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Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem

We exhibit a new decomposition of the nonlinearity for the Muskat equation and use it to commute Fourier multipliers with the equation. This allows to study solutions with critical regularity. As a corollary, we obtain the first well-posedness result for arbitrary large data in the critical space Ḣ2 (R 2 ) ∩ W 1,∞ (R 2 ). Moreover, we prove the existence of solutions for initial data which are not Lipschitz.

Introduction

The Muskat problem dictates the evolution of a time-dependent interface Σ(t) separating two fluids in porous media obeying Darcy's law ( [START_REF] Philibert | à suivre et des formules à employer dans les questions de distribution d'eau, etc[END_REF][START_REF] Muskat | Two fluid systems in porous media. the encroachment of water into an oil sand[END_REF]). We assume that the interface is a graph, so that at time t ≥ 0, Σ(t) = {(x, f (t, x)) : x ∈ R d } ⊂ R d+1 , with d = 2 (resp. d = 1) for a 3D fluid domain (resp. 2D). It has long been understood that the Muskat problem can be reduced to a parabolic evolution equation for the unknown function f (see [START_REF] Caflisch | A localized approximation method for vortical flows[END_REF][START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF][START_REF] Prüss | Moving interfaces and quasilinear parabolic evolution equations[END_REF][START_REF] Siegel | Global existence, singular solutions, and ill-posedness for the Muskat problem[END_REF]). Córdoba and Gancedo [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF] have studied this problem using contour integrals, and obtained a beautiful formulation of the Muskat equation in terms of finite differences, which reads (1)

∂ t f (t, x) = 1 2 d-1 π ˆRd α • ∇ x ∆ α f (t, x) ∆ α f (t, x) d+1 dα |α| d , d = 1, 2,
where ∆ α f is the slope, defined by

∆ α f (t, x) = f (t, x) -f (t, x -α) |α| ,
and where, for d = 2,

|α| = α 2 1 + α 2 2 , ∆ α f = 1 + (∆ α f ) 2 , α • ∇ x = α 1 ∂ x 1 + α 2 ∂ x 2 ,
with obvious modifications for d = 1.

We are inspired by many recent works where this formulation is used to study the Cauchy problem: in particular Constantin, Córdoba, Gancedo, Strain [START_REF] Constantin | On the global existence for the Muskat problem[END_REF], Constantin, Gancedo, Shvydkoy and Vicol [START_REF] Constantin | On the Muskat problem: global in time results in 2D and 3D[END_REF], Matioc [START_REF] Matioc | The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results[END_REF], Córdoba and Lazar [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF], Alazard and Lazar [START_REF] Alazard | Paralinearization of the Muskat equation and application to the Cauchy problem[END_REF], Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF] (other references are given in §1.2).

Inspired by the latter, we have studied in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF] the Cauchy problem for solutions of the 2D Muskat's equation with critical regularity. The main result of the previous series of papers is established in [START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF]. It reads that, for d = 1, the Cauchy problem for the Muskat equation is well-posed on the endpoint Sobolev space H 3 2 (R). Let us make it clear from the start that we are not going to extend this result to the 3D setting (and, according to the authors' understanding of the problem, it is not certain that this is possible). The main goal of the present paper is to show that it is possible to solve the Cauchy problem for arbitrary large data in the critical space Ḣ2 (R 2 ) ∩ W 1,∞ (R 2 ). Moreover, we prove the existence of solutions for initial data which are not Lipschitz.

A guiding principle in the study of free boundary problems with potential flows is that problems in 2D are simpler than those in 3D, because complex function theory can be used in the first case. Such a dichotomy is well understood in the analysis of the water-wave equations (see [START_REF] Ai | Two dimensional gravity waves at low regularity II: Global solutions[END_REF][START_REF] Wu | The quartic integrability and long time existence of steep water waves in 2D[END_REF] for recent results exploiting the characteristics of 2D equations). For the Muskat equation in subcritical spaces, there exist different ways to overcome the difficulties that appear in 3D. We refer to the recent article by Nguyen and Pausader [START_REF] Huy | A paradifferential approach for well-posedness of the Muskat problem[END_REF], which studied the Muskat equation in a general framework, with an approach based on a paradifferential analysis of the Dirichlet-to-Neumann operator ( [START_REF] Alazard | On the Cauchy problem for gravity water waves[END_REF]). However, the different approaches used so far seem, according to our understanding of the problem, inappropriate for the study of solutions with critical regularity. In this direction, the first breakthrough result in 3D was obtained by Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF], who worked with a new formulation of the 3D Muskat equation in terms of oscillatory integrals, and obtained the first result of global existence in critical Sobolev space, for sufficiently small initial data. We will consider a different approach, which allows to study solutions with critical regularity and large data. In addition, we will obtain another proof of the main result of [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF].

1.1. The equation and its scaling invariance. The Muskat equation is invariant by the transformation:

(2)

f (t, x) → f λ (t, x) := 1 λ f (λt, λx) .
Then, by a direct calculation, one verifies that the spaces Ẇ 1,∞ (R d ) and Ḣ1+ d 2 (R d ) are critical spaces for the study of the Cauchy problem. This means that

∇f λ   t=0 L ∞ = ∇f 0 L ∞ , f λ   t=0 Ḣ1+ d 2 = f 0 Ḣ1+ d 2 .
Given a real number s ≥ 0, we denote by H s (R 2 ) (resp. Ḣs (R 2 )) the classical Sobolev (resp. homogeneous Sobolev) space of order s. They are equipped with the norms defined by

(3)

u 2 Ḣs = ˆRd |ξ| 2s f (ξ) 2 dξ, u 2 H s = u 2 Ḣs + u 2 L 2 .
In particular, when d = 2, we have u Ḣ2 (R 2 ) = (2π) 2 ∆u L 2 (R 2 ) .

