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The chiral sulfoxide is one of the privileged motifs in
asymmetric synthesis. Its efficiency was initially proved in
diastereoselective transformations as a chiral auxiliary.1
Subsequently, application of sulfoxides as a ligand in asym-
metric catalysis2 and also as a directing group for diastereo-
selective reactions, including C–H activation, have
emerged.3

To access enantiopure sulfoxides on a large scale, one of
the most established and still standard approaches is the
Andersen procedure.4 At the beginning of the 1960s,
Andersen reported the synthesis of enantiopure sulfoxides
by addition of Grignard reagents to (1R,2S,5R)-(–)-menthyl
(S)-p-toluenesulfinate (S)-1 (Scheme 1), liberating (–)-men-
thol. To date, it is still the most widely used1 and convenient
way to obtain chiral sulfoxides.2

Scheme 1  (1R,2S,5R)-(–)-Menthyl (S)-p-toluenesulfinate and Andersen’s 
procedure

The preparation of (1R,2S,5R)-(–)-menthyl (S)-p-tolue-
nesulfinate (S)-1 has been known for decades and was
described for the first time in 1925 by Phillips (Table 1, A).5
p-Toluenesulfinic acid, initially activated with thionyl chlo-
ride, is esterified with a solution of (–)-menthol in pyridine
to allow the formation of 1 as a diastereomeric mixture.
Then, both diastereomers can be separated by crystalliza-
tion to afford pure (S)-1 with a yield lower than 50%. This
major drawback was later overcome by the group of
Solladié.6 Applying observations made by Herbrandson7

and Mislow8 concerning the racemization of sulfinic esters
and sulfoxides in the presence of hydrogen chloride, (S)-1
could be isolated on large scale in 80% yield thanks to itera-
tive crystallization/epimerization cycles (Table 1, B).
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Table 1  Different Methodologies to Access the (1R,2S,5R)-(–)-Menthyl (S)-p-Toluenesulfinate; Price: 5.92 €/mmol on Sigma-Aldrich

In addition to this efficient strategy, several other pro-
cedures have been described. In 1987, Sharpless developed
the synthesis of menthyl sulfinate esters, starting from the
cheaper starting material, p-toluenesulfonyl chloride (TsCl).9
The sulfinyl chloride can be obtained in situ by reduction of
the p-toluenesulfonyl chloride with trimethylphosphite,
followed by the addition of (–)-menthol to afford 1. More
recently, the group of Trost has also applied this strategy,
using triphenylphosphine to reduce the toluenesulfonyl
chloride into the desired sulfinyl chloride, which can subse-
quently react with (–)-menthol to afford (S)-1 after iterative
recrystallizations, albeit with a low yield (Table 1, C).10

Another major contribution has been reported by
Hajipour who developed several methodologies for the syn-
thesis of 1 under solvent-free conditions. To avoid the use
of the unstable and moisture-sensitive sulfinyl chloride, he
described various preparations of 1 from sulfinic acids, in
solid phase using silica.11 His final report demonstrated the
efficiency of this general strategy by accomplishing the
esterification of p-toluenesulfinic acid with N,N′-dicyclo-
hexylcarbodiimide as the coupling reagent. Grinding the re-
action mixture for a brief period allowed the formation of

the desired sulfinate ester in an excellent yield, but as a
mixture of the two diastereomers (Table 1, D).12 Likewise,
the group of Hitchcock also developed the synthesis of sul-
finate esters by activation of the p-toluenesulfinic acid with
EDC–HCl.13

Among these diverse methodologies, the procedure of
Solladié remains the most convenient and efficient to ac-
cess menthyl p-toluenesulfinate (S)-1 on large scale. Slight
modifications have been made since, for example, the use
of hydrated sodium sulfinate as starting material presented
by Blakemore.14 Moreover, our group has been actively in-
volved in the chemistry of chiral sulfoxides and recently a
number of fundamental modifications of the reaction con-
ditions have been discovered to improve the Solladié proce-
dure.

