output sentence, without pre-defining an N-Gram
length. We report the F1 score to measure model
accuracy, as also seen in other works on this dataset
(Camgoz et al., 2018; Yin and Read, 2020).

METEOR: METEOR (Banerjee and Lavie,
2005) is a metric for MT evaluation based on uni-
gram matching. This metric is based on unigram-
precision and recall to consider word alignments,
with recall having more influence on the score. It is
considered to have a higher correlation with human
judgement than BLEU.

Generation time: Finally, the generation time
is reported to assess our system in terms of com-
putational efficiency. It is reported in seconds for
each model.

5.3 Implementation Details

The experiments reported here were carried out us-
ing Tensorflow as Deep Learning framework. The
Embedding Tables, Encoder and Decoder imple-
mentations were inherited from the HuggingFace-
transformers library 7 and spaCy was employed to
produce word-dependency features. Finally, NLTK

7https://huggingface.co/transformers/

and other third-party code8, 9, 10 was used to com-
pute the performance metrics adopted here. We
make our code publicly available at GitHub11.

6 Results

Here, we present the results from our experiment.
As the objective of this research is evaluating
the benefits of injecting syntactic information for
Text2Gloss translation, we compare two models
with the same architecture: One including, and
one not including lexical dependency information.
Those models are denoted as Syntax and No-Syntax
respectively in this and subsequent sections.

6.1 Performance vs Epochs

Figure 3 presents the evolution of the performance
metrics after each 5 training epochs while the mod-
els are being trained. It is apparent that including
the syntactic information brings notable benefits for
the most of the metrics adopted, with the exception
of METEOR.

Focusing on sacreBLEU score, the Syntax model
produces substantially better translations after 80
training epochs. After this point, the models con-
verge and the difference in the sacreBLEU score be-
tween the models becomes more evident. Namely,
the greatest difference between both models hap-
pens at epoch 165, when Syntax model produces a
sacreBLEU 5.7 points higher than No-Syntax.

As for TER, the differences between curves are
more remarkable. Syntax model produces TER
scores notably better than the No-syntax, the score
becomes stable after 95 epochs and tends to reduce
its oscillations. At this point Syntax model out-
performs the No-syntax model in around 0.15 for
TER.

According to the ROUGE-L (F1-score) obtained,
we also observe a slight improvement of Syntax
model over No-syntax, although this increase is not
clear until epoch 150. In this case the differences
are not as clear as the metrics already observed, but
it implies enhancements higher that 0.01 for this
metric.

The METEOR score is the only metric that does
not improve when syntactic information is included.
In this regard, the No-syntax model produced better

8https://github.com/BramVanroy/pyter
9https://github.com/mjpost/sacrebleu

10https://github.com/google/seq2seq/
blob/master/seq2seq/metrics/rouge.py

11https://github.com/LaSTUS-TALN-UPF/
Syntax-Aware-Transformer-Text2Gloss

22



Figure 3: Performance Metrics evolution during training.

translations in terms of this score for all the whole
training phase. When the models converge after
100 epochs, the greatest difference between models
happens at epoch 350 when No-syntax overcomes
the Syntax model by 0.029 points. It is also re-
markable that the differences between models are
not higher than 0.015 for most of the points after
convergence. The reason why No-Syntax produces
a slightly better METEOR than Syntax might be
the fact that METEOR benefits unigram recall and
the No-Syntax model tends to repeat words, as we
show in next Section. Nonetheless, we will further
analyse this observation in future research.

Finally, as efficiency is one of the goals of our
project, we turn to generation time. From the Gen-
eration Time curves shown in Figure 3, we can
observe that injecting syntactic information does
not lead to marked generation time increases. We
include the extra time necessary to produce the lex-
ical dependency tags. In the case of the training
subset, the tagging process took around 20.9 sec-
onds, this processing time constitutes an increase
of 2.95 milliseconds per sentence compared to not
using syntax tags. Regarding the test subset, the tag
process lasted 3.23 seconds in total, which is not
a marked increase considering the total generation

times and that Syntax is until 60 seconds faster than
No-syntax (this is the case for 155 to 180 epochs).
The cause behind the great differences in gener-
ation times might be that Beam Search decoding
produces more precise hypotheses and needs less
decoding iterations when syntax tags are employed.

6.2 Best-performing points

From the previous analysis, we have identified the
points in which the neural models converge and
where high variation is not present in the metric
curves. In this section, we focused on the points in
which the metrics reach their maximum values after
convergence point, which is located around epoch
100. Table 3 shows the best-performing values for
all metrics.

From Table 3, we observe that the Syntax model
reaches its maximum values with less epochs than
No-syntax. This observation indicates that syntac-
tic information also might benefit the neural model
learning leading to shorter training times. Another
observation is that the most of metrics are improved
by injecting syntactic information, with the excep-
tion of METEOR.
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Table 3: Best scores for the models. This table contains the maximum values for all metrics after convergence. The
values between parenthesis denotes the epoch in which those values are produced.

SacreBLEU↑ TER↓ ROUGE-L (F1-score)↑ METEOR↑
Syntax 53.52 (400) 0.722 (330) 0.467 (115) 0.407 (190)

No-syntax 51.06 (485) 0.814 (485) 0.461 (140) 0.424 (210)

Diff 2.46 (85) -0.092 (155) 0.006 (35) -0.017 (-20)

7 Discussion

In the previous section, we have described quanti-
tatively the results produced from our selected met-
rics. Additionally, this section presents a qualitative
analysis of the benefits produced for Text2Gloss
translation including lexical information in the
transformer model. Table 4 contains two examples
on how both models produce glosses at different
training points.

As can be noted in both examples, the No-syntax
model needs more epochs to produce coherent
translations and tends to repeat some patterns lead-
ing to corrupted outputs in some cases. This ef-
fect is quite remarkable in the second example, for
which No-syntax retains repeating patterns after
100 epochs while Syntax produces more coherent
translations. This fact might lead to the No-Syntax
model obtaining a slightly higher METEOR than
Syntax (see 6.1), while Syntax substantially outper-
formed its competitor in terms of Sacrebleu.

The fast-learning capacity exhibited by the Syn-
tax model could be advantageous for our project,
since domain-adaptation is an expected feature for
the system under development. Also, we have
shown that injecting syntactic information to the en-
coder enables more accurate models without whole-
sale architecture modifications. The feature injec-
tion could be extended to other lexical features,
such as Part-of-Speech tags, via integrating a new
embedding table.

8 Conclusion

In this paper we present a syntax-aware transformer
for Text2Gloss. To make the model syntax-aware
we inject word dependency tags to augment the
discriminative power of embeddings inputted to
Encoder. The fashion in which we expand trans-
formers to include lexical dependency features in-
volves minor modifications in the neural architec-
ture leading to negligible impact on computational
complexity of the model.

As the results of this research show, inject-
ing syntax dependencies can boost Text2Gloss
model performances. Namely, our syntax-aware
model overcame traditional transformers in terms
of BLEU, TER and ROUGE-L F1. Meanwhile, the
METEOR metric was slightly worse for our model.
Furthermore, we have shown that syntax informa-
tion can also assist in model learning leading to a
faster modelling of complex patterns.

This preliminary research constitutes a promis-
ing starting point to reach the objectives expected
for the SignON Project, in which it is planned to
deployed resource-hungry translation models in
cloud-based computing servers.

Further work could compare the impact of other
individual, or combinations of, other linguistic fea-
tures such as part of speech tags which are used
in other studies using syntactic tagging for NMT
(Sennrich and Haddow, 2016; Armengol Estapé
and Ruiz Costa-Jussà, 2021). It may also use more
widely-used lexical dependency tags such as the
Universal Dependencies treebank (Borges Völker
et al., 2019). Moreover, we are currently exploring
data augmentation techniques to expand the scarce
availability of SL data.
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Example 1
Source und nun die wettervorhersage für morgen samstag den zwölften september

(EN) And now the weather forecast for tomorrow Saturday the twelfth of September
Target JETZT WETTER MORGEN SAMSTAG ZWOELF SEPTEMBER

(EN) NOW WEATHER TOMORROW SATURDAY TWELVE SEPTEMBER
Syntax

5 JETZT WETTER WETTER
(EN) NOW WEATHER WEATHER

50 JETZT WETTER WIE-AUSSEHEN MORGEN SAMSTAG FUENFTE MAI
(EN) NOW WEATHER LOOK TOMORROW SATURDAY FIFTH MAY

100 JETZT WETTER WIE-AUSSEHEN MORGEN SAMSTAG ZWOELF SEPTEMBER
(EN) NOW WEATHER LOOK TOMORROW SATURDAY TWELVE SEPTEMBER

150 JETZT WETTER WIE-AUSSEHEN MORGEN SAMSTAG ZWOELF SEPTEMBER
(EN) NOW WEATHER LOOK TOMORROW SATURDAY TWELVE SEPTEMBER
No-syntax

5 JETZT WETTER WIE WIE WIE-AUSSE...AUSSEAUSS
(EN) NOW WEATHER HOW HOW AUSSE...AUSSEAUSS

50 JETZT WETTER WIE-AUSSEHEN MORGEN SAMSTAG FUENFZEHN SEPTEMBER
(EN) NOW WEATHER LOOK TOMORROW SATURDAY FIFTEEN SEPTEMBER

100 JETZT MORGEN WETTER WIE-AUSSEHEN SAMSTAG ZWOELF SEPTEMBER
(EN) NOW TOMORROW WEATHER LOOK SATURDAY TWELVE SEPTEMBER

150 JETZT MORGEN WETTER WIE-AUSSEHEN SAMSTAG ZWOELF SEPTEMBER
(EN) NOW TOMORROW WEATHER LOOK SATURDAY TWELVE SEPTEMBER

Example 2
Source vom nordmeer zieht ein kräftiges tief heran und bringt uns ab den morgenstunden heftige schneefälle

zum teil auch gefrierenden regen
(EN) From the North Sea, a strong deep pulls up and brings us violent snowfalls from the morning
hours, sometimes freezing rain

Target KRAEFTIG AB MORGEN FRUEH MEISTENS SCHNEE SCHNEIEN KALT REGEN
(EN) SKIMPY FROM TOMORROW EARLY MOSTLY SNOW SNOW COLD RAIN
Syntax

5 KOMMEN REGION KOMMEN
(EN) COME REGION COME

50 TIEF KOMMEN MORGEN KOMMEN REGEN KOMMEN REGEN KOMMEN
(EN) DEEP COME TOMORROW COME RAIN COME RAIN COME

100 TIEF KOMMEN REGEN KOMMEN MITTE BERG KOMMEN
(EN) NOW WEATHER LOOK TOMORROW SATURDAY TWELVE SEPTEMBER

150 JETZT IN-KOMMEND TIEF KOMMEN REGEN KOMMEN MILD
(EN) NOW IN-COMING DEEP COME RAIN COME MILD
No-syntax

5 REGION KOMMEN REGION KOMMEN REGEN
(EN) REGION COME REGION COME RAIN

50 MORGEN KOMMEN TIEF KOMMEN REGEN KOMMEN REGEN KOMMEN REGEN KOMMEN
REGEN KOMMEN
(EN) TOMORROW COME DEEP COME RAIN COME RAIN COME RAIN COME RAIN COME

100 TMORGEN REGEN TIEF KOMMEN REGION KOMMEN REGEN KOENNEN SCHNEE REGEN
GEFRIEREN GLATT GEFAHR GLATT GEFAHR
(EN) TOMORROW RAIN DEEP COME REGION COME RAIN CAN SNOW RAIN FREEZE
SMOOTH DANGER SMOOTH DANGER

150 MORGEN MEISTENS SCHNEE REGEN GLATT REGION KOMMEN REGEN GEFAHR GLATT
REGEN GEFAHR GLATT REGEN GEFAHR
(EN) TOMORROW MOSTLY SNOW RAIN SMOOTH REGION COME RAIN DANGER SMOOTH
RAIN DANGER SMOOTH RAIN DANGER
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Jordi Armengol Estapé and Marta Ruiz Costa-Jussà.
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Abstract

We propose a novel approach for rapid pro-
totyping of named entity recognisers through
the development of semi-automatically anno-
tated data sets. We demonstrate the proposed
pipeline on two under-resourced agglutinating
languages: the Dravidian language Malayalam
and the Bantu language isiZulu. Our approach
is weakly supervised and bootstraps training
data from Wikipedia and Google Knowledge
Graph. Moreover, our approach is relatively
language independent and can consequently
be ported quickly (and hence cost-effectively)
from one language to another, requiring only
minor language-specific tailoring.

1 Introduction

Named entity recognition (NER) is the task of iden-
tifying proper names and assigning them to one of
several named entity (NE) classes, such as PERSON

(PER), LOCATION (LOC) or ORGANISATION (ORG),
which is a crucial processing step for many NLP
tasks, but also for many applications in the digital
humanities where information about the entities
involved (e.g. names of emperors or archaelogical
sites) is often particularly important. While state-
of-the-art systems obtain good results for standard
NE inventories and general purpose English (Chiu
and Nichols, 2016), annotated data sets for the de-
velopment of named entity taggers are not readily
available for most of the world’s languages.1

In this paper, we focus on semi-automatically
generating annotated data and bootstrapping NE
recognisers for under-resourced languages (cf.
Krauwer (2003)), i.e., languages for which manu-
ally annotated data as well as pre-processing tools,

1Even for English, NER is not necessarily a solved prob-
lem for specialised domains, which often require specific en-
tity class inventories (Brandsen et al., 2020).

such as part-of-speech taggers, are typically hard
to come by. To this end, we propose a weakly su-
pervised approach that bootstraps the training set
from Wikipedia (in the target language) and Google
knowledge graph (in English), requiring no manual
annotation and no pre-processing apart from the
language-specific tweaking of our matching heuris-
tics. This approach is therefore in principle suitable
for any language for which Wikipedia articles ex-
ist.2 Because the manual effort is limited, systems
can be quickly ported to new languages, while still
obtaining reasonable results.

We demonstrate this by developing the system
for Malayalam and then porting it to isiZulu. These
two languages were chosen because they are agglu-
tinating and morphologically complex, making the
task considerably more challenging than for many
Indo-European languages where NEs are only min-
imally inflected. While our target languages are
both agglutinating, they are also structurally quite
different in other respects and exhibit different de-
grees of “under-resourcing”, with noticeably fewer
resources being available for isiZulu (see Sect. 3)

2 Related Work

Wikipedia has been employed for NER in three
main ways: In a monolingual setting, early stud-
ies used it to extract Gazetteer lists which were
then used as features in (typically supervised) NER
systems. One of the first studies taking this ap-
proach was by Toral and Muñoz (2006), who ex-
tract Gazetteers by matching the first sentence of a
Wikipedia article heuristically against the WordNet

2As of July 2021 this applies to 323 languages. Arguably
this still leaves out a large amount of the world’s 6000+
languages but it covers many languages which have a fair
amount of speakers but are still under-resourced. Furthermore,
Wikipedia is constantly growing both in terms of content for a
given language and in terms of the languages it covers.
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(Fellbaum, 1998) noun hierarchy to identify the
category of the entity described. This was followed
by a number of similar approaches (Kazama and
Torisawa, 2007; Ratinov and Roth, 2009; Radford
et al., 2015).

Going one step further, some researchers used
Wikipedia not only for extracting Gazetteers but
also for bootstrapping annotated training data. For
example, Nothman et al. (2008) exploit hyperlinks
to annotate the sentences containing them with cat-
egory information, which is extracted from the arti-
cle the hyperlink links to. As not all mentions of an
entity in an article are hyperlinked, they extend the
data set by finding verbatim repetitions of the hy-
perlink’s anchor text in the article. Finally, they use
the data to train an NE tagger. The system requires
hand-labelling of seed data that maps information
extracted from articles to NE classes.

Wikipedia has also been used in a multilingual
setting to obtain NE taggers for languages other
than English, e.g. by exploiting cross-lingual links
between articles (Richman and Schone, 2008; Bha-
gavatula et al., 2012; Pan et al., 2017). This ap-
proach has also been applied to under-resourced
languages (Littell et al., 2016). Ni and Florian
(2016) go one step further and construct entity type
mappings for the English Wikipedia before project-
ing across Wikipedia language links.

Bouamor et al. (Bouamor et al., 2013) propose
employing Wikipedia as a resource for creating
domain-specific lexicons for machine-translation.
They demonstrate their approach for English-
French and English-Romanian translation tasks.
Mayhew et al. (Mayhew et al., 2017) combine
lexicon-based translation of training data from a
source to a target language with features generated
from Wikipedia and show that this approach can
be applied to under-resourced languages.

Studies that address NER for our target lan-
guages are very limited. To our knowledge the
first NER system for Malayalam was proposed by
Bindu and Idicula (2011), who use supervised ma-
chine learning utilising a variety of features comple-
mented with a finite-state automaton to deal with
complex words. Jayan et al. (2013) propose a hy-
brid approach that combines rules with supervised
machine learning. Devi et al. (2016) tackle named
entity extraction from social media and combine
supervised machine learning (SVMs) with skip-
gram features. Shruthi and Pranav (2016) propose

another supervised approach based on the TnT tag-
ger (Brants, 2002) and maximum entropy models.
A neural network approach is proposed by Ajees
and Idicula (2018) who use word embeddings of
context words and morphs of the target word as
features. A similar system but with a different
neural architecture (RNN-LSTM) has also been
proposed (Sreeja and Pillai, 2020). To our knowl-
edge, the only NER system for isiZulu was pro-
posed by Eiselen (2016), who used linear-chain
Conditional Random Fields (CRFs) for the classifi-
cation of the named entities. The features included
gazetteer lists and graphemic information (capital-
ization, punctuation, numerals).

3 The Target Languages: Malayalam
and isiZulu

We test our system on two agglutinating languages:
Malayalam and isiZulu. We hypothesise that in-
flection and agglutination will make the task par-
ticularly challenging, as one token can correspond
to several linguistic words (see Sec. 3.1 and 3.2).
However, Malayalam and isiZulu also differ in sev-
eral aspects: They use different writing systems
(Brahmic vs. Latin) and while the former tends to
make extensive use of suffixes the latter tends to
favour prefixes to encode grammatical information.
From a practical perspective, while both languages
are under-resourced, isiZulu is so to a greater ex-
tent, in particular its Wikipedia version is more than
an order of magnitude smaller (see Sec. 4). We thus
believe that these two languages pose sufficiently
heterogeneous use cases.

3.1 Malayalam

Malayalam is the official language of the Indian
state of Kerala. It is a Dravidian language and
shares its roots with other south Indian languages
such as Tamil and Telegu. Malayalam is spoken by
45 million people, mainly in Kerala, Lakshadeep
and Puducherry. Like most Dravidian languages,
Malayalam has a Subject-Object-Verb canonical
order. It is a heavily agglutinating language. Finite
verbs in Malayalam are inflected based on tense
and mood, and are invariant to gender or number.
Inflection is usually carried out through suffixing.
A noun in Malayalam can be suffixed in at least 7
different ways according to the case and grammati-
cal category employed.
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For example, “Kochi” (tIn»o) is a place in Ker-
ala. tIn»obo² means “inside/in Kochi”. tIn-

»obo²\oÁqw means from Kochi and tIn»obqtS

means of Kochi. The word can be be inflected in
various other ways as well. An example of suffix-
ing within a sentence is depicted in (1).