Cauchy problem.

The study of the Cauchy problem for the Muskat equation with smooth enough initial data goes back to the works of Yi ([52]), Caflisch,Howison and Siegel ([47]), Ambrose ([7, 8]) and Córdoba, Córdoba and Gancedo ([29,[START_REF] Córdoba | Interface evolution: the Hele-Shaw and Muskat problems[END_REF]). This problem was extensively studied in the last decade. In particular, there are many local well-posedness results in sub-critical spaces: we refer to the works of Constantin, Gancedo, Shvydkoy and Vicol [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF] for initial data in the Sobolev space W 2,p (R) for some p > 1, Cheng, Granero-Belinchón and Shkoller [START_REF] Arthur Cheng | Well-posedness of the Muskat problem with H 2 initial data[END_REF] and Matioc [START_REF] Matioc | Viscous displacement in porous media: the Muskat problem in 2D[END_REF][START_REF] Matioc | The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results[END_REF] for initial data in H s (R) with s > 3/2 (see also [START_REF] Alazard | Paralinearization of the Muskat equation and application to the Cauchy problem[END_REF][START_REF] Huy | A paradifferential approach for well-posedness of the Muskat problem[END_REF]), and Deng, Lei and Lin [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF] for 2D initial data whose derivatives are Hölder continuous. The Muskat equation being parabolic, the proof of the local well-posedness results also provides global well-posedness results under a smallness assumption. The first global well-posedness results under mild smallness assumptions, namely assuming that the Lipschitz semi-norm is smaller than 1, was obtained by Constantin, Córdoba, Gancedo, Rodríguez-Piazza and Strain [START_REF] Constantin | On the Muskat problem: global in time results in 2D and 3D[END_REF] (see also [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF][START_REF] Patel | Large time decay estimates for the Muskat equation[END_REF]).

In addition, there are three different cases where the Cauchy problem for solutions with critical regularity is well-understood:

(i) For Lipschitz initial data, see Camerón [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF][START_REF] Cameron | Global wellposedness for the 3d Muskat problem with medium size slope[END_REF][START_REF] Cameron | Eventual regularization for the 3d Muskat problem: Lipschitz for finite time implies global existence[END_REF]. (ii) For small enough initial data, see the results by Córdoba and Lazar [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF] and Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF] mentioned above. (iii) In one dimension, see [START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF] for the study of the Cauchy problem with arbitrary initial data in the one-dimensional critical Sobolev space H 3/2 (R).

Compared to the Lipschitz or small data cases, we need to address the three following difficulties: (i) the parabolic behavior degenerates at that level of regularity; (ii) the lifespan of the solution depends on the initial data themselves and not only on its norm, and (iii) the space H 3/2 (R) is not a Banach algebra (compared to W 1,∞ (R)).

In addition to these well-posedness results, let us mention that the existence and possible non-uniqueness of weak-solutions has also been thoroughly studied (we refer the reader to [START_REF] Brenier | On the hydrostatic and darcy limits of the convective navier-stokes equations[END_REF][START_REF] Córdoba | Lack of uniqueness for weak solutions of the incompressible porous media equation[END_REF][START_REF] Székelyhidi | Relaxation of the incompressible porous media equation[END_REF][START_REF] Castro | Mixing solutions for the Muskat problem[END_REF][START_REF] Förster | Piecewise constant subsolutions for the Muskat problem[END_REF][START_REF] Noisette | Mixing solutions for the Muskat problem with variable speed[END_REF]). There are also blow-up results for certain large data; see the papers by Castro, Córdoba, Fefferman, Gancedo and López-Fernández [START_REF] Castro | Breakdown of smoothness for the Muskat problem[END_REF][START_REF] Castro | Splash singularities for the one-phase Muskat problem in stable regimes[END_REF][START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF]. They have proved that there are solutions such that at time t = 0 the interface is a graph, at a subsequent time t 1 > 0 the interface is not a graph and then at a later time t 2 > t 1 , the interface is C 3 but not C 4 . This result explains why it is interesting to prove the existence of solutions whose slopes can be arbitrarily large (as in [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF][START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF][START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF][START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF]) or even infinite (as we proved in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF]).

Another consequence of this blow-up result is that one cannot prove a well-posedness result for large data such that the lifespan would depend only on the norm of the initial data (otherwise one would get a global existence result for any initial data by a scaling argument). This means that the lifespan necessarily depends on the profile of the initial data. This is a well-known problem in the analysis of several dispersive equations, or other parabolic equations (see in particular [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF][START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[END_REF][START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF][START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF][START_REF] Vasilyev | Variation on a theme by Kiselev and Nazarov: Hölder estimates for non-local transport-diffusion, along a non-divergence-free BMO field[END_REF][START_REF] Nguyen | Potential theory for drift diffusion equations with critical diffusion and applications to the dissipative SQG equation[END_REF]).