Following our developed methodology,15 the reaction
proceeds under solvent-free conditions instead of using
benzene as solvent. Additionally, to reduce the amount of
thionyl chloride used for the formation of the sulfinic
chloride from the sulfinic acid, addition of a catalytic
amount of DMF allowed a significant decrease to 1.5 equiv-
alents of SOCl2 (compared to the standard 5 equivalents).

(A) Philipps, 1925: first synthesis of (S)-1
price of production: 0.34 €/mmol

(B) Solladié, 1987: modified procedure affording (S)-1 with yields higher than 
50% thanks to successive crystallizations/epimerizations
price of production: 0.18 €/mmol
+ high yield
+ large scale
– excess of thionyl chloride
– benzene as solvent
– pyridine as base

(C) Trost, 2013: use of p-toluenesulfonylchloride as starting material
price of production: 0.74 €/mmol
+ cheap starting material
+ short time reaction
+ simple reaction protocol
– purification via chromatography and crystallization
– 1 equivalent of triphenylphosphine oxide as waste
– low yield
– small scale

(D) Hajipour, 2006: neat synthesis of 1 by grinding
price of production: 0.10 €/mmol for the diastereomeric mixture
+ very rapid reaction time
+ absence of solvent
+ yield
– purification via chromatography
– DCC toxicity as reagent and by-product
– products isolated as a mixture of diastereomers
– small scale

(E) Wencel-Delord & Colobert, 2019: recent enhancement of the Solladié 
procedure
price of production: 0.14 €/mmol
+ decreased amount of thionyl chloride
+ solvent-free reaction (only used for azeotropic distillation of SOCl2)
+ pyridine replaced by triethylamine
+ large scale
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3) HCl (4–5 drops), recrystallization in acetone

80% yield
60 g scale
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15% yield
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grinding, 8 min
95% yield 300 mg scale
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1 equiv.

1) SOCl2 (1.5 equiv.), 0 °C, 5–20 min
2) DMF (1 mol%), 80 °C, 1 h

3) (–)-menthol (1 equiv.), Et3N, 0 °C to rt, 3 h
4) HCl (4–5 drops), recrystallization in acetone

72% yield
60 g scale
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This modification renders the procedure more suitable
scale-up, having the advantage of consuming less solvent
during the azeotropic distillation of the excess thionyl chlo-
ride. Moreover, greater efficiency is observed upon replac-
ing pyridine with triethylamine. Thus, a tens-of-gram syn-
thesis of (S)-1, without significant byproduct formation,
can be achieved in one day with an excellent yield of 72%
and a d.r. > 98:2 (Table 1, E). Furthermore, to compare the
different procedures, the price of production16 has been ap-
proximately evaluated. This clearly showed that all the pub-
lished procedures are significantly less costly than the com-
mercial product (currently 5.92 €/mmol as purchased from
Sigma-Aldrich), but the protocol optimized in our laborato-
ry is the most cost-efficient (0.14 €/mmol) to afford diaste-
reopure (S)-1.

As sulfoxides continue to be valuable moieties for stere-
oselective reactions, this refinement should prove to be
very helpful for the large-scale synthesis of this key precur-
sor, (1R,2S,5R)-(–)-menthyl (S)-p-toluenesulfinate [(S)-1].17
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arated, and the organic phase washed with 1 M HCl (2 × 50 mL)
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solved in acetone (100 mL) to which was added 3–5 drops of
37% HCl and the whole mixture put into a freezer. The resultant
crystals were filtered and washed once with cold acetone (–18 °C);
the mother liquor was then concentrated to half its volume, 1–2
drops of concentrated HCl were added, and the process
repeated as long as appreciable amounts of crystals could be
recovered (6–8 iterations). The combined batches were recrys-
tallized from acetone (reflux to rt to –18 °C), affording large
rectangular colorless crystals of (–)-menthyl (S)-p-toluenesulfi-
nate (57.3 g, 0.194 mol, 72.4%).
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