(1) i\qan°
Hanuman

hpX
Seetha

+
+
tb
accusative

InWqen°
to see

d¹
Lanka

+
+
boud·m
to

u]nbo
go

‘Hanuman went to Lanka to see Seetha’

Agglutination is optional in Malayalam. There-
fore, a word has the option of merging with an-
other consecutive word, producing a new word in
the process. For example, tIn»obo²BbocqÁq

(tIn»obo²: in Kochi, BbocqÁq: was) translates
to was in Kochi. The two words can be optionally
combined into a new token: tIn»obodnbocqÁq

(was in Kochi). Grammatically speaking, the split
version and the agglutinated version can be used
interchangeably in a sentence. This increases the
complexity of token matching and dictionary gener-
ation significantly. Furthermore, unlike languages
written in Latin script, Malayalam does not distin-
guish between upper and lower case in its writing
system, hence casing cannot be used as a cue for
named entity recognition.

Although it is an under-resourced language, the
presence of Malayalam in the form of articles and
data repositories on the internet has been growing
steadily over the years. It has featured in a lim-
ited number of NLP tasks, including morphologi-
cal analysis (Bhavukam et al., 2018), POS tagging
(Akhil et al., 2020) and NER (Ajees and Idicula,
2018). However, many studies use small locally
generated data sets (Nambiar et al., 2019) or do-
main specific data sets (Kumar et al., 2019), (Devi
et al., 2016), which usually are not freely available.

3.2 IsiZulu

IsiZulu is the language of the Zulu people in South-
ern Africa. It is spoken by approximately 10.6
Million people (Taljard and Bosch, 2006), mainly
in the eastern part of South Africa and Mozam-
bique. IsiZulu is an agglutinating, conjunctively-
written language and belongs to the Bantu lan-
guages (Nguni sub-branch) (Taljard and Bosch,
2006). As is characteristic for Bantu languages,
isiZulu uses noun classes, e.g. dedicated classes
for nouns describing humans in singular or plural.

Certain natural language processing tasks can be
very challenging or almost infeasible to solve for
languages such as isiZulu. For instance, due to the
nature of isiZulu concords, prefixes and infixes3,
sentences might consist of ambiguous words, as in
Example (2). Another characteristic that isiZulu
shares with other conjunctive languages is the use
of capitalization inside a word, which can be an
indicator of a named entity, e.g. eGoli – in/from Jo-
hannesburg, as in (3). Cultural naming conventions
are another challenge for NER (Eiselen, 2016). For
example, Nkosi means king, lord or chief and can
be both first- or lastname, as for the South African
rugby players S’busiso Nkosi and Nkosi Nofuma.

(2) Aba+
CLASS-2-NOUN-PREFIX-PL.

fundi
learn

a+
NEG

ba+
SUBJ-CONDORD

fund+
learn

i.
NEG

‘The students are not learning.’

(3) Umfo+
brother

wethu
1ST-PERS-POSS

u+
SUBJ.-CONCORD

hlala
stay

e+
LOC

Goli.
Johannesburg

‘My brother stays in Johannesburg.’

While isiZulu is not an endangered language4,
there is a lack of large digital textual resources,
such as newspaper archives, and consequently also
of NLP tools. The South African Centre for Digi-
tal Language Resources (SADiLaR) is one of the
main drivers of language development in South
Africa. Besides their teaching and knowledge shar-
ing efforts, SADiLaR also collects resources for the
South African languages and makes them available
through their website5. The SADiLaR repository
currenty lists 49 language resources, tools and cor-
pora for isiZulu.

4 Data Sets and Resources

For bootstrapping training data, we utilise the
Malayalam and isiZulu Wikipedias. The former
is significantly larger (65,000 vs. 2,701 articles as
of June 2020) and therefore also gives rise to a
larger training set. In order to find appropriate
named entity tags for Wikipedia articles (see Sect.
5.2) we employ the Google Knowledge Graph

3https://en.wiktionary.org/wiki/
Category:Zulu_prefixes

4https://glottolog.org/resource/
languoid/id/zulu1248

5https://www.sadilar.org/index.php/en/
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(GKG) (Singhal, 2012). We test our system on
two external data sets for Malayalam (ARNEKT
and CUSAT) and one for isiZulu (NCHLT II) as
well as part of our bootstrapped data:

ARNEKT IECSIL FIRE 2018 NER Dataset
This corpus was compiled from the abstracts and
info-box properties from DBpedia for the (IECSIL)
shared task (Hullathy Balakrishnan et al., 2018).
The info-box features are used to annotate long ab-
stracts. Meta tags are translated into English using
Google translator. The data set consists of 838,333
tokens overall: 59,422 PER, 29,371 LOC, and 4,841
ORG. All other tokens are labelled OTHER.

CUSAT NER Dataset This is a manually an-
notated NER data set developed by CUSAT.6 It
is based on the CUSAT POS tagged data set for
Malayalam (Ajees and Idicula, 2018). About
200,000 words from “internet texts” were manually
annotated. The POS tags were ignored and the data
was cleaned to remove special characters. The data
set consists of 190,265 tokens overall, with 1,864
PER, 1,035 LOC, and 496 ORG entities. It is thus
considerably smaller than the ARNEKT data set.

NCHLT II Dataset This isiZulu data set consists
of South African governmental texts, which are
manually annotated with named entities (Eiselen,
2016), containing 5,024 PER, 3,872 LOC, and 5,039
ORG, 1,8224 MISC (i.e. other entity classes), and
169,393 OUT (non-entities) tokens. For evaluation,
we merge the latter two classes to OTHER.

WikiML and WikiZu Apart from ARNEKT,
the above data sets come from other domains as our
training data (Wikipedia). Hence, testing on them
can be seen as an out-of-domain lower bound eval-
uation of our system. For comparison, we therefore
also test on a 10% portion of our Wikipedia data
sets (see Sect. 5). This constitutes an upper bound
as these data sets are from the same domain as
the training data but are labelled automatically in
a fashion identical to labelling the training data,
which might lead to overly optimistic results.

5 Bootstrapping the Training Data

As our focus is on under-resourced languages,
we do not assume that a manually labelled train-
ing set is available. Instead we bootstrap from

6https://www.cusat.ac.in/

Wikipedia and GKG. Utilising Wikipedia has a
number of advantages: First, as it is community-
driven, many under-resourced languages have a
version of Wikipedia. Second, Wikipedia articles
cover a wide range of subjects and often refer
to named entities. Third, Wikipedia has a num-
ber of features that help with bootstrapping entity
labels (see Sect. 2). Finally, it has been shown
that additional training data bootstrapped from
Wikipedia can also improve the performance of
taggers trained on other sources, especially if they
are applied out-of-domain (Nothman et al., 2009).

We employ a 4-step pipeline to bootstrap NE la-
belled data (Fig. 1): First, we extract a list of titles
from Wikipedia dumps in the target language. Sec-
ond, we use the Wikipedia language links to look
up their English counterparts. Third, we employ the
GKG to extract candidates for named entity tags.
Finally, we use the title list to annotate Wikipedia
articles. The distribution of the different NE tags
for both data sets is shown in Table 1.

NE Tag Malayalam isiZulu

Other 21012137 138986
Place 723259 5916
Person 444260 2748
Organization 179022 700
Total 22358678 148350

Table 1: NE token distribution, compiled data sets

5.1 Creation of the Title Lists

We compile a list of all article titles from the
Wikipedia dump of the target language7 and pre-
process it by removing all entries that do not con-
tain at least one character in the target language.
This removes titles entirely composed of numbers,
special characters and characters from other lan-
guages. Duplicate titles are also removed. The title
list includes titles which share the primary token,
but contain descriptors in brackets to distinguish
them, for example DBobn±»: Unniyarcha and D-

Bobn±» (Nd»o}Xw): Unniyarcha (Film), where
the descriptor helps distinguish the person from the
movie. Descriptors are preserved, because they are
vital when annotating the title with an NE tag.

7For Malayalam, we used a Wikipedia dump from July
2020, for isiZulu from January 2021.
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Figure 1: Schematic overview of the data set generation process

5.2 Labeling Titles with NE Tags

In order to assign titles their respective NE tags, we
query each title in the title list through the GKG,
which associates the search result with a tag sim-
ilar to entity tags used in NER systems. For the
purpose of this study, the tags have been limited to
PER, LOC and ORG, since they are the most widely
employed entity types. Entities that do not fall into
these categories are labelled OTHER. As the GKG
accepts only English queries, we need to translate
(and transliterate for Malayalam) titles from the
target languages. We exploit the multilingualism
in Wikipedia to map titles from the target language
to their respective counterparts in English.

The GKG makes use of different sources when
producing tags and will generate a ranked list of
(possibly different) tags for each query. We con-
sider only the top three of these. If one of the three
named entity tags appears in this list, it is assigned
to the respective title, with priority being given to
the higher ranking source. If the tags generated
by the GKG do not contain any of our named enti-
ties, the title is annotated with the tag OTHER (i.e.
no named entity or a named entity belonging to a
different category such as DATE). We then automat-
ically annotate the text of each Wikipedia article,
assigning each token one of three NE tags (PERS,
LOC, ORG) or the tag OTHER. As illustrated in
Figure 2, we perform two “sweeps”:

The first stage of the first sweep exploits hyper-
links to annotate tokens within an article. Even if a
title present in the body of the article is ambiguous,
a hyperlink will direct to the correct source and
tag. For example, tokens that have different NE
tags but the same primary token, e.g. Unniyarcha
and Unniyarcha (Film), can be disambiguated by
extracting the corresponding named entity tag for
each hyperlink from the title list created earlier.
Then, the descriptions within brackets are removed
in the case of ambiguous titles. All appearances

of hyperlinks are annotated with their respective
tags. Tokens that do not match any hyperlink are
labelled OTHER.

In the second stage of the first sweep, all oc-
currences of titles that are not hyperlinked in the
article body are annotated. For each article, the
tokens labelled OTHER after the first stage are com-
pared with the named entity titles in the title list.
All token matches are annotated with the tag of the
respective title.

In the second sweep, we annotate tokens that
match sub-words of named entity titles in our title
list, i.e., we annotate inflected forms and complex
words. This is necessary because, in agglutinating
languages, proper nouns seldom exist in their base
form. This makes the matching of words that refer
to the same concept harder than for languages such
as English, which only has minimal pre- and suf-
fixing, because a simple search for string equality
with a title will not suffice. Therefore, we devel-
oped language-specific token-title matching algo-
rithms discussed in the next sections. Since the
secondary sweep is executed only after the ambigu-
ous tokens are dealt with, the annotation procedure
tackles both reliability and quantity of annotations.

5.3 Accommodating Morphological
Characteristics

5.3.1 Heuristics for Malayalam

Suffix matching A major problem for NER
in Malayalam is that —due to inflection and
agglutination— nouns rarely occur in their base
form but are typically adorned by suffixes. To solve
this problem, a suffix stripping algorithm is em-
ployed, which initially compares each title in the
list with the tokens in the body of the article and ex-
tracts all tokens that qualify a basic distance match.
A threshold of 70% match was empirically found
to work well. To counteract overgeneration and
ensure the presence of suffixation, the results are
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Figure 2: Overview of the three stages of data set annotation

further filtered by checking if the token begins with
the root word. That is, the first (n− 1) characters
of the token must match the first (n− 1) characters
of the title, for a title of length n. This separates
suffixed versions from accidental matches. For ex-
ample, the title ]Ðjw (Panthalam-Place) matches
both ]Ðbw (Panthayam-competition) and ]Ðj-

eqw (Panthala+vum-Panthalam as well). Only the
second token is an inflected version. The suffix
match with the first (n − 1) characters ("]", "Ð",

"j") extracts the inflected token and discards arbi-
trary matches.

Attachment of the place of origin to a person’s
name It is a common practice in Kerala to at-
tach the place of a person’s origin to their name.
For example, consider the name Pinarayi Vijayan
(]oWlnbo eoPb°). The individual’s name is “Vi-
jayan” (eoPb°), while “Pinarayi” (]oWlnbo) is
the place where he is from. The title list would
consist of both “]oWlnbo-Place” and “]oWlnbo

eoPb°- Person”. When a bigram check is em-
ployed first, all instances of “]oWlnbo eoPb°“
are annotated with the tag “Person”. The tokens
in the article body are annotated “]oWlnbo- Per-
son, eoPb°- Person”. If this is followed by the
annotation of “]oWlnbo“, the token “]oWlnbo

eoPb°” is modified to “ ]oWlnbo- Place, eoP-
b°-Person”. To avoid this behaviour for Malay-
alam, uni-grams are always annotated first and then
followed by higher order n grams.

Punctuation in names Another common prac-
tice is the usage of acronyms within the name. For
example, Madath Thekkepaattu Vasudevan Nair
usually goes by M.T. Vasudevan Nair (Fw.So. en-
hquZe° \nb±). The name is sometimes tok-
enized as (“Fw.”, “So.”, ”enhquZe°”, ”\nb±”)
or as (“Fw” ,”.” , “So.”, ”enhquZe°”, ”\nb±”).
In some other cases, the article omits the punctua-
tion, and prints the name as (“Fw”, “So”, ”enhquZ-

e°”, ”\nb±”). Since the number of tokens within
the title changes, the n-gram search consequently
varies. Since this issue is specific to full stops (“.”),
all full stops are removed from both the article and
the titles during the search phase. After all appear-
ances of the individual tokens sans punctuation are
annotated within the article, the full stops are rein-
serted. If the tokens to either side of the full stop
have the same NE tag, the full stop is given the
same tag as the tokens that wrap around it. All
end-of-sentence full stops are annotated with the
tag OTHER.

5.4 Language-Specific Adaptation for isiZulu

As isiZulu focuses on prefixes rather than suffixes,
we perform prefix stripping for isiZulu. To this
end, we make use of the capitalization described
in Section 3.2. Where we could not find a full
match between a title and a word in the list, we
matched titles and occurrences in the text from the
first capital after the initial letter. Thus, we were
able to match iGoli and eGoli, i.e. Johannesburg
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Figure 3: Fine tuning analysis

→ from/in Johannesburg.

6 Experiments and Machine Learning
Setup

For comparison, we use two baseline systems. One
rule-based baseline annotation system and a neural
network baseline. The rule-based baseline directly
annotates the data sets with the title list generated
in section 5.1. A bi-gram search is used to annotate
titles that have two words. This procedure does
not account for inflections and annotates perfect
matches in the corpus. The rule-based baseline is
therefore language independent. This system is
used to evaluate the importance of accommodat-
ing inflection and agglutination when compiling
an NER data set for morphologically complex lan-
guages.

The deep learning baseline for NER is imple-
mented using Keras (Chollet, 2015). It is a recur-
rent LSTM network with the following layers:

1. Trainable linear embeddings of size 200

2. Bidirectional LSTM with 45 units for each
direction; recurrent dropout probability of 0.1

3. Linear layer with 50 units and ReLU activa-
tion, applied to each time step

4. CRF layer with four units (one per NE class)

The model is trained using the RMSprop optimizer
with a learning rate of 0.001 for 10 epochs.

We use XLM-RoBERTa (Conneau et al., 2019)
to build the NER system. It is a pre-trained multi-
lingual transformer model which has successfully

been applied to low resourced languages such as
Swahili and Urdu. The model is trained in the
xlm-roberta-base configuration using decou-
pled weight decay (Loshchilov and Hutter, 2019)
and layer-wise decaying learning rates (Sun et al.,
2019). The embedding layer is frozen to avoid
overfitting. We train the model on a TPU in Google
Colab8 using bfloat16 mixed precision training
and the following hyperparameters:

• Sequence length: 50

• Batch size: 1024

• Epochs: 10

• Base learning rate: 2 · 10−5

• Weight decay factor: 0.99

• Learning rate decay factor: 0.95

The data sets are split into training, testing and
validation sets by a 80:10:10 ratio.

6.1 Fine Tuning

Before testing the model with a target data set, the
model is fine tuned for adaptation. A small sub-
set of each test set is used to tune the weights and
the remaining data is used to test the model. Fine
tuning is carried out for two reasons: (i) to accom-
modate for changes in writing style and format
and (ii) to expose the model to previously unseen
tokens. Since agglutination and heavy inflection
exists in both languages, it is practically infeasible
to construct dictionaries that account for all words

8https://colab.research.google.com/
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Table 2: XLM-RoBERTa results for Malayalam

WikiMl CUSAT ARNEKT

Class Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Person 0.94 0.80 0.87 0.65 0.48 0.56 0.74 0.65 0.69
Place 0.93 0.83 0.87 0.55 0.57 0.56 0.76 0.78 0.77
Organization 0.79 0.82 0.81 0.48 0.28 0.35 0.75 0.62 0.68
Other 0.99 1.00 0.99 0.99 0.99 0.99 0.96 0.97 0.97
Macro Average 0.94 0.80 0.87 0.66 0.58 0.61 0.80 0.75 0.78

Table 3: XLM-RoBERTa results for isiZulu

WikiZu NCHLT II

Class Precision Recall F1 Score Precision Recall F1 Score

Place 0.94 0.87 0.90 0.46 0.41 0.43
Person 0.78 0.90 0.84 0.31 0.20 0.24
Organization 0.78 0.75 0.77 0.25 0.15 0.19
Other 0.99 0.99 0.99 0.95 0.97 0.96
Macro Average 0.9 0.88 0.89 0.69 0.56 0.63

in them. During the training phase, a dictionary
is created using the developed data set which is
then used to feed tokens into an embedding layer.
In the case of an external data set, the model en-
counters many words foreign to its dictionary. Fine
tuning helps it to learn the appearance patterns of
unknown tokens within the article.

6.2 Results for Malayalam

Figure 3a depicts the model performance when
varying amounts of test data are used for fine tun-
ing. For the ARNEKT data, tuning the model with
a small portion of the test data set increases the
performance drastically. Since this data set is large,
even a small portion of it helps the model adapt
easily. On the other hand, the smaller CUSAT
data set attains a noticeable increase in model per-
formance at a slightly higher level of fine tuning.
Since fine tuning requires a sufficient amount of
tokens, a slightly bigger chunk of the CUSAT data
set has to be used to fine-tune the model’s parame-
ters. The effect of fine tuning on the overall perfor-
mance is visualised in Figure 3b (with 10% data for
ARNEKT and 20% for CUSAT). The model per-
formance increases considerably after fine tuning,
in both cases. The class-wise performance for the
WikiML, ARNEKT and CUSAT data sets is shown
in Table 2. As expected, the (upper bound) results
for WikiML are high across all NE classes. For the
ARNEKT data set, the model performs also quite
well with an average F1 score of 0.78. In compari-
son, the out-of-domain evaluation on the CUSAT

data obtains an F1 score of 0.61, with particularly
low results for org entities. This may be due to the
fact that organisations are distributed differently in
this domain.

The baseline annotation system was also eval-
uated on the CUSAT data set and the ARNEKT
data set, obtaining F1-scores of 0.29 and 0.39, re-
spectively. This performance highlights the impor-
tance of considering inflections, and fine tuning the
model for domain adaptation.