Here the problem is more difficult since the Muskat equation is fully nonlinear.

We will prove two different results about the Cauchy problem. Our main result is a local well-posedness result for arbitrary initial data in the critical space

W 1,∞ (R 2 ) ∩ Ḣ2 (R 2
). An important new point is that we do not require a control of the low frequencies in L 2 (R 2 ). Namely, we will prove the following Theorem 1.1. For any initial data

f 0 in W 1,∞ (R 2 ) ∩ Ḣ2 (R 2 )
, there exists a time T > 0 such that the Cauchy problem for the Muskat equation has a unique solution

f ∈ L ∞ [0, T ]; W 1,∞ (R 2 ) ∩ Ḣ2 (R 2 ) ∩ L 2 (0, T ; Ḣ 5 2 (R 2 )).
The proof of Theorem 1.1 will immediately give an alternative proof to the following result, first proved in [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF].

Theorem 1.2. There exists a positive constant δ such that, for any initial data

f 0 in W 1,∞ (R) ∩ Ḣ2 (R) satisfying 1 + ∇f 0 3 L ∞ f 0 Ḣ2 ≤ δ,
the Cauchy problem for the Muskat equation has a unique global solution

f ∈ L ∞ [0, +∞); W 1,∞ (R 2 ) ∩ Ḣ2 (R 2 ) ∩ L 2 (0, +∞; Ḣ 5 2 (R 2 )).
As another consequence of the proof of Theorem 1.1, we will obtain the existence of solutions whose initial slope is infinite, which extends the main result in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] to the 3D Muskat problem.

Theorem 1.3. Let a = 3/8.

i) For any initial data f 0 in the following space

Ḣ2,log a (R 2 ) := u : u Ḣ2,log a = u L ∞ + |ξ| 2 log(2 + |ξ|) a û(ξ) L 2 < +∞ ,
there exists a positive time T such that the Cauchy problem for the Muskat equation (1) with initial data f 0 has a unique solution

f ∈ C 0 [0, T ]; Ḣ2,log a (R 2 ) ∩ L 2 0, T ; Ḣ2 (R 2 ) .
ii) There exists a positive constant c 0 such that, if

f 0 ∈ L ∞ (R 2 ) and ˆR2 |ξ| 4 log(2 + |ξ|) 2a f0 (ξ) 2 dξ ≤ c 0 ,
then the solution exists globally in time.

1.3. Strategy of the proof and plan of the paper. The proof is based on two different tools. On the one hand, we shall use the weighted fractional laplacians already used in our previous works [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF]. We recall the needed results in Section 2. On the other hand, we will introduce a decomposition of the nonlinearity into several terms playing different roles in Section 3. On the technical side, we simplify many arguments compared to previous works on the subject by introducing an approach which is best carried out by the Fourier transform (instead of using Besov spaces or Triebel spaces).

1.4. Notations. Let us fix some basic notations.

(1) The euclidean norm of h

= (h 1 , h 2 ) ∈ R 2 is denoted by |h| = h 2 1 + h 2 2 .
(2) Given a scalar a ∈ R or a vector h ∈ R 2 , the Bracket notations reads:

a = 1 + a 2 , h = 1 + |h| 2 = 1 + h 2 1 + h 2 2 .
(3) Given a non-zero vector a in R 2 , we set

ǎ = a |a| • (4)
The operators δ α and ∆ α are defined by 

δ α f (x) = f (x) -f (x -α), ∆ α f (x) = f (x) -f (x -α) |α| • ( 
A • B -B • A . (7) Given a normed space X and a function ϕ = ϕ(t, x) defined on [0, T ] × R
with values in X, ϕ(t) the function x → ϕ(t, x). In the same vein, we use ϕ X as a compact notation for the time dependent function t → ϕ(t) X .

Preliminaries

We gather in this section some inequalities that are used systematically in the sequel. We begin by summarizing some well-known estimates. Then we recall from our previous papers several estimates for the weighted fractional Laplacians |D| s,φ . In the last paragraph, we introduce some estimates which allow to considerably simplify previous analysis of the Muskat equation.

2.1. Minkowski's inequality. Consider two σ-finite measure spaces (S 1 , µ 1 ) and (S 2 , µ 2 ) and a measurable function

F : S 1 × S 2 → R. Then, for all p ∈ [1, +∞), (4) Ŝ2 Ŝ1 F (x, y)µ 1 (dx) p µ 2 (dy) 1 p ≤ Ŝ1 Ŝ2 |F (x, y)| p µ 2 (dy) 1 p µ 1 (dx).
2.2. Sobolev embeddings. We will make extensive use of the Sobolev and Hardy-Littlewood-Sobolev inequalities. Recall that, in dimension two, Sobolev's inequality reads [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] Ḣt (R 2 ) ֒→ L

2 1-t (R 2 ) for 0 ≤ t < 1.
Also, for for s ∈ (0, 1), there is a constant c(s) such that (6)

u 2 Ḣs = c(s) R 2 ×R 2 |u(x) -u(y)| 2 |x -y| 2s dx dy |x -y| 2 •
In space dimension two, the Riesz potentials are defined by

I s f (x) = ˆR2 f (y) |x -y| 2-s dy for 0 < s < 2.
Consider three positive numbers (p, q, s) such that 1 p -

1 q = s 2 , 1 < p < 2 s •
Then the Hardy-Littlewood-Sobolev inequality states that there exists a constant C = C(p, q, s) such that, for all f in C1 0 (R 2 ), ( 7)

I s f L q C f L p .
We will also make extensive use of the fact that, for 0 < s < 1, the Fourier multiplier |D| -s can be written as

(8) |D| -s = c s I s ,
for some constant c s .