6.3 Results for isiZulu

Table 3 shows the results of porting our system to
isiZulu (with 20% of the data for fine-tuning). With
an average F1-Score of 0.87 our system performs
well on the in-domain WikiZu data but worse in the
out-of-domain evaluation on NHCLT II, with an av-
erage F1-Score of 0.45. It still easily outperforms
the rule-based baseline system (0.24 F1-Score) and
the LSTM baseline (0.45 F1-Score). The lower
performance compared to Malayalam can be ex-
plained by the fact that the domain of the test set
is very different from that of the training set (legal
vs. Wikipedia) and, moreover, the training set for
isiZulu is considerably smaller than for Malayalam.
In this context and given that we only used 2 days
to tweak the system for isiZulu, we still consider
the results an encouraging first step.

7 Analysis of Results

Since testing on WikiML can be regarded as in-
domain, we focus on the analysis of errors on the
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Figure 4: Confusion Matrix for CUSAT before (above)
and after (below) fine tuning

external data sets. Figures 4 and 5 display the
confusion matrices of the results obtained when
testing our model before and after fine tuning. In
both cases, the biggest source of error is observed
to be misclassification into the “Other” category.
This is expected in languages with morphological
complexities, since named entities are concealed
within agglutinations and suffixes. It should be
noted that for ARNEKT, the performance errors do
not necessarily originate from the model. To our
knowledge, ARNEKT was not manually annotated,
but created with rule based annotation procedures
and word lists. Consequently, annotation errors can
be observed within the data set. In some cases, the
WikiML model is seen to predict correct named en-
tity tags for tokens wrongly annotated in ARNEKT.
Two examples are presented in (4) and (5). Wrong
annotations have been highlighted in red. Fine tun-
ing clearly improves the impact of errors involving
the ”Other” category significantly.

(4) Tokens:
ARNEKT:
Prediction:

U»m
Place
Organization

hnÄ¿oI
Other
Other

fnhm}XÇ°
Other
Other

BWm
Other
Other

bn°
Other
Person

So°_±tP°
Other
Person

Figure 5: Confusion Matrix for ARNEKT before
(above) and after (below) fine tuning

Jan Tinbergen is a Dutch Economist

(5) Tokens:
ARNEKT:
Prediction:

}fpd¹°
Other
Place

}Io·Êm
Other
Person

Nco}X¿otd
Person
Other

GÊeqw
Other
Other

aoI»
Other
Other

XncºjotdncnjnWm
Other
Other

aqcjo
Person
Person

Murali is one of the best players in the
history of Sri Lankan cricket

For CUSAT, the presence of out-of-
domain/unseen words is clearly the cause of
most errors in the vanilla model. Once fine-tuned
with a portion of the data set, this is reduced
significantly.

Disregarding the “Other” class, the model seems
to confuse ”Person” and ”Organization” entites
with “Place” entities in both data sets. This is al-
most always observed with multi worded entities
that have places embedded in their names. Cases
include people with places attached to them (as
explained in section 5.3.1) and organizations with
the same characteristic (e.g. “New York Public Li-
brary”). The “New York” portion in such entities
can be thought of as a place entity embedded in
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an organization entity, or can be viewed simply as
an organization entity without taking into account
embedded entity classes. For one-worded entities,
errors can often be seen to arise from annotation
variations between the ground truth and the auto-
matically generated dataset. For example, words
such as “Library” and “College” are mapped as
”Place” entities by the Google Knowledge graph
during the generation of title lists. Subsequently,
instances of such words are labeled as ”Place” by
our vanilla model trained on the WikiML dataset.
However, the external datasets label them as ”Or-
ganization” entities in some cases, which indirectly
translates to mistakes during evaluation.

8 Conclusion

We demonstrated the implementation of a fully au-
tomated pipeline for the creation of a named entity
tagged data set with freely available resources. We
showed how the pipeline can be adaptated for two
morphologically complex, agglutinating languages.
Finally, we propose an easily portable, weakly su-
pervised NER system for Malayalam and isiZulu
based on this pipeline. The system can be devel-
oped quickly: We spent 2 weeks on developing the
initial system for Malayalam and 2 days for port-
ing it to isiZulu. We tested in- and out-of-domain
on a number of publicly available data sets, with
encouraging results, especially for Malayalam.
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Abstract
Creating datasets manually by human anno-
tators is a laborious task that can lead to bi-
ased and inhomogeneous labels. We propose
a flexible, semi-automatic framework for la-
beling data for relation extraction. Further-
more, we provide a dataset of preprocessed
sentences from the requirements engineering
domain, including a set of automatically cre-
ated as well as hand-crafted labels. In our case
study, we compare the human and automatic
labels and show that there is a substantial over-
lap between both annotations.

1 Introduction

While recent advances in Natural Language Pro-
cessing have yielded high-quality language models
such as BERT (Devlin et al., 2019), GPT-3 (Brown
et al., 2020) and ELECTRA (Clark et al., 2020)
which are able to continue sentences, fill in masked
words and correctly parse human language, using
these models for most use-case scenarios still re-
quires them to be trained on a down-stream task
using labeled data. For some tasks, e.g. sentiment
analysis of reviews, creating datasets is relatively
easy as large databases with annotations already ex-
ist (such as the IMDb movie review dataset (Maas
et al., 2011)). However, training a model on niche
tasks often demands hand-crafting new datasets
from spread-out documents. This is usually done
by humans who collect, preprocess, and annotate
sentences which is a laborious task and can result
in biased and/or inhomogeneous labeling, e.g. if an-
notation instructions were not understood correctly

or left room for subjective interpretation. This be-
comes especially apparent if multiple, non-expert
individuals are involved in this process.
In requirements engineering, we usually work with
large documents written in natural language (Mich
et al., 2004; Kassab et al., 2014) which describe
the specifications of a software project, usually
classified as either functional requirements, spec-
ifying what functionality the system should pro-
vide, and non-functional requirements, specifying
in what way the system should implement those
functions. However, these documents are often up-
dated during the life cycle of the project and span
up to multiple hundreds of pages, depending on the
project size. Keeping track of all the changes and
maintaining the software based on the requirement
document can soon become a challenge (Fischbach
et al., 2020) which is why an automatic conversion
to, e.g., UML diagrams can come in handy. To do
so, it is necessary to parse the relations between en-
tities from the written text into a structured format,
thus creating a comparable corpus of requirements
in natural language and the same relation in a for-
mal language.
In this paper, we propose a semi-automatic ap-
proach that, given a clean, grammatically correct
sentence stating a software requirement, outputs a
labeling corresponding to the relation the require-
ment describes based on a small set of pre-defined
rules of word dependency relations. This should
reduce human bias manifesting in labels as the an-
notator does not actively choose the labels for each
word anymore but instead defines abstract rules
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which provide for homogeneous, deterministic la-
beling and reduce the amount of labor for creat-
ing such datasets. This automatically annotated
data can then be used for training a more powerful
model, as shown by Schmitt et al. (2020).
We summarize our main contributions as follows:

• We provide a high-quality, preprocessed
dataset of 2,093 requirement sentences to-
gether with 1,848 automatically created labels
and another 199 manually created labels for a
subset of the automatically labeled sentences
as a resource for further research projects.

• We provide a flexible, semi-automatic frame-
work for data annotation of the relation extrac-
tion domain based on dependency parsing and
pattern matching.

• We conduct a case study on the said frame-
work on requirement document sentences,
showing its annotation results are matching
those of humans to a substantial degree.

2 Related Work

Gamallo et al. (2012) propose a simple Open In-
formation Extraction system based on dependency
parse trees. The algorithm extracts triples with two
arguments and a sentence part relating those. How-
ever, the patterns are not very sophisticated and
put a large part of the sentence into the relation.
Hence, this approach is not suitable for our use
case as we would eventually like to generate object
diagrams from the relations we extracted. Erkan
et al. (2007) use dependency parse trees to extract
relations between proteins from sentences. They
do so by classifying whether a sentence, given a
dependency tree, describes a relation between any
pair of proteins occurring in the sentence using
semi-supervised harmonic functions and support
vector machines. However, their entities (the pro-
tein names) are already annotated which is not the
case if we only have the raw sentences as in our
approach. Mausam et al. (2012) use dependency
trees and a labeled bootstrap dataset to automati-
cally generate patterns for information extraction,
unlike our approach which does not require to an-
notate any data manually but instead to produce pat-
terns. While this approach might be able to extract
simple triples well, one needs either a larger anno-
tated dataset, defeating the purpose of our work, or
the patterns might not generalize well, thus being

unsuitable for constructing a qualitative annotated
corpus. Reddy et al. (2016) propose an algorithm to
automatically extract logical expressions from de-
pendency parse trees for question answering. These
were then converted into a graph indicating the rela-
tions between the named entities in the sentence by
applying semantic parsing. However, this approach
always converts the entire sentence into a graph
and may include information that is irrelevant for a
dataset that is to be generated. Inago et al. (2019)
use a rule-based approach on dependency trees to
process natural language car parking instructions
with decision trees for automated driving systems.
Unlike our data (or most datasets in general), sen-
tences of the application domain are very short and
similar in structure. While our approach could be
effectively converted into a decision tree, it is easier
to construct rules with our pattern engine for more
complex data.

3 Corpus Creation

3.1 Dataset
For our dataset, we use 19 publicly available re-
quirement documents in the English language from
the PURE dataset (Ferrari et al., 2017), with a large
topical variety, including governmental institution
software in military and scientific fields, inventory
management systems and video games. All doc-
uments are provided in .PDF, .HTML or .DOC
format. From these, we manually extracted 2,104
requirement sentences (1,639 functional, 465 non-
functional requirements).

3.2 Preprocessing
As we want to automatically dependency parse
our sentences, we have to ensure that all input to
the model is grammatically and orthographically
sound. We also have to ensure that any unnecessary
information is removed to not confuse the parser.
Therefore, we manually applied the following for-
matting operations to each sentence during data
extraction:

• Splitting of enumerations into multiple sen-
tences, adjusting words if necessary to make
the sentence sound (e.g., nounification of
verbs); e.g., ”The system has to include a)
[...] b) [...] c) [...]” becomes 3 sentences, each
including exactly one of the requirements

• Removal of extra inter-punctuation (additional
spaces, dots, commas, etc.)
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• Removal of references to sections, tables, fig-
ures, or other requirements of the document as
they are not relevant for extracting the relation
of the sentence itself

• Removal of abbreviations after written-out ex-
pressions (e.g., in ”automated teller machine
(ATM)”, the ”(ATM)” is dropped)

• Removal of requirement reference numbers

• Correction of spelling mistakes where obvious

• Adding of dots at the end of each sentence if
missing

• Changing the first letter of a sentence to upper
case if it is not yet

• Removal of quotation marks around pseudo-
correct terms (e.g., ’the ”processor” will [...]’
becomes ’the processor will [...]’)

• Removal of explicit explanations of what is
included in some term (e.g., ”errors of either
kind, i.e. hardware and software, [...]”)

• Lower-casing of words if they are not abbre-
viations (e.g., ”NOT” becomes ”not”)

• Remove brackets around additional plural ’s’
(e.g., ”socket(s)” becomes ”sockets”)

• Exchanging ”/” with ”and” or ”or” where ap-
plicable and possible given the context (e.g.
”The system should support adding/deleting
files” becomes ”The system should support
adding and deleting files”)

• Unification of the possessive ’s’ preceding
symbols (”‘” and ”´” are changed to ”’”)

• Removal of duplicate sentences (11 in total)

After these preprocessing steps, the average sen-
tence length is 19.87 words, the maximum is 69
words and the minimum 4 words.

3.3 Labeling
These final 2,093 sentences (1,628 functional, 465
non-functional requirements) are parsed to ex-
tract dependencies using the Neural Adobe-UCSD
Parser (Mrini et al., 2020) which achieved state-of-
the-art performance on the Penn Treebank dataset
(Marcus et al., 1993). Based on these dependencies,
we handcraft a total of 102 patterns to label 91.03%

of the functional and 78.71% of the non-functional
sentences without any further human interaction.
Each pattern is a sequence of triples (l, dp, c) where
l is a label, dp a sequence of dependency labels
forming a path downwards a dependency tree and
c a Boolean value indicating whether all children
(direct and indirect) should be left out from label-
ing or not. Each sequence applies all or a subset of
the following entity tags to the sentences:

• ent1: The main entity of the requirement.
Either the acting component or the component
on which a constraint is applied (if there is no
second entity)

• rel: The relation/action of the requirement.

• ent2: The passive entity of the requirement.
Either the component on which an action is
performed or which is involved in the action
passively

• cond: Any modifier of the requirement. Can
further specify the requirement or put condi-
tions on it how or when it will be applied.

An excerpt of automatic annotations can be found
in Table 1. Each pattern is applied using tree traver-
sal: for each label that is to be applied, a sequence
of dependency labels (optionally with modifiers) is
given, starting at the root. The algorithm checks
whether the current nodes have any direct children
connected to them with the current dependency la-
bel of the sequence. If so, we check whether these
children have children connected to them with the
next label in the sequence. If not, the pattern fit-
ting is stopped and no labeling is applied to the
sentence. If we reach the end of the sequence, the
final node is labeled with the given label and, de-
pending on a parameter, all of its children, too. A
simple example can be found in Table 2, row 1.
Dependency labels can include modifiers to allow
for more complex patterns:

• Starting with !, the pattern matching will re-
move any node that has one or more children
with the given dependency label. Thus, no
step downwards the tree is taken

• Followed by =[placeholder] where
[placeholder] is any word, only those
nodes are considered where the label is the
given label and the actual word of the node is
specified by [placeholder]
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Sentence

While flying two MAE AVs Beyond Line Of Sight
cond

, the TCS ent1 shall provide
rel

full control functionality
ent2

of each AV cond.
NPAC SMS ent1 shall default rel the EDR Indicator ent2 to False cond.

A bulk entry
ent1

can be used to add rel many assets
ent2

.
The HATS-GUI ent1 shall interact with the Host OS to compare

rel
time stamps

ent2
for files cond.

The BE ent1 shall be able to apply
rel

corrections ent2 based on state count and/or quantizer power measurement data
cond

.

Table 1: Examples of Labeling

• .. lets us traverse back to the parent of the
current node. This allows us to check nodes
for their existence without including them in
the actual labeling

A selection of patterns used can be found in Table 2.
In our setting, one sentence usually holds one rela-
tion, however, this is not the case for conjunctions
of multiple main clauses or instructions. Due to
current limitations of our engine (see Section 6),
the relation of the first main clause is always cho-
sen, however, this depends on the pattern design.
Even though we only use requirements written in
English, a large portion of the rules could be ap-
plied to data in different languages as the Universal
Dependencies (Schuster and Manning, 2016) rely
on the concept of primacy of content, allowing for
very similar dependency trees. However, patterns
explicitly using keywords may not generalize well
for other languages. The code for the labeling task
as well as the labeled data can be found on GitHub1.

4 Evaluation

Given our automatically labeled data, we evaluate
the quality of the labels by comparing its output
to human annotations. To do so, we randomly
sample 199 sentences (10.77%) from the 1848 sen-
tences which were automatically labeled. Two of
the authors then annotated these sentences manu-
ally. The annotators were given the descriptions
of each label type, but had no access to the actual
labeling from the algorithm. Annotators collabo-
ratively labeled the data, discussing the labeling
for each sentence and agreeing upon a single valid
labeling. We then calculate inter-rater reliability
with the Cohen’s κ between the human annotators
and the automatic annotator, once over all labels
and once as average inter-reliability per sentence
(i.e., we calculate one Cohen’s κ score per sentence

1https://github.com/JeremiasBohn/
RequirementRelationExtractor

and average over all sentences –this considers each
sentence equally while the overall score puts more
weight on longer sentences). The results can be
found in Table 3. While the overall score puts more
weight on long sentences, the sentence average
provides us an approximation of the reliability of
our automatic annotator for any sentence. Accord-
ing to the taxonomy of Landis and Koch (Landis
and Koch, 1977), the per sentence average κ value
indicates a substantial inter-annotator agreement,
the overall κ a moderate agreement. While the
main acting entity is extracted very well with al-
most perfect agreement according to Landis and
Koch, extracting relational modifiers proofs to be
the hardest with only moderate agreement between
our automatic approach and the human annotators.
This is mostly due to the nature of the label itself,
spanning a large variety of modifiers from condi-
tions to entities not involved in the relation itself.
While one could split the cond label into multiple
different labels, this would increase the number of
patterns required a lot. Alternatively, one might
reduce the coverage of the labeling in general but
we focused on including as much information as
possible. The relatively low score for ent2 mainly
arises from sentences containing multiple relations
where many words describe a passive entity for
other relations than the one of the main sentence.
Our approach currently is not able to effectively
extract multiple relations from a single sentence
yet. This is also the reason why the score rel is
lower than the one for ent1.

5 Limitations

While our approach works well for requirements
documents - after all, relations between software
entities and modifications of these relations can be
extracted well by syntactically parsing the sentence
structure - this does not apply to word labels which
require a semantic understanding of the input. For
example, if we were to create labels for Named
Entity Recognition, our algorithm would fail as
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Pattern Description

(’rel’, [’root’], True)
(’ent1’, [’root’, ’nsubj’], False)
(’ent2’, [’root’, ’dobj’], False)

(’cond’, [’root’, ’advcl’], False)

Simple pattern, sets the root of the sentence as
the relation (only this single word), the entire nominal subject

as the acting entity, the entire direct object as
the passive entity. An adverbial clause is treated as a

relation modifier.
(’rel’, [’root=capable’, ’prep=of’, ’pcomp’], True)

(’ent1’, [’root’, ’nsubj’], False)
(’ent2’, [’root’, ’prep=of’, ’pcomp’, ’prep=in’, ’pobj’], False)

(’cond’, [’root’, ’advcl’], False)

Catches phrases like ”The system should be capable of [...]”
and searches for the passive entity in the prepositional object of

the prepositional clause starting with ”in”.

(’rel’, [’root’, ’!dobj’], True)
(’ent1’, [’root’, ’nsubjpass’], False)

(’cond’, [’root’, ’prep=in’, ’pobj=case’, ’..’], False)
(’cond’, [’root’, ’advmod’], False)

Pattern is only applied if the sentence has
no direct object (which could serve as the passive entity).

Prepositional sentences starting with ”in case” are
labeled as requirement modifier (we have to traverse
the tree upwards again to include the ’in’ as well).

Table 2: Examples of Patterns

Labels considered Sentence Avg. Overall
All labels 0.632 0.576
rel only 0.790 0.720
ent1 only 0.855 0.822
ent2 only 0.619 0.561
cond only 0.532 0.543

Table 3: Cohen’s Kappa Results

it is not possible to find syntactic rules to distin-
guish between, e.g., an organization and a person.
Also, the algorithm fails in some cases if either
rules are not specific enough or the dependency
parser mistakenly adds dependencies between sen-
tence parts where there is no dependency between
them. The latter may especially occur frequently if
the sentences were not preprocessed well which is
why our algorithm is not suitable as a classifier in
general (if we, on the other hand, use our data as
training input for a Transformer model (Vaswani
et al., 2017), it may overcome these strict syntactic
requirements and generalize better on real-world
data).