2.3. Weighted fractional Laplacians. In our previous works [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF] we introduced weighted fractional Laplacians and use them to study the Muskat equation in critical spaces. In this section, we extend the previous operators in dimension d = 2. 

F(|D| s,φ f )(ξ) = |ξ| s φ(|ξ|)F(f )(ξ).
In addition, we define the space

H s,φ (R) = {f ∈ L 2 (R) : |D| s,φ f ∈ L 2 (R)}, equipped with the norm f H s,φ := f L 2 + ˆR |ξ| 2s (φ(|ξ|)) 2 f (ξ) 2 dξ 1 2
.

Remark 2.2. There is a key difference between the space H 1,φ (R 2 ) and the space H 1+ε (R 2 ) with ε > 0. Indeed, the space H 1,φ (R d ) is not stable by product in general.

Remark 2.3. In the special case where φ(r) = log(2 + r) a , these operators were introduced and studied in [START_REF] Brué | Sharp regularity estimates for solutions to the continuity equation drifted by Sobolev vector fields[END_REF][START_REF] Brué | On the Sobolev space of functions with derivative of logarithmic order[END_REF][START_REF] Brué | Advection diffusion equations with Sobolev velocity field[END_REF] for s ∈ [0, 1) (see also [START_REF] Nguyen | Quantitative estimates for regular lagrangian flows with BV vector fields[END_REF]).

We shall consider special functions φ depending on a function κ

: [0, ∞) → [1, ∞), of the form 1 (9) φ(λ) = 4π ˆ∞ 0 1 -cos(r) r 3/2 κ λ r dr r •
In addition we will always assume that κ is an admissible weight, in the sense of the following definition. The next propositions contains the main results about these operators. Their proofs are postponed to the appendix.

For later applications, we make some preliminary remarks about admissible weights.

Lemma 2.5. For all σ > 0, there exists C σ > 0 such that, for all 0 < r ≤ µ,

r σ κ 1 r ≤ C σ µ σ κ 1 µ , (10) 
r σ κ 2 1 r ≤ C σ µ σ κ 2 1 µ . ( 11 
)
Remark 2.6. These inequalities have the following interpretation: even if the function r → κ(1/r) and r → κ 2 (1/r) are decreasing, since the function κ(r)/ log(2+r) is decreasing, one expects that r σ κ(1/r) and r σ κ 2 (1/r) behave as increasing functions of r.

We will see that κ and φ are equivalent (i.e. φ ∼ κ, see [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[END_REF]). The reason for introducing two different functions to code a single operator is that we will use them for different purposes. Indeed, it is convenient to use φ when we prefer to work with the frequency variable, whereas we will use κ when the physical variable is more practical. The special choice [START_REF] Brenier | On the hydrostatic and darcy limits of the convective navier-stokes equations[END_REF] for the formula relating φ and κ will be used to deduce the following identity [START_REF] Brué | Sharp regularity estimates for solutions to the continuity equation drifted by Sobolev vector fields[END_REF] which allows to switch calculations between frequency and physical variables. Proposition 2.7. Assume that φ is defined by (9) for some admissible weight κ. For all g ∈ H ∞ (R 2 ), there holds

(12) |D| 3 2 ,φ g(x) = c ˆR2 2g(x) -g(x + α) -g(x -α) |α| 3/2 κ 1 |α| dα |α| 2 •
Eventually, we will need the following link between |D| s,φ and the function κ.

Proposition 2.8. i) Assume that φ is defined by (9) for some admissible weight κ. Define, for g ∈ H ∞ (R 2 ), the semi-norm

g s,κ := ¨R2 ×R 2 |2g(x) -g(x + α) -g(x -α)| 2 1 |α| s κ 1 |α| 2 dx dα |α| 2 1 2 • Then, for all 0 < s < 2, there exist c, C > 0 such that, for all g ∈ H ∞ (R 2 ), c ˆR |D| s,φ g(x) 2 dx ≤ g 2 s,κ ≤ C ˆR |D| s,φ g(x) 2 dx.
ii) There exist two constants c, C > 0 such that, for all ξ ∈ R 2 ,

(13) cκ(|ξ|) ≤ φ(|ξ|) ≤ Cκ(|ξ|).
Proof. See Appendix A.1.

2.4.