6 Conclusion & Outlook

In this paper, we present a novel approach for data
labeling which allows users to annotate sentences
for relation extraction within a shorter time period
compared to manual annotation while at the same
time having a consistent labeling scheme for the
entire dataset. Our approach exploits syntactic fea-
tures which are the integral foundation of most
relation extraction tasks.
For the future, it would be helpful to implement an
automatic extraction of requirement sentences by,
e.g., training a classifier to identify relevant sen-

tences in plain text or .PDF documents as well as
a semi-automatic approach with human validation
for preprocessing sentences into grammatically and
orthographically sound ones. We plan on extend-
ing the pattern engine our algorithm relies on, e.g.,
allowing for recursive patterns to parse nested sen-
tences and to extract multiple relations from one
sentence as well as optional pattern parts to reduce
redundancy (e.g., a sentence where the active entity
is the nominal subject, the relation the dependency
tree root and the passive entity the direct object may
have a relation modifier in an adverbial clause. As
of the current state, this requires two patterns (ex-
ponentially increasing with the number of optional
dependencies) while with a pattern where this ad-
verbial clause is considered optional, we only need
a single pattern).
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Abstract

Obtaining high-quality parallel corpora is of
paramount importance for training NMT sys-
tems. However, as many language pairs lack
adequate gold-standard training data, a pop-
ular approach has been to mine so-called
"pseudo-parallel" sentences from paired doc-
uments in two languages. In this paper, we
outline some drawbacks with current methods
that rely on an embedding similarity thresh-
old, and propose a heuristic method in its
place. Our method involves translating both
halves of a paired corpus before mining, and
then performing a majority vote on sentence
pairs mined in three ways: after translating
documents in language x → language y, af-
ter translating y → x, and using the orig-
inal documents in languages x and y. We
demonstrate success with this novel approach
on the Tatoeba similarity search benchmark in
64 low-resource languages, and on NMT in
Kazakh and Gujarati. We also uncover the ef-
fect of resource-related factors (i.e. how much
monolingual/bilingual data is available for a
given language) on the optimal choice of bi-
text mining method, demonstrating that there is
currently no one-size-fits-all approach for this
task. We make the code and data used in our
experiments publicly available.1

1 Introduction

Mining so-called "pseudo-parallel" sentences from
sets of similar documents in different languages
("comparable corpora") has gained popularity in
recent years as a means of overcoming the dearth of
parallel training data for many language pairs. With
increasingly powerful computational resources and
highly efficient tools such as Faiss (Johnson
et al., 2017) at our disposal, the possibility of min-
ing billions of pseudo-parallel bitexts for thousands

1https://github.com/AlexJonesNLP/
alt-bitexts

of language pairs to the end of training a multilin-
gual NMT system has been realized. For example,
Fan et al. (2020) perform global mining over bil-
lions of sentences in 100 languages, resulting in a
massively multilingual NMT system that supports
supervised translation in 2200 directions.

Despite these breakthroughs in high-resource en-
gineering, many questions remain to be answered
about bitext mining from a research perspective,
with particular attention directed toward the low-
resource engineering case, i.e. research settings
with limited computational resources. While Fan
et al. (2020) yield impressive results using hun-
dreds of GPUs, aggressive computational optimiza-
tion, and a global bitext mining procedure (i.e.
searching the entire target corpus for a source sen-
tence match), how these results transfer to the low
computational resource case is not clear. More-
over, the effect of circumstantial (e.g. the resources
available for a given language or language pair)
or linguistic (e.g. typological) factors on bitext
mining performance remains highly understudied.

In light of these issues, our contributions are as
follows:

• We demonstrate the problematic nature of
using similarity-score-based thresholding for
mining bitexts, with particular attention given
to document-level mining of low-resource lan-
guages.

• We propose a novel, heuristic approach for
bitext mining that involves translating both
halves of a bilingual corpus, mining with
three sets of documents (two distinct trans-
lated pairs of documents plus the original doc-
uments), and then performing a majority vote
on the resulting sentence pairs. This approach
avoids the pitfalls of laboriously tuning a sim-
ilarity score threshold, a practice we believe
to have been weakly motivated in past studies.
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• We show the success of our method on NMT
in English-Kazakh and English-Gujarati, and
also on the gold-standard bitext retrieval task
(“similarity search" on the Tatoeba dataset),
and show the optimal choice of mining ap-
proach to be partially dependent on the re-
source availability of the language(s) in-
volved.

2 Related Work

Mining pseudo-parallel sentences from paired cor-
pora for the purpose of training NMT systems
is a decades-old problem, and dozens of solu-
tions have been tried, ranging from statistical
or heuristic-based approaches (Zhao and Vogel,
2002; Resnik and Smith, 2003; Munteanu et al.,
2004; Fung and Cheung, 2004; Munteanu and
Marcu, 2006) to similarity-based, rule-based, and
hybrid approaches (Azpeitia et al., 2017, 2018;
Bouamor and Sajjad, 2018; Hangya et al., 2018;
Schwenk, 2018; Ramesh and Sankaranarayanan,
2018; Artetxe and Schwenk, 2019a,b; Hangya
and Fraser, 2019; Schwenk et al., 2019a,b; Wu
et al., 2019; Keung et al., 2020; Tran et al., 2020;
Kvapilíková et al., 2020; Feng et al., 2020; Fan
et al., 2020). Benchmarks to measure performance
on this task include the BUCC2 ’17/18 datasets
(Zweigenbaum et al., 2017, 2018), whose task in-
volves spotting gold-standard bitexts within compa-
rable corpora, and the Tatoeba dataset (Artetxe and
Schwenk, 2019b), whose task involves matching
gold-standard pairs in truly parallel corpora.
Relevant to similarity-based mining methods are
well-aligned cross-lingual word and sentence em-
beddings, which are some of the oldest constructs
in NLP and have been tackled using hundreds of di-
verse approaches. Even among relatively recent ef-
forts, these approaches range from static, monolin-
gual embeddings (Pennington et al., 2014; Mikolov
et al., 2013; Arora et al., 2017; Kiros et al., 2015) to
static, multilingual ones (Klementiev et al., 2012;
Ammar et al., 2016; Schwenk and Douze, 2017)
to contextualized, monolingual ones (Peters et al.,
2018; Subramanian et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Conneau et al., 2017; Reimers
and Gurevych, 2019) to contextualized, multilin-
gual ones (Song et al., 2019; Conneau et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2020;
Wang et al., 2019). In this paper, our approach
centers around using contextualized, multilingual

2Building and Using Comparable Corpora

sentence embeddings for the task of bitext mining.
For low-resource languages where parallel train-

ing data is little to none, unsupervised NMT can
play a crucial role (Artetxe et al., 2018a, 2019a,b,
2018b; Hoang et al., 2018; Lample et al., 2017,
2018b,c; Pourdamghani et al., 2019; Wu et al.,
2019). However, previous works have only focused
on high-resource languages and/or languages that
are typologically similar to English. Most recently,
several works have questioned the universal useful-
ness of unsupervised NMT and showed its poor re-
sults for low-resource languages (Kim et al., 2020;
Marchisio et al., 2020). They note the importance
of typological similarity between source and tar-
get language, in addition to domain proximity and
the size and quality of the monolingual corpora
involved. They reason that since these conditions
can hardly be satisfied in the case of low-resource
languages, they result in poor unsupervised per-
formance for these languages. However, recently
it has been shown that training a language model
on monolingual corpora, followed by training with
an unsupervised MT objective, and then training
on mined comparable data (Kuwanto et al., 2021)
can improve MT performance for low-resource lan-
guages. In this work, we explore the usefulness
of our mined bitext using a similar pipeline. We
show an improvement over using only supervised
training data for low-resource MT.

3 Model selection

3.1 Cross-lingual Sentence Embeddings

We initially experiment with XLM-RoBERTa (Con-
neau et al., 2020) for our bitext mining task, using
averaged token embeddings (Keung et al., 2020)
or the [CLS] (final) token embedding as makeshift
sentence embeddings. However, we replicate re-
sults from Reimers and Gurevych (2020) in show-
ing these ad-hoc sentence embeddings to have rela-
tively poor performance on the BUCC ’17/18 EN-
FR train data (Zweigenbaum et al., 2017, 2018)
compared to bona fide sentence embeddings like
LASER (Artetxe and Schwenk, 2019b) and LaBSE
(Feng et al., 2020). Thus, we opt to use LaBSE
as our sentence embedding model, using its im-
plementation in the Sentence Transformers 3 li-
brary. LaBSE performs state-of-the-art (SOTA)
or near-SOTA on the BUCC and Tatoeba datasets

3https://www.sbert.net
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Figure 1: The pipeline we offer for selecting sentence translation pairs from comparable or parallel (e.g. Tatoeba)
corpora using a heuristic voting approach. See Algorithms 1 and 2 for further details.

(Artetxe and Schwenk, 2019b)4, and has demon-
strated cross-lingual transfer capabilities for low-
resource languages in particular. Moreover, being
more recent than LASER, LaBSE has been inves-
tigated less thoroughly in the context of the bitext
mining task.

4 Methods

An overview of our method for extracting bitexts
is given in Figure 1; the processes are sketched in
greater detail in Algorithms 1 and 2. The retrieval
process begins with a set of English documents
and a set of documents in another language XX.
Both sets of documents are then translated using a
pretrained NMT model to obtain XX’ documents
(English documents translated to XX) and EN’ doc-
uments (XX documents translated to English).

We then perform margin-based translation min-
ing (described below in Section 4.1 and in Algo-
rithm 1) on three sets of documents: the original
EN-XX documents, the EN-EN’ documents, and
the XX-XX’ documents. Lastly, we perform a ma-
jority vote (see Algorithm 2, “majority voting”)
on the resulting sentence pairs, keeping any pair
that occurs in ≥ 2 of the three sets of sentence
pairs. If mined from a comparable corpus such as
Wikipedia, these pseudoparallel sentence pairs can
then be used to augment the training data of the
pretrained NMT models, or (help) train an NMT
model from scratch, as in Fan et al. (2020).

Alternative methods for filtering an initial set

4https://github.com/facebookresearch/LASER/tree/master/
data/tatoeba/v1

of sentence pairs are also given in Algorithm 2
(see comments in blue). Empirically, we find our
majority voting method to be superior when a pre-
trained NMT model is available for both languages,
while vanilla margin-based mining (Artetxe and
Schwenk, 2019a) performs best in the absence of
a pretrained NMT model. Results are discussed in
greater detail in Section 6.

4.1 Primary retrieval procedure:
Margin-based Mining

For our primary mining procedure, we use margin-
based mining as described in Artetxe and Schwenk
(2019a). Seeking to mitigate the hubness problem
(Dinu et al., 2014), margin scoring poses an alter-
native to raw cosine similarity in that it selects the
candidate embedding that "stands out" the most
from its k nearest neighbors. We use the ratio mar-
gin score, as described in Artetxe and Schwenk
(2019a) and defined below:

(1)

score(x, y) =
cos(x, y)

1
2k (

∑
z∈NNk(x)

cos(x, z) +
∑

z∈NNk(y)
cos(y, z))

As in Artetxe and Schwenk (2019a), we use
k = 4 for all our mining procedures. We acknowl-
edge that k is indeed a tuneable and important
hyperparameter of KNN search, and that higher
values of k may work better for bitext mining in
certain scenarios, depending on factors such as the
size of the search space (Schwenk et al., 2019b).
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Algorithm 1: Doc-level margin-based mining

1 Given X , Y , k, t, JOIN_METHOD
2 X : Set of sentences in language X. May be grouped

into documents or standalone sentences.
3 Y: Set of sentences in language Y that are parallel or

comparable to those in X .
4 k: Number of neighbors
5 JOIN_METHOD: Method of combining sentence

pairs after mining in the forward and backward
directions. One of either INTERSECT or UNION.

6 t: Margin similarity threshold

7 MINE SENTENCE PAIRS IN BOTH DIRECTIONS
8 for document D ∈ X do
9 for x ∈ D do

10 nnx ← NN(x,YD, k) ;
// NN(x,D, k) := Faiss
k-nearest neighbors search

11 besty = argmaxy∈nnx
score(x, y) ;

// score(x,y) := Eq.(1)
12 if score(x, besty) > t then
13 fwdD ← (x, besty)
14 end
15 fwd← fwdD
16 end
17 end
18 for D ∈ Y do
19 for y ∈ D do
20 nny ← NN(y,XD, k)

bestx = argmaxx∈nny
score(y, x)

21 if score(bestx, y) > t then
22 bwdD ← (bestx, y)
23 end
24 bwd← bwdD
25 end
26 end
27 if INTERSECT then
28 P ← {fwd} ∩ {bwd}
29 end
30 else if UNION then
31 P ← {fwd} ∪ {bwd}
32 end
33 return P

M
ine

in
the

forw
ard

direction
M

ine
in

the
backw

ard
direction

However, we don’t make this hyperparameter a
focus of this paper, instead addressing the problem
of margin score thresholding and its relation to
the size of the search space. We leave a thorough
examination of k and its effect on bitext mining
performance for future work.

4.2 Filtering Procedures
4.2.1 Thresholding
The most straightforward measure for filtering
mined sentence pairs after an initial (“primary")
mining pass is to set a similarity score threshold,
as shown in Artetxe and Schwenk (2019a). Of
course, there is a precision-recall trade-off inherent
to adjusting this threshold, and we show that sim-
ply using a threshold is problematic in two other

Algorithm 2: Secondary retrieval procedures

1 Given X ,Y, k, t,M, JOIN_METHOD
2 t: Margin score threshold
3 M: An NMT model
4 if TRANSLATE then
5 if EN_TO_XX then
6 for x ∈ X do
7 Xtrans ←M(x→ langy)
8 Pen_xx ←

AlgorithmI(Xtrans,Y, k, JOIN_METHOD, t)

9 end
10 if not STRICT_INT or PAIRWISE_INT then

; // EN-to-XX trans. only
11 return Pen_xx

12 end
13 if XX_TO_EN then
14 for y ∈ Y do
15 Ytrans ←M(y → langx)
16 Pxx_en ←

AlgorithmI(Ytrans,X , k, JOIN_METHOD, t)

17 end
18 if not STRICT_INT or PAIRWISE_INT then
19 ; // XX-to-EN trans. only
20 return Pxx_en

21 end
22 end
23 Porig ← AlgorithmI(X ,Y, k, JOIN_METHOD, t)

; // All-or-nothing voting
24 if STRICT_INT then
25 return Porig ∩ Pen_xx ∩ Pxx_en

26 end
; // Majority voting (preferred)

27 else if PAIRWISE_INT then
28 return Porig ∩ Pen_xx

⋃Porig ∩
Pxx_en

⋃Pen_xx ∩ Pxx_en

29 end
; // Vanilla mining

30 else
31 return Porig

32 end

ways as well: (1) in the case of document-level min-
ing, the size of the search space (document size)
is variable, so a threshold that works well for one
document may function poorly for another; and (2)
when mining bitexts for NMT training, it can be
incredibly expensive to tune this threshold as a hy-
perparameter, as this entails re-training of the NMT
system. Our heuristic method outperforms a previ-
ously used margin score threshold (Schwenk et al.,
2019b,a; Fan et al., 2020) on document-level min-
ing for Kazakh and Gujarati, doesn’t require tuning
any hyperparameter, and works for any language
for which a supervised MT system is available.

4.2.2 Pre-translation
Our approach capitalizes on multiple similarity-
related signals by first translating either the source
texts (i.e. en→xx), target texts (xx→en), or both.
In our experiments on the Tatoeba dataset (Artetxe
and Schwenk, 2019b), we translate with Google
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Translate / GNMT (Wu et al., 2016) using Cloud
Translation API. However, due to the cost of using
this API on large bodies of text, when mining on the
English-Kazakh and English-Gujarati comparable
corpora, we use an NMT system that we train on
WMT’19 data (Barrault et al., 2019), with training
corpora sizes given in Table 1. When translating in
either direction, we translate the entire corpus, e.g.
all English sentences in the Wikipedia corpus are
translated to Kazakh.

4.3 Supervised and Unsupervised NMT
We follow the same pipeline for training MT in
(Kuwanto et al., 2021) that is based on XLM (Con-
neau and Lample, 2019). Following their pipeline,
we first pretrain a bilingual Language Model (LM)
using the Masked Language Model (MLM) ob-
jective (Devlin et al., 2019) on the monolingual
corpora of two languages (e.g. Kazakh and En-
glish for en-kk) obtained from Wikipedia, WMT
2018/20195 and Leipzig corpora (2016)6. For both
the LM pretraining and NMT model fine-tuning,
unless otherwise noted, we follow the hyperparam-
eter settings suggested in the XLM repository7. For
every language pair we extract a shared 60,000 sub-
word vocabulary using Byte-Pair Encoding (BPE)
(Sennrich et al., 2016). After pretraining the LM,
we train an NMT model in an unsupervised manner
following the setup recommended in Conneau and
Lample (2019), where both encoder and decoder
are initialized using the same pretrained encoder
block. For training unsupervised NMT, we use
back-translation (BT) and denoising auto-encoding
(AE) losses (Lample et al., 2018a), and the same
monolingual data as in LM pretraining. Lastly,
to train a supervised MT model using our mined
comparable data, we follow BT+AE with BT+MT,
where MT stands for supervised machine transla-
tion objective for which we use the mined data. We
stop training when the validation perplexity (LM
pre-training) or BLEU (translation training) was
not improved for ten checkpoints. We run all our
experiments on 2 GPUs, each with 12GB memory.

We compare the performance in terms of BLEU
score of our MT model with a model that follows
the same pipeline (LM pre-training, unsupervised
MT training, followed by supervised MT train-
ing) but that uses gold-standard training data from
WMT19 (Table 1). The sizes of the monolingual

5http://data.statmt.org/news-crawl/
6https://wortschatz.uni-leipzig.de/en/download/
7http://github.com/facebookresearch/XLM

data we use for LM pretraining are also shown in
Table 1.

Train data Number of sentences
en-kk en-gu

Monolingual 9.51M 1.36M
Supervised
WMT’19 222,165 22,321
Comparable
Doc-level mining, thresh-
old = 1.06

430,762 120,989

Doc-level mining
with bidirectional pre-
translation→ majority
voting

154,679 113,955

Table 1: Sizes (in number of sentences) of training cor-
pora used in training supervised and semi-supervised
NMT. The comparable/pseudoparallel sentences are
mined using margin-based scoring with LaBSE with
the indicated secondary retrieval procedures. These
procedures are described in Section 4.

5 Experiments

5.1 Gold-standard Bitext Retrieval

In gold-standard bitext retrieval tasks, the goal is to
mine gold-standard bitexts from a set of parallel or
comparable corpora. We use the common approach
of finding k-nearest neighbors for each sentence
pair (in both directions, if using INTERSECT in
Algorithm 1), then choosing the sentence that maxi-
mizes the ratio margin score (Equation 1 in Section
4.1).

Tatoeba Dataset8 The Tatoeba dataset, intro-
duced by Artetxe and Schwenk (2019b), contains
up to 1,000 English-aligned, gold-standard sen-
tence pairs for 112 languages. In light of our focus
on lower-resource languages, we experiment only
on the languages listed in Table 10 of Reimers and
Gurevych (2020), which are languages without par-
allel data for the distillation process they undertake.
This heuristic choice is supported by relative per-
formance against languages with parallel data for
distillation: the average raw cosine similarity base-
line with LaBSE for the latter was 96.3, in contrast
with 73.7 for the former. Specifically, the ISO 639-
2 codes9 for the languages we use are as follows:

8https://github.com/facebookresearch/LASER/tree/master/
data/tatoeba/v1

9https://www.loc.gov/standards/iso639-
2/php/code_list.php

50



afr, amh, ang, arq, arz, ast, awa, aze, bel, ben, ber, bos, bre,
cbk, ceb, cha, cor, csb, cym, dsb, dtp, epo, eus, fao, fry, gla,
gle, gsw, hsb, ido, ile, ina, isl, jav, ksb, kaz, khm, kur, kzj, lat,
lfn, mal, mhr, nds, nno, nov, oci, orv, pam, pms, swg, swh,
tam, tat, tel, tgl tuk, tzl, uig, uzb, war, wuu, xho, yid.

5.2 Pseudo-parallel Sentences From
Comparable Corpora

In addition to gold-standard bitext mining, we
also mine pseudo-parallel sentences from com-
parable corpora. The aim of this task is as fol-
lows: given two sets of similar documents in dif-
ferent languages, find sentence pairs that are close
enough to being translations to act as training data
for an NMT system. Of course, unlike the gold-
standard mining task, there are not ground-truth
labels present for this task, and so evaluation must
be performed on a downstream task like NMT.

Comparable Corpora Our comparable data is
mined from comparable documents, which are
linked Wikipedia pages in different languages ob-
tained using the langlinks from Wikimedia dumps.
For each sentence in a foreign language Wikipedia
page, we use all sentences in its corresponding
linked English language Wikipedia page as poten-
tial comparable sentences.

Pre-processing Since our comparable corpora
for both EN-KK and EN-GU are grouped into doc-
uments, the most important pre-processing step we
perform is eliminating especially short documents
before similarity search. The motivation for this is
that since we search at document-level, the quality
of the resulting pairs could be highly degraded in
particularly small search spaces, in a way that nei-
ther thresholding nor voting could mitigate. Note
that average document length was much shorter for
both Gujarati and Kazakh than for English, due
simply to shorter Wikipedia articles in those lan-
guages. For the EN-KK corpus, we omit any paired
documents whose English version was < 30 words
or whose Kazakh version was < 8 words, which
we determine somewhat arbitrarily by seeing what
values allowed for a sufficient number of remain-
ing sentences. For the EN-GU corpus, we take a
more disciplined approach and lop off the bottom
35% of shortest document pairs, which happened to
be document_length = 21 sentences for English
and 5 sentences for Gujarati. This step accounted
for the large number of documents in each corpus
that contained very few sentences.

5.3 NMT Training Data

We conduct experiments on Kazakh and Gujarati.
They are spoken by 22M and 55M speakers world-
wide, respectively. Additionally, the languages
have few parallel but some comparable and/or
monolingual data available, which makes them
ideal and important candidates for our low-resource
unsupervised NMT research.

Our monolingual data for LM pre-training of
these languages (shown in Table 1) are carefully
chosen from the same topics (for Wikipedia) and
the same domain (for news data). For the news
data, we also select data from similar time peri-
ods (late 2010s) to mitigate domain discrepancy
between source and target languages as per previ-
ous research (Kim et al., 2020). We also randomly
downsample the English part of WMT NewsCrawl
corpus so that our English and the corresponding
foreign news data are equal in size.

6 Results & Analysis

6.1 Tatoeba Dataset

We mine bitexts on the Tatoeba test set in 64 gener-
ally low-resource languages (listed in Section 5.1)
using the primary mining procedure described in
Algorithm 1 with intersection retrieval, in addition
to seven different secondary mining procedures,
namely:

1. Cosine similarity (Reimers and Gurevych,
2020)

2. Margin scoring with no threshold
3. Margin scoring, threshold=1.06
4. Margin scoring, threshold=1.20 (shown to be

optimal on BUCC mining task 10)
5. Margin scoring using EN sentences translated

to XX
6. Margin scoring using XX sentences translated

to EN
7. The strict intersection of pairs generated by

methods 2, 5, and 6
8. The pairwise intersection of pairs generated

by method 2, 5, and 6 (majority voting)
We report F1 instead of accuracy because the in-
tersection methods (in both primary and secondary
procedures) permit less than 100% recall.

The results are broken down across languages by
resource availability (as in "high-resource" or "low-

10https://www.sbert.net/examples/
applications/parallel-sentence-mining/
README.html
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Procedure Average gain
over baseline
(best results
only)

Average gain
over baseline
(all results)

Average gain
over baseline
(langs with
transl. support)

Best results
by resource
capacity*

Average gain
over baseline
(by resource
capacity)

Margin scoring
only (Artetxe and
Schwenk, 2019a)

+6.9 +5.2 +3.6 Level 0: 6 lang.
Level 1: 18 lang.
Level 2: 2 lang.
Level 3: 2 lang.
2†, 6‡

Level 0: +7.2
Level 1: +5.2
Level 2: +1.8
Level 3: +3.4
Level 4: +1.0

xx-to-en transla-
tion→ margin
scoring

+5.2 +3.3 +3.3 Level 0: 1 lang.
Level 1: 7 lang.
Level 2: 2 lang.
Level 3: 7 lang.
Level 4: 1 lang.

Level 0: +3.9
Level 1: +2.8
Level 2: +0.1
Level 3: +4.3
Level 4: +1.8

Bidirectional
translation→
margin scoring
→ pairwise inter-
section of three
sets of sentence
pairs

+4.6 +4.0 +4.0 Level 0: 2 lang.
Level 1: 3 lang.
Level 2: 2 lang.
Level 3: 1 lang.

Level 0: +7.3
Level 1: +3.9
Level 2: +2.6
Level 3: +4.0
Level 4: +1.0

* Using resource categorizations from Joshi et al. (2020) † Extinct languages ‡ Constructed (artificial)
languages

Table 2: Average gain (F1) over the baseline for each mining method on the low-resource subset of the Tatoeba
test data, broken down by several categories. The baseline is the F1 achieved using raw cosine similarity with
LaBSE. The "best results" for a given method are those results on which that method achieved superior results
compared to all other methods. "All results" refers to all languages in the Tatoeba test set.

Corpus Language pair
kk→en en→kk gu→en en→gu

Unsupervised
Kim et al. (2020) 2.0 0.8 0.6 0.6
Supervised
WMT’19 (Kim et al., 2020) 10.3 2.4 9.9 3.5
WMT’19 (Tran et al., 2020) Iter 1 9.8 3.4 8.1 8.1
WMT’19 (Tran et al., 2020) Iter 3 13.2 4.3 18.0 16.9
Google MT (Wu et al., 2016) 28.9 23.1 26.2 31.4
Our pipeline: unsup.+sup.
WMT’19 11.2 7.3 5.7 10.2
Threshold=1.06 6.6 4.1 16.2 19.8
Majority voting 8.6 6.1 16.4 20.2
Threshold=1.06+WMT’19 11.8 7.9 15.4 18.5
Majority voting+WMT’19 12.6 9.0 15.8 19.1

Table 3: NMT training schemes and corresponding BLEU scores on WMT’19 test set. We train supervised systems with
gold-standard data, comparable/pseudoparallel ("silver-standard") data, and combinations of both. We also try supplementing
unsupervised training with each of these three types of supervised data. We provide a supervised benchmark from Wu et al.
(2016).

resource"), as ranked on a 0-5 scale11 according to
Joshi et al. (2020). These results are summarized in
Table 2. We only display results for simple margin
scoring (with no threshold), margin scoring with
XX-to-EN translation beforehand, and margin scor-
ing with bidirectional pre-translation + majority

11rb.gy/psmfnz

voting, as these are the best-performing methods
for the Tatoeba bitext retrieval task.

Because many of the languages in Table 2 lack
support in GNMT, the dominant method overall is
simple margin scoring, being the best-performing
method on 28/64 languages12 and seeing an aver-

126/64 languages lack a resource categorization, so we re-
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age gain over the baseline of +5.2 for all languages
and +6.9 for languages on which it was the best-
performing method. However, for languages with
translation support (i.e. for which a supervised
NMT system is available), the majority voting ap-
proach won out, with an average gain over the
baseline of +4.0, in contrast to vanilla margin scor-
ing (+3.6). In fact, among these 38 languages,
vanilla margin scoring outperformed translation-
based or hybrid (intersection) methods on only 11
languages.

Simply translating non-English sentences into
English before mining (Method 6) also performed
well, netting best results on 18 languages and
outperforming other methods on resource level 3
(+4.3 F1 over baseline) and level 4 (+1.8) lan-
guages. Meanwhile, pairwise intersection per-
formed best on level 0 (+7.3) and level 2 (+2.6)
languages, with vanilla margin scoring outperform-
ing other approaches on level 1 (+5.2).

These results show that the optimal choice of
mining approach is very much dependent on the re-
source availability of the languages involved (most
directly, the amount of data available during pre-
training), and that if a supervised MT system is
already available for a given language, that sys-
tem can be used for efficient mining of parallel or
pseudo-parallel sentences, in tandem with a pre-
trained language model like LaBSE. As shown in
Table 2, even high-resource (i.e. level 4) languages
can be helped by pre-translation of paired corpora.

6.2 NMT

In Table 3, we show the performance in terms of
BLEU scores of various NMT training schemes
on the same WMT’19 test set. We train the su-
pervised MT part of our pipeline system with
gold-standard (WMT’19) data, our mined compa-
rable/pseudoparallel ("silver-standard") data, and
combinations of both i.e., training with compara-
ble data followed by training with gold-standard
data. We also provide Google massively multilin-
gual MT performance on the same WMT’19 test
set (Wu et al., 2016).

As can be seen in Table 3, our method of mining
bitext without thresholding results in higher BLEU
performance than when using bitexts mined using
margin scoring with a threshold of 1.06, which is
a commonly used threshold recommended by pre-
vious works for margin-based mining (Schwenk

port results on the remaining 58

et al., 2019b,a). Our preferred method also results
in the best en→gu performance, which outperforms
previous unsupervised or supervised works. It out-
performs the best previous work that uses WMT’19
data and iterative bitext mining by +3.3 BLEU.
Since we do not perform iterative mining, if we
consider the same previous work without iterative
mining i.e., Tran et al. (2020) Iter 1, our approach
outperforms that model by +12.1 BLEU in en→gu
direction and by +8.3 BLEU in gu→en direction.

When combined with supervised i.e., gold-
standard, data for training, our method for min-
ing bitext which does not use any thresholding
(majority voting+WMT’19) also outperforms the
same model which uses bitext mined using mar-
gin scoring with a threshold of 1.06 (Thresh-
old=1.06+WMT’19). Majority voting+WMT’19
also results in the best en→kk performance, which
outperforms previous unsupervised or supervised
works. It outperforms the best previous work that
uses WMT’19 data and iterative bitext mining by
+4.7 BLEU. Since we do not perform iterative min-
ing, if we consider the same previous work without
iterative mining i.e., Tran et al. (2020) Iter 1, our
approach outperforms that model by +5.6 BLEU
in the en→kk direction and by +2.8 BLEU in the
kk→en direction. It is also worth noting that for
training our pipeline model we use the default hy-
perparameter settings suggested in the XLM repos-
itory, while previous works perform extensive hy-
perparameter tuning. We believe our performance
can be improved further by tuning our hyperpa-
rameter settings, but for brevity leave this for a
future study. These results on low resource MT fur-
ther demonstrate the superiority of our method for
mining bitext without thresholding—compared to
margin scoring with thresholding—for downstream
low-resource MT applications. To our knowledge,
we are the first to thoroughly investigate secondary
filtering methods for selecting bitexts following a
primary, similarity-based mining procedure.

7 Conclusion

We propose a novel method of mining sentence
pairs from both comparable and parallel corpora,
and demonstrate success on both the Tatoeba gold-
standard similarity search task and on mining
pseudo-parallel sentences for downstream NMT
training. We uncover the problematic nature of
setting a similarity score threshold for this task,
particularly in the context of document-level min-
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ing. We introduce a heuristic algorithm that filters
translations from non-translations by voting on sen-
tence pairs mined in three different ways, which
avoids having to laboriously train and re-train NMT
systems to tune a similarity score threshold.
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A Appendix