Estimates for the finite difference operators. In the following lemma, we gather several estimates that will be widely used in the sequence. Lemma 2.9. i) For all a ∈ [0, +∞) and b ∈ (0, 1), there exists C > 0 such that

(14) 1 C f 2 Ḣa+b ≤ ˆR2 δ α f 2 Ḣa dα |α| 2+2b ≤ C f 2 Ḣa+b .
ii) For all b ∈ (0, 1), there exists a constant C such that

(15) ˆR2 ˆR2 |δ α f (x)| 2 dα |α| 2+2b 2 dx 1 4 ≤ C f Ḣb+ 1 2 .
iii) Assume that

(16) a ∈ [0, +∞), γ ∈ [1, +∞), γ < b < 2γ.
Then there exists C > 0 such that

(17) ˆR2 δ α f -α • ∇ x f 2γ Ḣa dα |α| 2+2b ≤ C f 2γ Ḣa+ b γ .
iv) Assume that a, b, γ satisfy [START_REF] Cameron | Eventual regularization for the 3d Muskat problem: Lipschitz for finite time implies global existence[END_REF]. Then there exists C > 0 such that

(18) ˆR2 δ α f + δ -α f 2γ Ḣa dα |α| 2+2b ≤ C f 2γ Ḣa+ b γ . Proof. i) Set g = |D| a f . Then ˆR2 δ α f 2 Ḣa dα |α| 2+2b = ¨R2 |g(x) -g(x -α)| 2 |α| 2b dα |α| 2 •
Consequently, ( 14) is an immediate consequence of the equivalence of the homogeneous Sobolev norm (3) with the Gagliardo seminorm [START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF].

ii) It follows from Minkowski inequality (4) and the Sobolev embedding

Ḣ 1 2 (R 2 ) ֒→ L 4 (R 2 ) that ˆR2 ˆR2 |δ α f (x)| 2 dα |α| 2+2b 2 dx 1 4 ≤ ˆR2 δ α f 2 L 4 dα |α| 2+2b 1 2 ≤ ˆR2 δ α f 2 Ḣ 1 2 dα |α| 2+2b 1 2
Hence (15) follows from ( 14) applied with a = 1/4.

iii) The proof of this is best carried out by the Fourier transform. Indeed,

F (δ α f -α • ∇ x f ) (ξ) = 1 -e -iα•ξ -iα • ξ f (ξ).
In view of the elementary inequality

1 -e -ia -ia ≤ |a| min{1, |a|} (a ∈ R), we conclude that ˆR2 δ α f -α • ∇ x f 2γ Ḣa dα |α| 2+2b ≤ ˆR2 ˆ|ξ| 2a |α| |ξ| min{1, |α| |ξ|} 2 f (ξ) 2 dξ γ dα |α| 2+2b .
As a result, it follows from Minkowski's inequality that ( 19)

ˆR2 δ α f -α • ∇ x f 2γ Ḣa dα |α| 2+2b ˆR2 ˆR2 |α| 2γ |ξ| 2γ min {1, |α| |ξ|} 2γ dα |α| 2+2b 1 γ |ξ| 2a f (ξ) 2 dξ γ .
Since γ < b < 2γ by assumption, we have

ˆR2 |α| 2γ |ξ| 2γ min {1, |α| |ξ|} 2γ dα |α| 2+2b |ξ| 2b .
We thus obtain ( 17) by reporting this inequality in [START_REF] Castro | Breakdown of smoothness for the Muskat problem[END_REF].

iv) By changing α into -α, we deduce from ( 17) that ( 20) [START_REF] Castro | Mixing solutions for the Muskat problem[END_REF] follows from ( 17), [START_REF] Castro | Splash singularities for the one-phase Muskat problem in stable regimes[END_REF] and the triangular inequality.

ˆR2 δ -α f + α • ∇ x f 2γ Ḣa dα |α| 2+2b ≤ C f 2γ Ḣa+ b γ . Now,
Lemma 2.10. Let γ ∈ {1, 2}.

i) For all a ∈ [0, +∞), and all b, c ∈ (0, γ), there exists C > 0 such that

(21) ¨R2 ×R 2 δ α δ h f 2γ Ḣa κ 2γ 1 |h| dh |h| 2+2b dα |α| 2+2c ≤ C |D| a+ b+c γ ,φ f 2 L 2 .
ii) For all a ∈ [0, +∞) and all b ∈ (0, γ), there exists C > 0 such that

(22) ˆR2 δ h f 2γ Ḣa κ 2γ 1 |h| dh |h| 2+2b ≤ C |D| a+ b γ ,φ f 2 L 2 .
Proof. Notice that (21) follows immediately from ( 14) and [START_REF] Arthur Cheng | Well-posedness of the Muskat problem with H 2 initial data[END_REF]. So it suffices to prove the latter estimate.

By repeating arguments similar to the ones used in the previous proof, we begin by writing that, since

δ h f (ξ) = 1 -e -ih•ξ f (ξ) ≤ min{1, |h| |ξ|} f (ξ) , we have ˆR2 δ h f 2γ Ḣa κ 2γ 1 |h| dh |h| 2+2b ≤ ˆR2 ˆR2 |ξ| 2a min{1, |h| |ξ|} 2 f (ξ) 2 dξ γ κ 2γ 1 |h| dh |h| 2+2b .
Since γ ≥ 1, one may apply Minkowski's inequality to infer that

ˆR2 δ h f 2γ Ḣa κ 2γ 1 |h| dh |h| 2+2b ˆR2 m(ξ) 1 γ |ξ| 2a f (ξ) 2 dξ γ where m(ξ) := ˆR2 min {1, |h| |ξ|} 2γ κ 2γ 1 |h| dh |h| 2+2b •
So, to obtain [START_REF] Arthur Cheng | Well-posedness of the Muskat problem with H 2 initial data[END_REF], it will be sufficient to prove that m(ξ) φ 2γ (|ξ|) |ξ| 2b . By Lemma 2.5, one has for

ε 0 > 0 (min{1, |ξ||h|}) ε 0 κ 2γ 1 |h| ε 0 κ 2γ (|ξ|) ∼ φ 2γ (|ξ|).
It follows, for

ε 0 > 0, m(ξ) ε 0 ˆR2 min {1, |h| |ξ|} 2γ-ε 0 dh |h| 2+2b φ 2γ (|ξ|) ∼ ε 0 φ 2γ (|ξ|) |ξ| 2b .
This completes the proof.