Procedure afr amh ang arq arz ast awa aze bel ben ber bos bre
Raw cosine similarity
(Acc=F1) 97.4 94 64.2 46.2 78.4 90.6 73.2 96.1 96.2 91.3 10.4 96.2 17.3
Margin scoring, intersection,
no threshold (F1) 98.7 94.2 73.4 57.2 84.6 94.3 83.4 97.4 97.5 92.4 14.2 96.6 21.5
Precision 99.9 96.9 88.4 80.0 93.6 98.3 95.5 99.3 99.1 96.6 30.9 98.0 38.5
Recall 97.6 91.7 62.7 44.5 77.1 90.6 74.0 95.6 95.9 88.5 9.2 95.2 14.9
Margin scoring, intersection,
threshold = 1.06 (F1) 98.2 94.5 72.9 56.0 84.0 94.2 80.5 97.2 97.3 91.8 13.4 96.4 21.3
Precision 100 97.5 90.1 85.0 95.7 99.1 97.0 99.3 99.1 96.9 44.4 98.0 54.1
Recall 96.5 91.7 61.2 41.7 74.8 89.8 68.8 95.3 95.6 87.3 7.9 94.9 13.3
Margin scoring, intersection,
threshold = 1.20 (F1) 89.5 82.5 59.1 43.6 76.9 92.4 57.2 89.6 94.8 78.6 11.8 90.5 13.4
Precision 100 100 96.6 97.3 98.1 99.1 98.9 99.8 99.5 99.1 90.0 99.0 92.3
Recall 81.0 70.2 42.5 28.1 63.3 86.6 40.3 81.4 90.5 65.1 6.3 83.3 7.2
Margin scoring, intersection,
en-xx (F1) 98.4 93.2 * * * * * 96.7 97.6 91.8 * 96.3 *
Precision 99.6 96.8 * * * * * 98.6 99.1 96.5 * 98.2 *
Recall 97.3 89.9 * * * * * 94.9 96.1 87.6 * 94.4 *
Margin scoring, intersection,
xx-en (F1) 99.0 95.7 * * * * * 97.6 97.6 92.0 * 97.3 *
Precision 99.8 98.1 * * * * * 99.0 99.1 96.3 * 98.8 *
Recall 98.2 93.5 * * * * * 96.3 96.1 88.0 * 95.8 *
Margin scoring, intersection,
strict intersection (F1) 98.1 93.7 * * * * * 96.2 96.9 89.8 * 96.0 *
Precision 100 100 * * * * * 99.8 99.8 99.3 * 100 *
Recall 96.2 88.1 * * * * * 92.8 94.2 82.0 * 92.4 *
Margin scoring, intersection,
majority vote (F1) 98.9 95.4 * * * * * 97.5 97.9 93.0 * 97.1 *
Precision 99.9 98.7 * * * * * 99.3 99.6 97.9 * 98.8 *
Recall 97.9 92.3 * * * * * 95.9 96.2 88.6 * 95.5 *
Procedure cbk ceb cha cor csb cym dsb dtp epo eus fao fry gla
Raw cosine similarity
(Acc=F1) 82.5 70.9 39.8 12.8 56.1 93.6 69.3 13.3 98.4 95.8 90.6 89.9 88.8
Margin scoring, intersection,
no threshold (F1) 89.5 79.3 49.3 18.8 69.5 96.2 80.7 18.8 99.0 96.8 94.9 93.7 91.9
Precision 96.7 91.1 65.9 45.2 86.5 98.9 94.7 37.5 99.7 98.4 98.0 96.9 97.1
Recall 83.2 70.2 39.4 11.9 58.1 93.6 70.4 12.5 98.4 95.2 92.0 90.8 87.3
Margin scoring, intersection,
threshold = 1.06 (F1) 87.1 78.5 47.8 16.2 68.0 95.6 79.1 18.5 99.0 96.4 93.4 93.1 91.2
Precision 97.8 93.3 75.0 64.1 90.2 99.1 95.6 56.1 99.9 98.5 98.7 97.5 97.3
Recall 78.6 67.7 35.0 9.3 54.5 92.3 67.4 11.1 98.2 94.4 88.5 89.0 85.8
Margin scoring, intersection,
threshold = 1.20 (F1) 71.5 67.4 44.3 9.0 54.2 86.0 93.4 15.2 97.9 92.6 84.5 89.5 80.3
Precision 99.6 98.7 85.4 100 95..0 99.3 99.6 87.4 99.9 99.2 99.0 99.3 98.9
Recall 55.7 51.2 29.9 4.7 37.9 75.8 46.6 8.3 96.0 86.8 73.7 81.5 67.6
Margin scoring, intersection,
en-xx (F1) * 78.6 * 15.0 * 96.3 76.2 * 98.5 96.4 * 96.4 92.6
Precision * 90.6 * 36.0 * 98.9 95.0 * 99.5 98.6 * 98.8 97.1
Recall * 69.3 * 9.5 * 93.9 63.7 * 97.6 94.3 * 94.2 88.4
Margin scoring, intersection,
xx-en (F1) * 86.1 * 17.3 * 97.3 67.3 * 98.9 97.6 * 95.6 93.9
Precision * 94.2 * 41.8 * 98.9 85.5 * 99.6 98.8 * 97.6 97.5
Recall * 79.2 * 10.9 * 95.7 55.5 * 98.3 96.4 * 93.6 90.6
Margin scoring, intersection,
strict intersection (F1) * 77.3 * 13.0 * 95.2 63.0 * 98.5 96.2 * 93.9 89.9
Precision * 99.2 * 68.6 * 100 99.1 * 100 99.5 * 98.7 99.3
Recall * 63.3 * 7.2 * 90.8 46.1 * 97.1 93.1 * 89.6 82.1
Margin scoring, intersection,
majority vote (F1) * 81.8 * 18.7 * 96.7 79.4 * 98.8 96.8 * 95.8 93.5
Precision * 96.0 * 47.9 * 99.1 97.3 * 99.6 98.6 * 98.8 98.0
Recall * 71.3 * 11.6 * 94.4 67.0 * 98.1 95.2 * 93.1 89.4
Procedure gle gsw hsb ido ile ina isl jav kab kaz khm kur kzj
Raw cosine similarity
(Acc=F1) 95.0 52.1 71.2 90.9 87.1 95.8 96.2 84.4 6.2 90.5 83.2 87.1 14.2
Margin scoring, intersection,
no threshold (F1) 96.6 62.0 81.6 95.1 93.0 97.4 97.9 92.2 7.7 92.6 86.8 92.1 20.8
Precision 98.7 85.1 94.6 98.7 98.4 99.0 99.4 98.9 19.4 96.8 93.0 98.1 41.3
Recall 94.6 48.7 71.8 91.7 88.1 95.9 96.4 86.3 4.8 88.7 81.3 86.8 13.9
Margin scoring, intersection,
threshold = 1.06 (F1) 95.9 60.2 79.7 94.1 91.7 96.9 97.5 91.6 7.3 92.2 86.4 91.4 20.0
Precision 98.9 89.8 94.9 99.0 99.0 99.0 99.4 99.4 31.3 96.9 94.7 98.3 55.2
Recall 93.1 45.3 68.7 89.7 85.4 95.0 95.7 84.9 4.1 87.8 79.5 85.4 12.2
Margin scoring, intersection,
threshold = 1.20 (F1) 84.7 43.7 67.8 88.5 77.9 94.5 91.0 83.6 5.0 85.7 76.4 82.9 15.1
Precision 100 97.1 99.6 99.9 99.8 99.4 99.9 99.3 78.8 99.1 98.7 99.7 94.3
Recall 73.5 28.2 51.3 79.5 63.8 90.0 83.6 72.2 2.6 75.5 62.3 71.0 8.2
Margin scoring, intersection,
en-xx (F1) 96.9 58.7 76.6 80.4 76.4 96.3 91.9 * * 92.6 87.3 92.0 *
Precision 98.8 80.6 92.9 91.8 90.1 99.4 96.4 * * 97.0 93.9 97.5 *
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Recall 95.2 46.2 65.2 71.6 66.3 93.5 87.8 * * 88.7 81.6 97.1 *
Margin scoring, intersection,
xx-en (F1) 97.7 59.3 80.0 82.1 78.7 95.8 80.8 * * 93.5 87.5 95.6 *
Precision 99.0 83.1 93.1 95.4 93.0 98.6 93.8 * * 96.8 93.5 99.2 *
Recall 96.4 46.2 70.2 72.0 68.2 93.2 71.0 * * 90.4 82.1 92.2 *
Margin scoring, intersection,
strict intersection (F1) 95.6 55.1 74.7 73.2 67.0 94.9 78.2 * * 91.2 85.6 90.3 *
Precision 99.6 91.2 96.1 100 99.8 99.7 99.8 * * 99.2 98.2 99.4 *
Recall 92.0 39.3 61.2 57.7 50.4 90.6 64.3 * * 84.3 75.9 82.7 *
Margin scoring, intersection,
majority vote (F1) 97.8 62.3 81.7 91.1 88.4 97.1 96.6 * * 93.1 87.8 94.0 *
Precision 99.3 86.4 94.8 99.5 99.3 99.1 99.3 * * 97.5 94.9 99.2 *
Recall 73.5 28.2 51.3 79.5 63.8 90.0 83.6 72.2 2.6 75.5 62.3 71.0 8.2
Procedure lat lfn mal mhr nds nno nov oci orv pam pms swg swh
Raw cosine similarity
(Acc=F1) 82.0 71.2 98.9 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0 65.2 88.6
Margin scoring, intersection,
no threshold (F1) 89.0 80.7 99.3* 26.3 89.0 97.5 85.4 78.7 57.4 17.9 78.9 80.4 93.2
Precision 96.8 93.4 99.7 46.0 96.9 99.4 93.5 90.6 78.6 34.6 92.8 95.1 97.7
Recall 82.4 71.0 98.8 18.4 82.2 95.7 78.6 69.6 45.3 12.1 68.6 69.6 89.0
Margin scoring, intersection,
threshold = 1.06 (F1) 87.2 79.4 99.3* 26.3 87.6 97.2 83.0 77.7 55.9 17.4 76.3 77.0 92.5
Precision 97.6 94.7 99.7 59.3 98.3 99.5 94.5 93.1 83.6 50.2 94.4 96.0 98.8
Recall 78.7 68.4 98.8 16.9 79.1 95.1 73.9 66.6 42.0 10.5 64.0 64.3 86.9
Margin scoring, intersection,
threshold = 1.20 (F1) 72.6 68.8 96.4 18.0 74.8 92.1 77.3 65.8 37.0 11.7 63.0 72.3 81.8
Precision 99.5 98.5 99.7 90.1 99.3 99.9 98.8 98.8 96.5 85.1 98.4 98.5 100
Recall 57.2 52.9 93.3 10.0 60.0 85.5 63.4 49.3 22.9 6.3 46.3 57.1 69.2
Margin scoring, intersection,
en-xx (F1) 83.5 * 98.0 * 86.0 97.3 * * * * * * 94.9
Precision 95.1 * 99.5 * 97.5 99.3 * * * * * * 98.6
Recall 74.4 * 96.5 * 76.9 95.4 * * * * * * 91.5
Margin scoring, intersection,
xx-en (F1) 86.1 * 98.2 * 83.8 97.7 * * * * * * 95.3
Precision 95.6 * 99.6 * 95.2 99.4 * * * * * * 98.1
Recall 78.3 * 96.9 * 74.9 96.1 * * * * * * 92.6
Margin scoring, intersection,
strict intersection (F1) 81.7 * 97.1 * 80.1 96.6 * * * * * * 92.1
Precision 98.2 * 100 * 99.3 99.8 * * * * * * 100
Recall 69.9 * 94.3 * 67.2 93.7 * * * * * * 85.4
Margin scoring, intersection,
majority vote (F1) 88.8 * 99.2 * 88.4 97.8 * * * * * * 95.5
Precision 97.1 * 99.9 * 98.3 99.6 * * * * * * 99.4
Recall 81.7 * 98.5 * 80.4 96.0 * * * * * * 91.2
Procedure tam tat tel tgl tuk tzl uig uzb war wuu xho yid
Raw cosine similarity
(Acc=F1) 90.7 87.9 98.3 97.4 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0 *
Margin scoring, intersection,
no threshold (F1) 93.0 92.0 99.1* 98.6 86.8 71.0 95.4 91.1 75.8 94.8 94.2 95.2 *
Precision 97.5 97.4 99.6 99.7 95.8 82.3 98.3 96.8 89.5 98.8 97.7 98.7 *
Recall 88.9 87.1 98.7 97.6 79.3 62.5 92.7 86.0 65.7 91.1 90.8 92.0 *
Margin scoring, intersection,
threshold = 1.06 (F1) 92.8 91.3 99.1* 98.4 87.3 70.9 95.1 90.7 73.8 94.0 94.2 94.3 *
Precision 97.8 97.9 99.6 99.8 99.4 87.3 98.3 97.1 93.5 99.0 97.7 99.1 *
Recall 88.3 85.5 98.7 97.1 77.8 59.6 92.2 85.0 60.9 89.4 90.8 90.0 *
Margin scoring, intersection,
threshold = 1.20 (F1) 88.9 83.9 97.1 93.3 58.8 56.0 91.5 85.8 57.6 86.6 87.6 87.6 *
Precision 98.8 98.9 100 100 98.8 91.3 99.6 99.4 99.8 99.5 97.4 99.5 *
Recall 80.8 72.8 94.4 87.5 41.9 40.4 84.6 75.5 40.5 76.7 79.6 78.2 *
Margin scoring, intersection,
en-xx (F1) 93.0 89.8 98.5 97.5 85.9 * 94.8 93.5 * * 92.9 93.6 *
Precision 98.2 95.4 99.1 99.2 95.8 * 98.2 98.7 * * 98.4 98.2 *
Recall 88.3 84.8 97.9 95.8 77.8 * 91.6 88.8 * * 88.0 89.5 *
Margin scoring, intersection,
xx-en (F1) 93.7 93.9 97.6 99.4 97.0 * 95.5 95.2 * * 97.2 97.2 *
Precision 97.5 97.7 99.1 99.9 99.5 * 98.6 97.8 * * 97.9 98.8 *
Recall 90.2 90.4 96.2 98.9 94.6 * 92.5 92.8 * * 96.5 95.8 *
Margin scoring, intersection,
strict intersection (F1) 92.0 89.9 97.4 97.6 79.9 * 93.7 91.2 * * 91.3 92.7 *
Precision 99.2 99.5 99.6 100 100 * 99.7 100 * * 98.4 99.6 *
Recall 85.7 81.9 95.3 95.3 66.5 * 88.5 83.9 * * 85.2 86.7 *
Margin scoring, intersection,
majority vote (F1) 93.7 92.5 99.1* 98.8 94.0 * 95.4 93.6 * * 95.7 95.9 *
Precision 98.6 97.9 99.6 100 100 * 98.7 99.2 * * 98.5 99.1 *
Recall 89.3 87.6 98.7 97.6 88.7 * 92.3 88.6 * * 93.0 92.8 *

Table 4: Tatoeba test set results for a subset of low-resource, English-aligned language pairs, broken down by the mining
method used. These language pairs are ones without parallel data for the multilingual distillation process described in
Reimers and Gurevych (2020) (cf. Table 10 in that paper). Note that LaBSE has training data for most of these languages.
Descriptions of the various mining methods are found in Section 4.
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Abstract

In this paper, we introduce a sentence-level
comparable text corpus crawled and created
for the less-resourced language pair, Manipuri
(mni) and English (eng). Our monolingual
corpora comprise 1.88 million Manipuri sen-
tences and 1.45 million English sentences,
and our parallel corpus comprises 124,975
Manipuri-English sentence pairs. These data
were crawled and collected over a year from
August 2020 to March 2021 from a local news-
paper website called ‘The Sangai Express.’
The resources reported in this paper are made
available to help the low-resourced languages
community for MT/NLP tasks1.

1 Introduction

The web is immense, free, and available to all (Kil-
garriff and Grefenstette, 2003). Several studies
have proposed the use of the web as a corpus for
teaching and research (Rundell, 2000; Robb, 2003;
Fletcher, 2001, 2004; Kilgarriff and Grefenstette,
2003). Languages such as English and Chinese
are widely published and are well-equipped with
resources and tools. Availability of data for low-
resource languages on the web is increasing day
by day (Schryver, 2002) contributing hugely to
bridge the gap between high-resource and low-
resource languages. In addition, it is important
to mention the language in discussion states #Ben-
derRule (Bender, 2019) to minimize the existing di-
vide of languages in NLP. In this paper, our work is
to equip a less-resourced language pair, Manipuri–
English with resources.

Our objective is to increase the size of available
data for Manipuri–English language pairs. Our
goal is to build a sentence-level comparable corpus
for Manipuri–English2 from a newspaper website

1The corpus is available from http://
lepage-lab.ips.waseda.ac.jp/en/projects/
meiteilon-manipuri-language-resources/

2The codes from ISO 639-2 for these languages are as
follows: Manipuri (mni) and English (eng)

called “The Sangai Express”.3 We introduce the
creation of a comparable corpus named “Ema-lon
Manipuri Corpus”, (translation: our mother tongue
Manipuri Corpus) abbreviated as the EM Cor-
pus, of the low-resourced language pair, Manipuri–
English. We report on the method for creating the
comparable corpus. We also tried to extract parallel
corpus from our comparable data. Additionally, we
provide the table that maps the corresponding glyph
points to its Unicode codepoints for Manipuri.

The structure of the paper is as follows. Sec-
tion 2 describes previous work. Sections 3 and 4
describes the characteristics of the language and
the data. Section 5 presents the methodological
aspects. Section 6 provides the details of the ex-
periment and its analysis. Section 7 concludes and
proposes future directions.

2 Related Work

Several works on the web as a corpus (Rundell,
2000; Robb, 2003; Fletcher, 2001, 2004; Kilgarriff
and Grefenstette, 2003) for many languages have
been reported from the past decades (Schryver,
2002). The use of web-based Manipuri corpus
has been reported by Singh and Bandyopadhyay
(2010) for the identification of reduplicated multi-
word expression (MWE) and multi-word named
entity recognition (NER). PMIndia is yet another
crawled data set of 13 Indian languages with En-
glish. This data set includes Manipuri–English
language pair data. IndicCorp, sourced from news
crawls, is a large monolingual corpus of 11 In-
dian languages from two different language fami-
lies (Indo-Aryan branch and Dravidian) (Kakwani
et al., 2020). Some of the familiar datasets obtained
from web crawls are The Leipzig corpus (Goldhahn
et al., 2012), CommonCrawl, and The OSCAR
project (Ortiz Suárez et al., 2019), none of which
contains the Manipuri–English language pair in it.

3https://www.thesangaiexpress.com/
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Fung and Cheung (2004) analyses different types
of bilingual corpora, ranging from parallel, noisy
parallel, comparable, very-non-parallel corpora.
Types of comparable corpus includes: (i) non-
sentence-aligned, non-translated bilingual docu-
ments that are topic-aligned. Example, newspaper
articles that are published on the same date in dif-
ferent languages, and (ii) non-aligned sentences
that are mostly bilingual translations of the same
document. Our work is close to the former.

3 Manipuri (Meiteilon)

Manipuri, locally known as Meiteilon, is an Indian
language from the Sino-Tibetan language family.
It is highly agglutinative in nature. Manipuri fol-
lows the SOV (Subject-Object-Verb) syntax struc-
ture. As the predominant language of the Indian
state Manipur, Manipuri has about two million na-
tive speakers. As a language classified as ‘vulnera-
ble language’ by UNESCO (Moseley and Nicolas,
2010), it is one of the two Indian languages listed
in the 8th Schedule of the Indian Constitution as
endangered.

Manipuri has two writing systems: Eastern Na-
gari Script (also known as the Bengali Script) and
Meitei Mayek. We use Manipuri written in Eastern
Nagari Script for all of our works. Again, Manipuri
is a low-resourced language that has not been ex-
plored much in computational linguistics. One of
the reasons being the limited amount of available
resources. In this paper, we aim to bridge this gap
by sharing our resources publicly.

4 Ema-lon Manipuri Corpus (EM
Corpus)

The amount of resources for Manipuri–English
language pair is limited for performing Machine
Translation (MT)/Natural Language Processing
(NLP) tasks (Huidrom and Lepage, 2020). For
example, there are 41,669 sentences monolingually
and 7,419 parallel sentences with English in the
open-sourced monolingual and parallel data from
the pmindia dataset4 (Haddow and Kirefu, 2020).
Other sources include TDIL-DC5, where the data
is available upon an undertaking agreement. A
standard site such as OPUS6 (Tiedemann, 2012) is
limited in the coverage of low-resource Asian and

4http://data.statmt.org/pmindia/
5https://www.tdil-dc.in/
6http://opus.nlpl.eu/index.php

South Asian Languages including, Manipuri. This
motivated us to create our comparable corpus.

EM Corpus is built for Manipuri–English lan-
guage pair. This corpus is created by collect-
ing news articles daily from a newspaper website
known as “The Sangai Express,” which is available
in both languages. An average of 14,000 sentences
is crawled for this language pair daily. The re-
ported data is being collected from August 2020 to
March 2021, as shown in Figure 1. The domain of
the EM Corpus includes general articles, news on
state, national and international affairs, sports and
entertainment news, and the editorial. The English
articles are topic-aligned with the Manipuri articles,
however, they are not the exact bilingual translation
of each other but rather the summary or the gist of
the Manipuri news.

The monolingual datasets contain 1.88 million
Manipuri sentences and 1.45 million English sen-
tences and the parallel corpora contain 124,975
sentences. The number of words per sentence in
Manipuri and English is reported to be 17 and 23
monolingually and, 21 and 26 in parallel. It is to
note that the number of word types in each lan-
guage reflects the number of sentences and the
structure of the language: it is natural that the more
the sentence pairs, the higher the number of word
types as reported in Table 1. It is reported that the
average word length of Manipuri is more than that
of English monolingually and in parallel, however,
the average word types length is the same for both
the languages.

5 Methodology

In this section, we introduce the creation of EM
corpus and extraction of parallel corpus from the
comparable data.

• Crawling and Extraction. The news arti-
cles which are available in both languages
were crawled and extracted on a daily basis.
The news updates in ‘The Sangai Express’ are
available in a section-based format and, each
section contains articles in an infinite scroll
format. The request for the lists of URLs fol-
lows a simple form, and so we source our data
with a web scraper for each language which
we built. Since the class in the HTML of
each article corresponds to each other, doc-
ument alignment was straightforward. Fig-
ure 1 shows the statistics of the data collec-
tion obtained per month from August 2020
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Data set
Language
pair sentences words words

/ sent.
word
length

word
types

word
types
length

Monolingual Manipuri 1,880,035 31,124,061 17 6 95,380 8
English 1,450,053 33,667,493 23 5 108,812 8

Parallel Manipuri 124,975 2,589,109 21 6 74,516 8
English 3,289,671 26 5 64,501 8

Table 1: Detailed statistics on the EM Corpus.
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Figure 1: Statistics of the monolingual and parallel data
from the EM Corpus.

to March 2021. To extract the content of
the articles from the HTML, we use Beau-
tifulSoup7 (Richardson, 2007) which is a rich
python library for parsing HTML/XML doc-
uments, which on inspection performs well
in extracting the body of the articles. Addi-
tionally, we use cronTab (Reznick, 1993) to
automate our news crawl.

7https://www.crummy.com/software/
BeautifulSoup

• Text Processing. The data crawled for Ma-
nipuri encoded in nature as the website uses
its custom web font file for Manipuri. To ob-
tain the correct text for Manipuri, we map the
glyph points to the exact Unicode codepoints.
We identified the corresponding matches in
this process manually. After obtaining the
precise format of the font for Manipuri, we
split the articles into sentences for sentence
alignment using Moses splitter (Koehn et al.,
2007) by taking into account about the sen-
tence delimiter, punctuation, and list items of
Manipuri in Eastern Nagari script (Bengali
script).

• Sentence Alignment. We use Hu-
nalign (Varga et al., 2005), a sentence
aligner that aligns bilingual text based on the
heuristics of sentence-length information and
a bilingual dictionary (if available). It is to
be noted that Hunalign does not deal with
changes of sentence order like most sentence
aligners. Due to the absence of the dictionary
for Manipuri, we use the automatic dictionary
built based on the alignment. We retain 1-1
alignments obtained from filtering sentences
with a threshold that discards score lower
than 0.3.

6 Experiment and result

The paper discusses the creation of a comparable
corpus from scratch and extracts parallel sentences
from the comparable data. As mentioned earlier,
the nature of the sentences in the two documents
is such that the English news provides a summary
of the Manipuri news. Although our documents
are topic-aligned, the sentences are not present in a
one-to-one correspondence. This explains the dif-
ference in the number of sentences monolingually.

Further, we use Hunalign to extract the parallel
sentences from EM corpus. We wanted to study
the relevance of the parallel sentences extracted
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Figure 2: The results are from the SMT experiments
(square and brown).

from the comparable data of the aforementioned
nature. We designed a simple experiment on statis-
tical machine translation. The models were trained
on 5,000 sentences from PMIndia dataset and incre-
mented by 10,000 parallel sentences from our EM
corpus in each iteration. Our validation and test
data are from the PMIndia (Haddow and Kirefu,
2020) dataset whose domain is the official doc-
uments from the Prime Minister Office of India.
Figure 2 shows the result of the experiment.

As we progress with the adding of more training
data, we observe a decrease in the BLEU score
which is expected. It is to be noted that the de-
crease is not linear in nature. The data that we add
other than the baseline are obtained from the news
crawls which are not standardised translated data.
Although, the sentences are aligned, the parallel
sentences are not exact translations of one another,
instead comparable. The sudden increase of the
BLEU score could be the result of seeing similar
sentences crawled from the news articles related to
the Prime Minister Office while training.