Nonlinearity

Given two functions f = f (x) and g = g(x), introduce the notation

(23) L(f )g = - 1 2π ˆR2 α • ∇ x ∆ α g ∆ α f 3 dα |α| 2 ,
where recall that

∆ α u(x) = u(x) -u(x -α) |α| , a = 1 + a 2 , α • ∇ x = α 1 ∂ x 1 + α 2 ∂ x 2 .
With this notation, the Muskat equation reads

(24) ∂ t f + L(f )f = 0.
Recall that the linearized Muskat equation around the null solution reads

∂ t f + |D| f = 0 where |D| is fractional Laplacian (-∆) 1/2 defined by F(|D| u)(ξ) = |ξ|F(u)(ξ).
Indeed, we have

|D| u(x) = 1 2π ˆR2 u(x) -u(x -α) |α| dα |α| 2 , and hence |D| u(x) = - 1 2π ˆR2 α • ∇ x ∆ α u(x) dα |α| 2
, as can be verified by integrating by parts in α (see the identity (37) below applied with ζ = 0.) So, when f = 0, we have L(0) = |D|. The next proposition gives a key decomposition of the general operator L(f ) into three components:

L(f )g = P (f )g + V (f ) • ∇ x g + R(f, g),
where P (f ) is an elliptic operator of order 1, V (f ) is a vector field and R(f, g) is a remainder term. Proposition 3.1 (Quasilinearization formula). There holds

(25) L(f )g = P (f )g + V (f ) • ∇ x g + R(f, g)
where the operator P (f ) is defined by

(26) P (f )g = 1 2π ˆR2 δ α g α • ∇ x f 3 dα |α| 3 with α = α |α| ∈ S 1 ,
and where the vector field V (f ) is given by

(27) V (f )(x) = 1 2π ˆR2 1 2 1 ∆ -α f (x) 3 - 1 ∆ α f (x) 3 α dα |α| 3 ∈ R 2 ,
and the remainder term R(f, g) as the form

(28) R(f, g)(x) = 1 2π ˆR2 M α (x)δ α g(x) dα |α| 3 ,
for some symbol M α satisfying the following pointwise bound:

(29) |M α (x)| ≤ 6 |∆ α f (x) -α • ∇ x f (x)| + 3 |∇ x (δ α f )| .
Proof. The proof is in two steps. We begin by decomposing the nonlinearity into several pieces to obtain [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF] with an explicit expression for the remainder term R(f, g). Then, in the second step we will bound R(f, g).

Step 1: decompositions. Introduce

O (α, x) = 1 2 1 ∆ α f (x) 3 - 1 2 1 ∆ -α f (x) 3 , (30) 
E (α, x) = 1 2 1 ∆ α f (x) 3 + 1 2 1 ∆ -α f (x) 3 , (31) 
E 0 (α, x) = 1 α • ∇ x f (x) 3 • (32)
The reasons to introduce these terms are the following. Firstly, one can decompose the coefficient 1

∆ α f 3 into: (33) 1 ∆ α f 3 = E (α, •) + O (α, •) .

Secondly, we have

O (-α, x) = -O (α, x) , E (-α, x) = E (α, x) .
Eventually, we will replace E (α, x) by E 0 (α, x) to the price of some error terms, involving ∆ α f (x) -α • ∇f (x) or ∆ -α f (x) + α • ∇f (x), which contribute to the remainder term. Now, directly from the definition (23) of L(f )g and ( 33), we have

L(f )g = - 1 2π ˆR2 E (α, •) α • ∇ x ∆ α g(x) dα |α| 2 - 1 2π ˆR2 O (α, •) α • ∇ x ∆ α g(x) dα |α| 2 •
We further decompose the first term by writing

E (α, •) = E 0 (α, •) + (E (α, •) -E 0 (α, •)) ,
and, in the second term, we expand δ α g(x) into two parts: g(x) and -g(x -α), that will be handle separately. It follows that ( 34)

L(f )g = - 1 2π ˆR2 1 α • ∇ x f 3 α • ∇ x ∆ α g dα |α| 2 + V (f ) • ∇ x g + R(f, g),
where V (f ) is defined by [START_REF] Córdoba | Interface evolution: the Hele-Shaw and Muskat problems[END_REF], and

R(f, g) = R 1 (f, g) + R 2 (f, g) with R 1 (f, g) = - 1 2π ˆR2 (E (α, x) -E 0 (α, x)) α • ∇ x ∆ α g(x) dα |α| 2 (35) R 2 (f, g) = 1 2π ˆR2 O (α, x) α • ∇ x g(x -α) dα |α| 3 • (36)
The following lemma gives an alternative expression for the first term in the righthand side of [START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF], and thus establishes [START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF]. Lemma 3.2. For any vector ζ ∈ R 2 , there holds

- ˆR2 1 α • ζ 3 α • ∇ x ∆ α g(x) dα |α| 2 = ˆR2 1 α • ζ 3 g(x) -g(x -α) |α| dα |α| 2 • (37)
Proof. By symmetry, one has

(38) ˆR2 1 ζ • α 3 α |α| • ∇ x g(x) dα |α| 2 = 0. On the other hand, (39) ∇ x (g(x -α)) = (∇ x g)(x -α) = ∇ α (g(x) -g(x -α)).
Hence, by integrating by parts,

- ˆ1 α • ζ 3 α • ∇ x ∆ α g(x) dα |α| 2 = ˆ∇α (g(x) -g(x -α)) α • ζ 3 • α dα |α| 3 = ˆ(g(x) -g(x -α)) div α -α (|α| 2 + (α • ζ) 2 ) 3 2 dα. Now, note that div α -α (|α| 2 + (α • ζ) 2 ) 3 2 = - 2 
(|α| 2 + (α • ζ) 2 ) 3 2 + 3α • (α + (α • ζ)ζ) (|α| 2 + (α • ζ) 2 ) 5 2 = 1 α • ζ 1 |α| 3 ,
which completes the proof.

Step 2: estimate of the remainder term. It remains to prove the estimate [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF]. Now, we are going to exploit some symmetry to compute the remainder R(f, g). We begin by applying arguments parallel to those used to prove Lemma 3.2. Firstly, since E (α, x) -E 0 (α, x) is symmetric with respect to α → -α, we have the following cancellation (parallel to [START_REF] Matioc | Viscous displacement in porous media: the Muskat problem in 2D[END_REF]):

ˆR2 (E (α, x) -E 0 (α, x)) ∇ x g(x) • α dα |α| 3 = 0.
By considering that ∇ x (g(x -α)) = ∇ α (δ α g) (see ( 39)), we see that the remainder term R 1 (f, g) (see [START_REF] Förster | Piecewise constant subsolutions for the Muskat problem[END_REF]) satisfies

R 1 (f, g) = 1 2π ˆR2 (E (α, x) -E 0 (α, x)) α • ∇ α (δ α g(x)) |α| dα |α| 2 •
Then, by integrating by parts in α,

R 1 (f, g) = 1 2π ˆR2 A α (x)δ α g(x)
dα, where

A α (x) := -div α α |α| 3 (E (α, x) -E 0 (α, x)) .
Similarly, by using again ∇ x (g(x -α)) = ∇ α (δ α g) and an integration by parts, we have

R 2 (f, g) = 1 2π ˆR2 B α (x)δ α g(x)
dα, where

B α (x) := -div α α |α| 3 O (α, x) .
By adding R 1 and R 2 , and remembering [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF], we conclude that the remainder term R(f, g) can be written as

R(f, g)(x) = 1 2π ˆR2 M α (x)δ α g(x) dα,
where M α (x) is given by 3 .

M α (x) := -div α α |α| 3 1 ∆ α f (x) 3 - 1 α • ∇ x f (x)
By considering that α • ∇ α u(α) = d dλ u(λα)| λ=1 , one easily verifies that div α α |α| 3 = - 1 |α| 3 , α • ∇ α 1 α • ∇ x f (x) 3 = 0, α • ∇ α 1 ∆ α f (x) 3 = 3 ∆ α f (x) ∆ α f (x) 5 ∆ α f (x) -α • ∇ x f (x -α) .
It follows that

M α (x) = 1 |α| 3 1 ∆ α f (x) 3 - 1 α • ∇ x f (x) 3 - 3 |α| 3 ∆ α f (x) ∆ α f (x) 5 ∆ α f (x) -α • ∇ x f (x -α) . Since ∇ x f (x -α) = ∇ x f (x) -∇ x (δ α f (x)),
we end up with

M α (x) = 1 |α| 3 1 ∆ α f (x) 3 - 1 α • ∇ x f (x) 3 - 3 |α| 3 ∆ α f (x) ∆ α f (x) 5 ∆ α f (x) -α • ∇ x f (x) - 3 |α| 3 ∆ α f ∆ α f (x) 5 α • ∇ x (δ α f )• Since 1 r 1 3 - 1 r 2 3 ≤ 3 |r 1 -r 2 | , we obtain that |M α (x)| ≤ 6 |α| 3 |∆ α f (x) -α • ∇ x f (x)| + 3 |α| 3 |∇ x (δ α f )| .
Therefore [START_REF] Córdoba | Lack of uniqueness for weak solutions of the incompressible porous media equation[END_REF] is proven. This completes the proof.

Nonlinear estimates

The goal of this section is to prove the following Theorem 4.1. There exist a positive constant C such that, for all f ∈ H ∞ (R 2 ),

ˆR2 L(f )f |D| 4,φ 2 f dx ≥ |D| 5 2 ,φ f 2 L 2 1 + f 3 Ẇ 1,∞ (40) 
-C |D| 2,φ f L 2 1 + |D| 2,φ f 2 L 2 |D| 5 2 ,φ f 2 L 2 φ |D| 5 2 ,φ f L 2 |D| 2,φ f L 2 -1
.