7 Conclusion

This work provided an insight into corpus cre-
ation for Manipuri–English language pair. Firstly,
we studied the creation of the comparable corpus,
EM corpus for the low-resourced language pair
Manipuri–English. Secondly, we discussed the na-
ture of the comparable corpus for Manipuri-English
language pair. We report the statistics on these data
which is built by collecting from the web for over
a year, from August 2020 to March 2021. The
appendices provide information on mapping the

glyph points to the Unicode codepoints for Ma-
nipuri. This is a necessary step due to the nature
of the news articles that were crawled. The Sangai
Express uses its custom web font file. This table
can be referred if you are crawling independently
to build your own corpus.

In the future, we would like to inspect the possi-
bility of increasing the size of data by using data-
augmentation techniques. Also, we welcome ev-
eryone in improving and contributing to these re-
sources.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Christopher Moseley and Alexandre Nicolas. 2010. At-
las of the world’s languages in danger, 3 edition.
UNESCO, France.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipelines for process-
ing huge corpora on medium to low resource in-
frastructures. In Proceedings of the Workshop on
Challenges in the Management of Large Corpora
(CMLC-7) 2019. Cardiff, 22nd July 2019, pages
9 – 16, Mannheim. Leibniz-Institut für Deutsche
Sprache.

Larry Reznick. 1993. Using cron and crontab. Sys Ad-
min, 2(4):29–32.

Leonard Richardson. 2007. Beautiful soup documenta-
tion. April.

Thomas N. Robb. 2003. Google as a corpus tool? ETJ
Journal, 4(1):20–21.

Michael Rundell. 2000. The biggest corpus of all. Hu-
manising language teaching, 2(3).

Gilles-Maurice de Schryver. 2002. Web for/as Corpus:
A Perspective for the African Languages. Nordic
Journal of African Studies, 11(2):266–282.

Thoudam Doren Singh and Sivaji Bandyopadhyay.
2010. Web based Manipuri corpus for multiword
NER and reduplicated MWEs identification using
SVM. In Proceedings of the 1st Workshop on South
and Southeast Asian Natural Language Processing,
pages 35–42, Beijing, China. Coling 2010 Organiz-
ing Committee.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

D. Varga, L. Németh, P. Halácsy, A. Kornai, V. Trón,
and V. Nagy. 2005. Parallel corpora for medium
density languages. In In Proceedings of the RANLP
2005, pages 590–596, Prague, Czech Republic.

64



E
nc

od
ed

gl
yp

h
po

in
ts

’’
’!

’
’"

’
’#

’
’$

’
’%

’
’&

’
"’

"
’(

’
’)

’

co
rr

ec
t

U
ni

co
de

\u
00

20
\u

00
21

\u
09

85
\u

09
88

\u
09

8A
\u

00
25

\u
09

8F
\u

09
90

\u
00

28
\u

00
29

E
nc

od
ed

gl
yp

h
po

in
ts

’*
’

’+
’

’,’
’-

’
’.’

’/
’

’0
’

’1
’

’2
’

’3
’

co
rr

ec
t

U
ni

co
de

\u
09

93
\u

09
94

\u
00

2C
\u

00
2D

\u
00

2E
\u

09
ac

\u
09

cd
\u

20
0d

\u
09

E
6

\u
09

E
7

\u
09

E
8

\u
09

E
9

E
nc

od
ed

gl
yp

h
po

in
ts

’4
’

’5
’

’6
’

’7
’

’8
’

’9
’

’:
’

’;
’

’=
’

’>
’

co
rr

ec
t

U
ni

co
de

\u
09

E
A

\u
09

E
B

\u
09

E
C

\u
09

E
D

\u
09

E
E

\u
09

E
F

\u
00

3A
\u

09
C

E
\u

09
A

5
\u

09
A

8

E
nc

od
ed

gl
yp

h
po

in
ts

’?
’

’@
’

’A
’

’B
’

’C
’

’D
’

’E
’

’F
’

’G
’

’H
’

co
rr

ec
t

U
ni

co
de

\u
00

3F
\u

09
83

\u
09

95
\u

09
95

\u
09

cd
\u

09
95

\u
09

95
\u

09
cd

\u
09

9f

\u
09

95
\u

09
cd

\u
09

a4
\u

09
cd

\u
09

ac

\u
09

95
\u

09
cd

\u
09

ac

\u
09

95
\u

09
cd

\u
09

ae

\u
09

95
\u

09
cd

\u
09

b8

\u
20

0d
\u

09
cd

\u
09

95

E
nc

od
ed

gl
yp

h
po

in
ts

’I
’

’J
’

’K
’

’L
’

’M
’

’N
’

’O
’

’P
’

’Q
’

’R
’

co
rr

ec
t

U
ni

co
de

\u
09

95
\u

09
cd

\u
09

b0
\u

09
96

\u
09

97
\u

09
cd

\u
09

97
\u

09
cd

\u
09

97

\u
09

97
\u

09
cd

\u
09

ac
\u

09
97

\u
09

97
\u

09
cd

\u
20

0d

\u
09

97
\u

09
c1

\u
09

98
\u

09
99

E
nc

od
ed

gl
yp

h
po

in
ts

’S
’

’T
’

’U
’

’V
’

’W
’

’X
’

’Y
’

’Z
’

’[
’

’\
\’

co
rr

ec
t

U
ni

co
de

\u
09

99
\u

09
cd

\u
09

95

\u
09

99
\u

09
cd

\u
09

96

\u
09

99
\u

09
cd

\u
09

97

\u
09

99
\u

09
cd

\u
20

0d
\u

09
9a

\u
09

a8
\u

09
cd

\u
09

b8

\u
09

9a
\u

09
cd

\u
09

9b
\u

09
cd

\u
09

ac

\u
09

9a
\u

09
cd

\u
20

0d
\u

09
B

F
\u

09
9C

E
nc

od
ed

gl
yp

h
po

in
ts

’]
’

’^
’

’_
’

’‘
’

’a
’

’b
’

’c
’

’d
’

’e
’

’f
’

co
rr

ec
t

U
ni

co
de

\u
09

d7
\u

09
81

\u
09

9c
\u

09
cd

\u
09

9c
\u

09
cd

\u
09

ac

\u
09

9c
\u

09
cd

\u
09

9d

\u
09

9c
\u

09
cd

\u
09

9e

\u
09

9c
\u

09
cd

\u
09

ac

\u
09

9c
\u

09
cd

\u
09

b0
\u

09
9D

\u
09

9E
\u

09
9e

\u
09

cd
\u

09
9a

\u
09

9e
\u

09
cd

\u
09

9b

Table 2: This table illustrates the correct Unicode format for the encoded glyph points (Part-1).
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Table 3: This table illustrates the correct Unicode format for the encoded glyph points (Part-2).
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Abstract

We constructed parsers for five non-English
editions of Wiktionary, which combined with
pronunciations from the English edition, com-
prises over 5.3 million IPA pronunciations,
the largest pronunciation lexicon of its kind.
This dataset is a unique comparable corpus
of IPA pronunciations annotated from mul-
tiple sources. We analyze the dataset, not-
ing the presence of machine-generated pronun-
ciations. We develop a novel visualization
method to quantify syllabification. We exper-
iment on the new combined task of multilin-
gual IPA syllabification and stress prediction,
finding that training a massively multilingual
neural sequence-to-sequence model with copy
attention can improve performance on both
high- and low-resource languages, and multi-
task training on stress prediction helps with
syllabification.

1 Introduction

Wiktionary1 is a free online multilingual dictionary
containing a plethora of interesting information.
In this paper, we focus on the pronunciation an-
notations in Wiktionary, which are relatively un-
derstudied. For any given word, Wiktionary may
include data for IPA (both phonetic and phonemic),
hyphenation, dialectical variation, and even audio
files of speakers pronouncing the words. These
types of data have been shown to be useful for
tasks such as grapheme-to-phoneme transduction,
e.g. in recent SIGMORPHON shared tasks (Gor-
man et al., 2020). There are many existing parsing
efforts that have extracted pronunciation informa-
tion from Wiktionary. Recent extractions of data
from Wiktionary focus on obtaining high-quality
pronunciations from a single edition of Wiktionary,
usually the English edition (e.g. Wu and Yarowsky,

1www.wiktionary.org

2020a; Sajous et al., 2020; Lee et al., 2020). How-
ever, substantial increases in data can be obtained
by parsing other editions of Wiktionary, which have
been shown to be helpful for downstream tasks. For
example, Schlippe et al. (2010) extract pronuncia-
tions from the English, French, German, and Span-
ish editions, and ? extract pronunciations from the
English, German, Greek, Japanese, Korean, and
Russian editions.

In this paper, we build upon Yawipa (Wu and
Yarowsky, 2020a,b), a recent Wiktionary parsing
framework. Targeting the larger Wiktionaries for
increased coverage and those not dealt with in
previous work, we construct new pronunciation
parsers for the French, Spanish, Malagasy, Ital-
ian, and Greek editions of Wiktionary. Combined
with pronunciations from the English Wiktionary,
this totals to over 5.3 million words, which to our
knowledge is the largest pronunciation lexicon to
date and also a unique comparable corpora of pro-
nunciations. In Section 2, we show that our ex-
tracted pronunciations are a substantial increase
in data, covering numerous pronunciations not in
the English Wiktionary. This is especially bene-
ficial for low-resource languages. In Section 3,
we analyze this data and find that a small portion
of these pronunciations may be low-quality and
computer-generated. In Section 4, we present a
novel visualization technique for analyzing the use
of stress in IPA pronunciations. In Section 5, we
experiment on the combined task of massively mul-
tilingual syllabification and stress detection. Our
neural sequence-to-sequence model with copy at-
tention outperforms a sequence labeling baseline,
especially in very low-resource scenarios, under-
scoring the contributions of additional languages
to the task. In addition we find that a multi-task
approach of predicting both stress and syllabifica-
tion can improve the performance on syllabification
alone.
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Figure 1: Screenshot of the English Wiktionary’s pro-
nunciation information for the French word chien.

2 Wiktionary Pronunciation Extraction

As a multilingual resource, Wiktionary exists as
a set of numerous editions. That is, the English
Wiktionary is written in English by and for English
speakers, while the French Wiktionary is written
in French by and for French speakers. Any edition
can contain entries for words in any language. For
example, Figure 1 shows a screenshot of the En-
glish Wiktionary’s pronunciation information for
the French word chien. We use the terms <lang>
edition and <lang> Wiktionary interchangeably.

Why parse other editions of Wiktionary?
Speakers of different languages have different pri-
orities when annotating data. One can assume that
an editor of the Spanish Wiktionary is more likely
to provide pronunciations for Spanish words before
working on English words. Our effort at extract-
ing a new dataset of pronunciations from 6 differ-
ent editions of Wiktionary resulted in a total of
over 5,3 million unique IPA pronunciations across
2,177 languages. Note that because the data comes
from multiple editions, a word may have multiple
annotated pronunciations, making our dataset an
interesting comparable corpora. Figure 2 shows
the 16 languages with the most data in this dataset,
along with the contribution of each edition of Wik-
tionary from which we parsed and extracted IPA
pronunciations.

We draw several insights from Figure 2. First,
the inclusion of pronunciations from non-English
Wiktionaries represents substantial gains. Though
the English edition is the largest Wiktionary by
number of entries,2 the French edition contains a
huge number of pronunciations for French words,
dwarfing other editions that we parsed. The French
Wiktionary also supplies the entirety of the pronun-
ciations for Northern Sami words (se, spoken in
Norway, Sweden, and Finland), most of the avail-
able pronunciations for Esperanto (eo) and Italian

2https://meta.wikimedia.org/wiki/
Wiktionary

Figure 2: The top 16 languages in terms of number of
pronunciations, with contributions from multiple edi-
tions of Wiktionary.

(it) words, and also words in 1,198 other low-
resource languages not shown in the long tail of
Figure 2. In contrast, the English edition (the sec-
ond largest supplier) is the sole supplier of pronun-
ciations in 416 languages.

Parsing Implementation The Yawipa frame-
work (Wu and Yarowsky, 2020a) extracts data from
the XML dump of Wiktionary.3 Every entry is
encoded in MediaWiki markup, which is similar
to Markdown but includes special templates (en-
closed in double braces) which programmatically
generates HTML that we see when we visit the
Wiktionary website. For example, in the English
wiktionary, the entry for the French word chien con-
tains the following markup (rendered in Figure 1):

===Pronunciation===
{{fr-IPA}}
{{audio|fr|Fr-chien.ogg|audio}}
{{rhymes|fr|jẼ}}

These three templates generate the three bullet
points in Figure 1. Note that the {{fr-IPA}}
template generates the IPA pronunciation, so the
IPA itself does not exist in the English Wiktionary
dump. Thus, we can only extract the IPA from
the French edition, below, highlighting the need
to parse multiple Wiktionary editions for multiple
sources of pronunciations.

3https://dumps.wikimedia.
org/enwiktionary/latest/
XXwiktionary-latest-pages-articles.xml.
bz2, where XX is replaced with a two-letter ISO 639-1 code.
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=== {{S|nom|fr}} ===
{{fr-rég|SjẼ}}

Above is the French Wiktionary’s pronunciation
for the word chien. A template (fr-rég) is also
used, but the IPA is extractable from the markup.
Each edition of Wiktionary has its own conven-
tions on formatting and templates, thus requiring
a separate parser specifically for that edition. For
implementation details, please see the repository
https://github.com/wswu/yawipa.

3 Analysis of the Dataset

For high-resource languages, the home language
edition (e.g. English edition for the English lan-
guage) usually supplies the most pronunciations,
but this is not always the case (e.g. the French
Wiktionary provides more Italian pronunciations
than the Italian edition). In terms of amount of
data, two languages are outliers: Malagasy (mg,
an Austronesian language spoken in Madagascar)
and Volapük (vo, a constructed language). As rela-
tively less spoken languages, these languages have
a disproportionately large amount of data. Why is
this so?

The data for these two languages come from the
Malagasy edition, which we parsed because of its
high ranking in the List of Wiktionaries.4 Both
Malagasy and Volapük are inflected languages5

whose IPA pronunciations seem to be entirely
computer-generated using a regular transduction
process from orthography to IPA, which was ex-
ploited to create a large set of pronunciations for
these two languages.

We also find that some Latin pronunciations may
be machine-generated. For example, the Malagasy
edition supplies /kontabulawit/ as the pronuncia-
tion for the Latin contabulavit and [d”ẽ:onstRat] for
demonstrat. These pronunciations lack stress and
syllable markings, and in the case of demonstrat,
do not agree with established pronunciations of
Latin. thus leading us to believe that these were
machine-generated pronunciations. In contrast, the
English edition contains both well-formed classi-
cal and ecclesiastical Latin pronunciations with
stress and syllable markers, but only for the dictio-
nary forms contabulō /kon"ta.bu.lo:/ and dēmonstrō
/de:"mon.stro:/.

4https://en.wikipedia.org/wiki/List_
of_Wiktionaries

5Inflected words have their own Wiktionary entry, which
can exponentially increase the number of pronunciations.

We must emphasize that we are not condemn-
ing the use of machine-generated pronunciations.
For many languages, e.g. Spanish and Latin, the
spelling of a word reflects its pronunciation, so
generated pronunciations are likely to be accurate.
Indeed, the existence of pronunciation templates
such as {{fr-IPA}}, mentioned above, are well-
researched additions to Wiktionary that alleviate
the need for humans to manually input IPA pro-
nunciations, thus reducing the potential for human
error. We fully support the use of these templates
(though they make our parsing job harder), and
we would love to see them standardized across all
Wiktionary editions, so that editions such as the
Malagasy edition can benefit from contributions to
the English edition (or any other edition, for that
matter).

We do caution researchers that the data con-
tained in crowd-sourced resources such as Wik-
tionary may not be thoroughly vetted for accuracy,
as we have discovered. Fortunately, the openness
of these crowdsourced data allows for community
members to quickly intervene when problematic
data is found. One especially poignant example in
recent news is the Scots Wikipedia, a large portion
of which was recently revealed to be written by
an American teenager who is not a Scots speaker.6

Essentially, this teenager translated English articles
into “Scots” by systematically rewriting English
words to sound as if they were spoken with a Scot-
tish accent, in the same vein as some of the Latin
“IPA” pronunciations in the Malagasy Wiktionary.

4 Visualizing Syllabification

IPA has the ability to mark syllable boundaries
(.) as well as primary (") and secondary () stress.
Words in some languages, e.g. Malay, do not have
stress, and sometimes stress can be double marked
("") for extra stress. We first quantify IPA stress and
syllabification in our extracted dataset then present
multilingual experiments on predicting syllabifica-
tion and stress.

We develop a visualization technique to under-
stand the distribution of words in each language
that contain syllable boundaries (Figure 3). These
bubble charts plot the number of characters in a
word (x-axis), the percentage of words containing
syllable markers (y-axis), and the number of words

6https://www.reddit.com/r/Scotland/
comments/ig9jia/ive_discovered_that_
almost_every_single_article
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Figure 3: Percentage of French, English, Malagasy, and Latin words containing syllable markers, by length of
word. The size of the points indicates the number of words and cannot be compared among graphs.

in these categories (size of the dot). These charts
can help researchers to quickly quantify the pres-
ence of syllable markers, one component of high-
quality IPA pronunciations. We consider a word
to be syllabified if it contains any of the following
symbols: . " 

Ideally, one should see that the longer the word,
the higher the percentage of words that have sylla-
bles marked. French is a perfect example of this:
once words reach 9–10 characters in length, they
all contain syllable markers. By examining these
plots, we can easily identify examples of prob-
lematic IPA syllabification in Malagasy (mg) and
Latin (la) words. For Malagasy words, syllable
boundaries simply do not exist. For Latin words,
we see an unusual negative-slope curve, where
words around 4–6 characters in length are more
likely to have syllables marked, but longer words
are less likely to have syllable boundaries marked.
This analysis actually is consistent with our ear-
lier finding in Section 2: because Latin is a highly
inflected language, the dictionary forms contain
high-quality IPA, but the overwhelming number of
pronunciations are actually machine-generated for
inflected forms, which may not have the syllables
marked. English is a middle ground in terms of
quality. While we see the expected upward slope
as the length of the word increases, the percentage
of words with syllable markers never approaches
100%. A manual review of several English pro-
nunciations indicates that annotators simply did
not include syllable boundaries for many English
words. Further analyses could shed light on the rea-

sons for the negligence of the annotators, or other
phenomena that might explain the lack of syllable
markers.

5 Experiments

In this section, we present experiments on multi-
lingual syllable and stress prediction. In the lin-
guistics literature, many studies have shown that
awareness of syllable boundaries can improve word
recognition performance in children (e.g. McBride-
Chang et al., 2004; Plaza and Cohen, 2007; Gülde-
noğlu, 2017). Speech syllabification is also a com-
mon step in a speech recognition pipeline. Syllab-
ification of text is not a new task, and has been
explored via a variety of methods, including rule-
based and grammar-based approaches (e.g. Weeras-
inghe et al., 2005; Müller, 2006) and data-driven
approaches (e.g. Bartlett et al., 2008; Nicolai et al.,
2016; Gyanendro Singh et al., 2016). However, pre-
vious work has focused primarily on a handful of
languages, and some focus on orthographic syllabi-
fication rather than phonemic segmentation. Some
use CELEX (Baayen et al., 1996), a popular dataset
containing syllabified text, but it only contains syl-
labified words in English, German, and Dutch. In
contrast, our extracted pronunciation lexicon is a
unique multilingual resource that allows for devel-
oping and evaluating models and approaches on
the new combined task of massively multilingual
IPA syllabification and stress prediction across hun-
dreds of languages. In this task, given unmarked
IPA, a model must insert syllable markers or stress
markers at the appropriate locations.
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Data For our task, we filter our pronunciation
dataset to keep only IPA containing syllable bound-
aries or stress markers,7 so that we have ground
truth for our model. This resulted in 93,206 IPA
pronunciations across 174 languages, which we
split into a 80-10-10 train-dev-test stratified split
(same proportion of languages in each set).

Models We first build a baseline: a multilingual
character BiLSTM sequence tagger with 256 hid-
den size (B) that predicts both stress and syllabifica-
tion (Str & Syl) or syllabification alone (Syl). The
data is preprocessed such that each IPA character
is labelled with 0 for no stress or syllable, 1 for
primary stress ("), 2 for secondary stress (), and 3
for syllable boundary (.). We include a language
token so the model will incorporate knowledge of
the language. For example:

IPA: /In.flu"En.z@/
Input: eng I n f l u E n z @

Output: 0 2 0 3 0 0 1 0 3 0

For comparison, we experiment with two mod-
ern seq2seq models: the default encoder-decoder
model (S) in OpenNMT-py (Klein et al., 2017), and
the same model with copy attention (SC) (See et al.,
2017). In this scenario, we formulate syllabifica-
tion and stress prediction as a sequence generation
task, where the input is an unstressed, unsyllabified
IPA, and the output is the original IPA sequence
containing both stress and syllable markers.

We then treat syllabification and stress predic-
tion in a pipelined approach (Syl → Str), where the
first model (B or SC) will predict syllable bound-
aries, and then a second model will predict the
stress. Stress classification is a 3-class classifica-
tion problem: given a syllable, predict primary
stress, secondary stress, or no stress. The structure
of this stress classifier is also a BiLSTM, where the
hidden state of the syllable in question is passed to
a dense feed-forward layer, then a softmax.

5.1 Results

A summary of experimental results is in Table 1.
The baseline BiLSTM model performs consistently
worse than the seq2seq models. This is somewhat
surprising, since the seq2seq task is a more chal-
lenging task: the model must generate the IPA
characters along with stress and syllable markers.
However, the seq2seq model is able to generate the

7A stress marker can server as a syllable boundary, e.g. for
the English word consume /k@n"sum/.

Model Acc CED 5Acc 5CED

B Syl 68 .48 — —
SC Syl 79 .42 96 .11

B Syl → Str 53 .88 — —
SC Syl → Str 31 1.13 — —

B Str & Syl 52 .89 — —
-Str 68 .49 — —
S Str & Syl 69 .72 89 .25
-Str 77 .47 93 .16
SC Str & Syl 74 .54 92 .17
-Str 81 .35 95 .11

Table 1: Results on the syllabification and stress pre-
diction tasks. See Section 5 for abbreviations. Acc is
1-best accuracy, 5Best is 5-best accuracy (is the gold
in the top 5 hypotheses?), CED is mean character edit
distance.

correct sequence of IPA characters, minus stress
and syllable markers, in 95% (for regular attention)
and 99% (for copy attention) of test examples, alle-
viating our concerns and proving the effectiveness
of copy attention for this task.

The pipeline approach performs substantially
worse than the multi-task approach. In the pipeline,
the syllabification model first predicts the syllable
boundaries, then the stress classifier produces a
classification for each syllable. We find that with
the pipeline approach, it is impossible to improve
upon the first step in the pipeline. Thus, if the syl-
labification step does not correctly identify syllable
boundaries, the final pronunciation will never be
correct, even if the stress is correctly predicted for
each syllable.

Finally, multi-task training on both syllabifica-
tion and stress marking improves performance over
syllabification alone. We believe this is because
stress and syllable prediction are two somewhat
overlapping tasks. If a model can label stress, then
it should have some notion of where syllables are.
The (-Str) rows in Table 1 show performance on
syllabification by evaluating the output of the multi-
task model preprocessed to replace all stress marks
with syllable boundaries.

The large majority of languages in our dataset
can be considered low-resource, a specific inter-
est of our experiments. 154 of the 174 languages
have much fewer than 466 training examples (0.5%
of the entire dataset), yet the average accuracy on
these languages is an impressive 67% for syllabifi-
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cation (B Str & Syl - Str) and 51% for both syllabi-
fication and stress prediction (B Str & Syl). This
highlights the contribution of other languages in a
single massively multilingual model trained to do
both tasks. Other researchers have found that good
performance on syllabification requires much more
data than this (Nicolai et al., 2016). We highlight
the fact that many of the languages have less than
10 test examples and can be considered truly low-
resource; the contribution of many other languages
allows our multilingual models to predict the cor-
rect pronunciation with minimal training data in a
specific language. Though we find that multilin-
gual training helps for low-resource languages, it
can also help with high-resource languages: in the
SC Str & Syl scenario, a model trained only on
French obtained 92.1% on the French test words,
compared to the multilingual model at 98.1% ac-
curacy. Full tables of results, along with code to
reproduce our experiments, is available at https:
//github.com/wswu/syllabification.

6 Conclusion

We extracted the largest dataset of IPA pronuncia-
tions to date, by combining IPA from the French,
Spanish, Malagasy, Italian, and Greek editions
of Wiktionary along with existing pronunciations
from the English edition, totaling to 5.3 million pro-
nunciations. We developed a visualization method
for examining syllabification in large datasets,
which can give indications about the quality of
IPA pronunciations. We experiment on the new
combined task of massively multilingual prediction
of syllabification and stress using a variety of mod-
els and approaches, showing success with a multi-
task multilingual sequence-to-sequence model. We
hope our dataset and analysis methods will be use-
ful for researchers in a variety of disciplines.

We envision our newly extracted pronunciation
dataset to be especially useful for researchers in-
terested in lexicography and spoken language tech-
nologies. In terms of lexicography, this dataset
is a unique comparable corpus containing anno-
tations from several editions of Wiktionary, each
representing a distinct population of speakers. In
several cases, the same pronunciation is supplied by
multiple editions, and some editions use phonetic
rather than phonemic IPA. Future work can address
questions such as: When and why might differ-
ent editions disagree on a pronunciation? Why do
some words have pronunciations and others don’t?

In addition, we would like to investigate the use
of our pronunciation dataset in language learning
of core vocabulary of low-resource languages (Wu
et al., 2020) and modeling etymology relationships
between words (Wu et al., 2021).
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Abstract

Multi-label toxicity detection is highly promi-
nent, with many research groups, compa-
nies, and individuals engaging with it through
shared tasks and dedicated venues. This paper
describes a cross-lingual approach to annotat-
ing multi-label text classification on a newly
developed Dutch language dataset, using a
model trained on English data. We present
an ensemble model of one Transformer model
and an LSTM using Multilingual embeddings.
The combination of multilingual embeddings
and the Transformer model improves perfor-
mance in a cross-lingual setting.

1 Introduction

Toxic comment detection is becoming an integral
part of online discussion, and most major social
media platforms use it. However, that success is
not shared equally across languages. Low resource
languages still lack the accurate pre-trained models
that are readily available in more resourced lan-
guages, such as English. This is mostly due to a
lack of annotated corpora. Inconsistent task defini-
tions of task compound the problem. Where quality
data does exist, it often uses alternative task defini-
tions. This paper aims to overcome that challenge
by annotating a new dataset and evaluating it within
a cross-lingual experiment. We perform multi-label
text classification, using an ensemble approach of
Transformer and LSTM models with multilingual
embeddings (Vaswani et al., 2017; Devlin et al.,
2019; Van Hee et al., 2015a). The system is trained
on English data by Wulczyn et al. and evaluated on
newly annotated Dutch text from the Amica corpus
(Wulczyn et al., 2017a; Van Hee et al., 2015a).

We selected multi-label toxicity over other label
definitions based on its adaptability and feedback
from annotators. Toxicity draws its origins from
chemistry, referring to how a substance can damage

an organism. From experience in annotator train-
ing and feedback, this is a straightforward term to
communicate to annotators who relate quickly to
the concept of harmful language that degrades a
conversation or debate, much like a poison.

2 Related Research

The Conversation AI group defined multi-label tox-
icity, and Wulczyn et al.(Wulczyn et al., 2017c).
The term goes beyond its counterparts by adding
fine-grained sub-labels. The original motivation of
Wulczyn et al. was for multi-label toxicity to serve
as a compatible annotation model for tasks beyond
the original Wikipedia dataset. Unlike other similar
initiatives, their work focused on the risk that com-
munities break down or turn silent, "leading many
communities to limit or completely shut down user
comments" (Wulczyn et al., 2017a,c). For a de-
tailed overview of multi-label toxicity, look to van
Aken et al., or Gunasekera et al. (Georgakopoulos
et al., 2018; Wulczyn et al., 2017b).

A current challenge within the sub-field of toxic-
ity detection is the definition and operationalisation
as a concrete task. Though there is research within
the area, many projects take up alternative inter-
pretations and definitions. This has led to grey
areas between terms like offensive language and
profanity, cyberbullying, and online harassment. In
practice, many projects are classifying the same
data and phenomena under alternative definitions.
This problem is explored in greater detail by Em-
mery and colleagues (Emmery et al., 2019).

Cross-lingual classification uses training mate-
rial in one language and test material in another.
In this paper, we use English language training
data to improve performance on Dutch language
test data. This resourceful combination relies on
recent advancements in multilingual models and
benefits underrepresented languages greatly. Data
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Negative 94.04 Blackmail 0.11
insult 1.96 Racism 0.1
Harmless_sexual 0.97 Att_relatives 0.09
Curse_Exclusion 0.65 Powerless 0.06
Assertive_selfdef 0.54 Other 0.04
Other_language 0.4 Sarcasm 0.04
Sexual_harassment 0.33 Good 0.01
General_defense 0.33 pro_harasser 0.01
Defamation 0.18 Sexism 0.13

Table 1: Cyberbullying Labels within Amica Dataset
and Frequency

sets like that of Conversation AI are less available
for Dutch, making classification harder. There are
a series of recent projects utilising multilingual pre-
trained models for cross-lingual classification of
toxic comments (Pamungkas and Patti, 2019; Pant
and Dadu, 2020; Stappen et al., 2020).

Amica was a collaborative project between
Dutch-speaking NLP research groups into cyber-
bullying. Van Hee et al. facilitated the detailed
annotation of many data sets for a range of bully-
ing labels, using real and simulated conversations
between children. Table 1 gives the label distribu-
tion.

3 Data

We use a newly annotated version of the AMiCA
dataset, initially developed by Van Hee et al., for
cyberbullying tasks. In addition, we performed fur-
ther annotation for multi-label toxicity, following
the label guidelines of Wulczyn et al..

3.1 AMiCA Instant Messages
Van Hee et al. developed the AMiCA dataset
through anonymous donation and simulation out-
lined by Emmery et al.. Table 2 reveals the macro
details of the data used with original cyberbullying
token labels.

Bullying Tokens 2,343
Negative Tokens 2,546
All Tokens 62,340
Mean Tokens per msg 12

Table 2: AMiCA data lexical statistics

3.2 Multi-label Toxicity Annotation
To annotate the AMiCA dataset for Multi-label tox-
icity labels, we used the annotation instructions

outlined in (Wulczyn et al., 2017c). We translated
the instructions into Dutch, the native language of
the annotators, and gave detailed guidance with
an introductory tutorial and handout. Table 3 de-
scribes the sub-labels: Toxicity, Severe Toxicity,
Identity Attack, Insult, Profanity, and Threat.

TOXICITY
Rude, disrespectful, or unreasonable comment that
is likely to make people leave a discussion.

SEVERE_TOXICITY
A very hateful, aggressive, disrespectful comment
or otherwise very likely to make a user leave a
discussion.

IDENTITY_ATTACK
Negative or hateful comments targeting someone
because of their identity.

INSULT
Insulting, inflammatory, or negative comment to-
wards a person or a group of people.

PROFANITY
Swear words, curse words, or other obscene or
profane languages.

THREAT
Describes an intention to inflict pain, injury, or
violence against an individual or group.

Table 3: Description and Example of labels from the
Wikipedia Talk Labels: Toxicity Dataset

We stored the annotated data in a SQL table
using the row index of the original AMiCA annota-
tions for cyberbullying. Table 4 shows the distribu-
tion of labels across the English data by Wulczyn
et al. and the newly annotated data.

Interannotator Agreement We calculated inter-
annotator agreement using the largest set of overlap-
ping instances by the same two annotators achiev-
ing a Krippendorf score of 0.4483, revealing that
there was substantial agreement between annota-
tors. We can compare this to that of Wulczyn et al.,
which scored 0.45 (Wulczyn et al., 2017a). We can
delve further into inter-annotator relations through
multi-label use. Figure 1 reveals the Cohen Kappa
between labels. We see that all six true label pairs
(i.e. TOXIC & TOXIC) achieve a fair to substan-
tial correlation and that all false label pairs (i.e.
INSULT & THREAT) do not correlate.
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New Wulczyn 2017
n % n %

toxic 3157 31% 15294 44%
severe 833 8% 1596 5%
threat 851 8% 8449 24%
profanity 1165 11% 478 1%
insult 1276 13% 7877 22%
identity 1339 13% 1405 04%

Total 10189 35099

Table 4: Annotated Labels in Dutch (New) and English
(Wulczyn 2017) data. n shows the number of com-
ments for each label and % shows the percentage of
the total comments for that label.

Figure 1: Correlation Matrix of Toxic labels on Anno-
tated Amica Dataset

Compare Toxicity and Cyberbullying As a
precursor to the main experiments, and to align
the new annotation with Van Hee et al., we tested
how cyberbullying acts as a naive predictor of toxi-
city using the combined labels for each class and
F1 Score (Van Hee et al., 2015b; Emmery et al.,
2019). We calculated an F1 score of 0.51, reveal-
ing that multi-label toxicity does not align with
cyberbullying.

4 Method

We performed cross-lingual classification using an
Ensemble approach of two component models, a
fine-tuned multilingual BERT-base and an LSTM
model using Multilingual Unsupervised and Super-
vised Embeddings (MUSE) (Conneau et al., 2017;
Lample et al., 2017). We also used two baseline
models for comparison, an LSTM without multilin-
gual embeddings and a Support Vector Machine.

4.1 Fine-tuned BERT-base
We fine-tuned a Multilingual BERT-base model
and 3 linear layers. A Bidirectional Encoder Rep-
resentation from Transformers or BERT model is a

pre-trained model that uses bidirectional training to
learn contextual attention at a word and sub-word
level (Devlin et al., 2019). We used sub-word token
representation that aligns with the base vocabulary
representation (Zhang et al., 2020). We fine-tuned
the BERT model for 4 epochs over a 10-fold cross-
validated dataset. The mean validation and training
loss for all folds of the data was 0.05.

4.2 LSTM and MUSE Embeddings

We trained a Long Short-term Memory (LSTM)
network with Multilingual Universal Sentence Em-
beddings (MUSE) (Hochreiter and Schmidhuber,
1997; Conneau et al., 2017; Lample et al., 2017).
We train the LSTM model for 12 epochs over a 10-
fold cross-validated dataset. The mean validation
and training loss for all splits of the data was 0.03.

4.3 Ensemble

We used a Random Forest ensemble of the LSTM
and BERT models on a cross-validated training
set with grid-searched parameters (Breiman, 2001;
Nowak et al., 2017). A key risk in ensemble train-
ing is overfitting (Pourtaheri and Zahiri, 2016), to
mitigate this all models have used a stratified k-fold
structure (Yadav and Shukla, 2016).

4.4 Training and Fine-tuning

We used a stratified k-fold configuration of the En-
glish and Dutch data to train and fine-tune models.
First, we trained and fine-tuned models on a ‘train‘
portion and collected the predicted labels on ‘test‘
portions of the folds, split for English and Dutch
data. This allowed us to reveal language perfor-
mance separately. Next, we trained the ensemble
model on component model predictions. Finally,
we used an exhaustive grid search to select hyper-
parameters (Bergstra and Bengio, 2012) and a Re-
ceiver Under the Curve analysis (ROC) to select
decision thresholds from the component models
(Fawcett, 2006).

5 Results

Table 5 reveals results for baselines,
component models, and ensemble model. We
express results as Area Under the Curve, mean
Precision, mean Recall, mean F1 for all labels.
Baseline models are a Support Vector Machine of
Continuous Bag-of-Words representations and an
LSTM without Multilingual Universal Sentence
Embeddings. Both component models achieved
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relevant F1 scores for the multi-label classification
of toxicity, and the ensemble approach achieved
the highest score. We also find that component
models were able to overcome the low precision
score seen in baseline methods.

AUC Pre Rec F1

Ensemble 0.9401 0.7023 0.8789 0.7323

BERT 0.9113 0.6745 0.8412 0.7017
MUSE 0.8552 0.6301 0.7838 0.6512

LSTM w/o MUSE 0.7519 0.5692 0.7021 0.5845
SVM & CBOW 0.5702 0.4239 0.5217 0.4419

Table 5: Results Table of baselines, component, and
ensemble models. Results are expressed as AUC, mean
Precision, mean Recall, mean F1 for all labels.

6 Analysis

We performed error analysis to interpret model per-
formance in relation to labels and the language of
comments.

Sub-label Performance Figure 2 reveals the Pre-
cision, Recall, and F1 Score of the Ensemble model
on all labels. Furthermore, we can see that the
model performs better at negative label prediction,
a common trait in transformer model classification.

Figure 2: Classification Report from Ensemble Ap-
proach on all toxicity labels

Cross-lingual Performance We explored the
models’ cross-lingual performance by comparing

All EN NL

Ensemble 0.6401 0.7587 0.7323

BERT 0.7112 0.7213 0.7017
MUSE 0.4812 0.4512 0.6512

Table 6: Cross-lingual Performance: F1 Scores of
underlinecomponent and ensemble models. EN are
scores on the Wulczyn data, NL are score on the new
Dutch data.

their scores on the English and Dutch data, shown
in Table 6. Logically, the LSTM with MUSE em-
beddings performs poorly on English data, without
relevant embedding weights. On the other hand, the
BERT model performs well in both languages, and
the Ensemble model relies on that when classifying
English Data.

7 Summary

We have demonstrated that by using multilingual
pre-trained language models within an ensemble
approach, we can classify multi-label toxicity in an
alternate language. Furthermore, we have demon-
strated that the BERT model’s underlying training
affects target language performance by analysing
the performance of baseline, component and en-
semble models in cross-lingual features. Further-
more, Table 5 reveals that component models were
able to overcome an excess of false positives that
hindered baseline methods.
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