The proof of this theorem is quite long and is separated into several steps. We rewrite the left-hand side of (40) as

ˆR2 L(f ) |D| 3 2 ,φ f |D| 5 2 ,φ f + |D| 3 2 ,φ , L(f ) f |D| 5 2 ,φ f dx.
We estimate the commutator in §4.4. To estimate the contribution of L(f ) |D| 4.1. The convective term. We begin by studying the contribution of the convective term V (f ) • ∇ x which appears in Proposition 3.1. We want to estimate

V (f ) • ∇ x |D| 3 2 ,φ f, |D| 5 2 ,φ f .
To do so, we introduce the Riesz transform R = (R 1 , R 2 ) which is defined by

F(R(h))(ξ) = i ξ |ξ| ĥ(ξ).
With this operator, one has (41)

∇ x h(x) = R |D| (h)(x), R ⋆ = -R,
where R ⋆ denotes the adjoint with respect to the L 2 (R 2 )-scalar product. It follows that for

g = |D| 5 2 ,φ f V (f ) • ∇ |D| 3 2 ,φ f, g = V (f ) • Rg, g = - 1 2 [R, V (f )] g, g ,
where in the last identity we use the notation [A, B] = AB -BA.

Consequently, we have to estimate the commutator [R, V (f )]•∇. This is the purpose of the following propositon.

Proposition 4.2. There exists a positive constant C such that, for all functions f and g in

H ∞ (R 2 ), ( 42 
) [R, V (f )] g L 2 ≤ C f Ḣ 9 4 + f 2 Ḣ 17 8 g Ḣ-1 4 .
Proof. The proof is in two steps. Firstly, we estimate the commutator between the Riesz transform and the multiplication by a function.

Lemma 4.3. There exists a positive constant C such that, for all functions g 1 and

g 2 in H ∞ (R 2 ), ( 43 
) [R j , g 1 ] ∂ x k g 2 L 2 g 1 Ḣ 5 4 g 2 Ḣ 3 4 .
Proof. We follow the proof of a commutator estimate in our previous paper, see [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]Estimate (60)]. Recall that the Riesz transform can be written under the form

R j f (x) = - 1 2π lim ε→0 ˆR2 \B(x,ε) (x j -y j ) |x -y| 3 f (y) dy.
It follows that

|[R j , g 1 ] ∂ x k g 2 (x)| = 1 2π ˆR2 (g 1 (x) -g 1 (y)) x j -y j |x -y| 3 ∂ y k (g(x) -g(y)) dy .
Let us integrate by parts, and then integrate in x, to obtain

ˆR2 |[R, g 1 ] • ∇ x g 2 (x)| 2 dx ˆR2 ˆR2 |∇g 1 (y)| |g 2 (x) -g 2 (y)| dy |x -y| 2 2 dx + ˆR2 ˆR2 |g 1 (x) -g 1 (y)| |g 2 (x) -g 2 (y)| dy |x -y| 3 2 dx. (44) 
We will prove that the right-hand side in the previous inequality is bounded by

g 1 2 Ḣ 5 4 g 2 2 Ḣ 3 4
. We begin by applying Cauchy-Schwarz inequality to get that the second term in the right-hand side above is bounded by

ˆR ˆR |g 1 (x) -g 1 (y)| 2 |x -y| 2+3/2 dy 2 dx 1 2 ˆR ˆR |g 2 (x) -g 2 (y)| 2 |x -y| 2+1/2 dy 2 dx 1 2
.

By Lemma 2.9

ˆR2 ˆR2 |g 1 (x) -g 1 (y)| 2 |x -y| 2+3/2 dy 2 dx 1 2 g 1 2 Ḣ 1 2 + 3 4 = g 1 2 Ḣ 5 4 , and (45) 
ˆR2 ˆR2 |g 2 (x) -g 2 (y)| 2 |x -y| 2+1/2 dy 2 dx 1 2 g 2 2 Ḣ 1 2 + 1 4 = g 2 2 Ḣ 3 4 
.

We now have to prove similar estimates for the first term in the right-hand side of [START_REF] Noisette | Mixing solutions for the Muskat problem with variable speed[END_REF]. First, we apply the Cauchy-Schwarz inequality to bound it by

ˆR2 ˆR2 |∇g 1 (y)| 2 |x -y| 2-1/2 dy 2 dx 1 2 ˆR2 ˆR2 |g 2 (x) -g 2 (y)| 2 |x -y| 2+1/2 dy 2 dx 1 2
.

The second factor is bounded by means of [START_REF] Patel | Large time decay estimates for the Muskat equation[END_REF]. To estimate the first one, we use the Riesz potential (see §2.2) to write

ˆR2 ˆR2 |∇g 1 (y)| 2 |x -y| 2-1/2 dy 2 dx 1 2 I 1 2 |∇g 1 | 2 2 L 2 .
Now, by considering the Hardy-Littlewood-Sobolev estimate [START_REF] Ambrose | Well-posedness of two-phase Hele-Shaw flow without surface tension[END_REF], we find that

I 1 2 |∇g 1 | 2 2 L 2 ≤ ∇g 1 2 L 8 3 ∇g 1 2 Ḣ 1 4 = g 1 2 Ḣ 5 
4 . This completes the proof of the lemma.

In view of the previous lemma, it remains only to estimate V (f ) Ḣ 5 4 , which is equivalent to estimate the Ḣ 1 4 (R 2 )-norm of ∇ x V (f ). For the sake of shortness, introduce the function F : R → R defined by

F (τ ) = 1 τ 3 •
Then recall that,

V (f )(x) = 1 4π ˆR2 (F (∆ -α f ) -F (∆ α f )) α dα |α| 3 .
Consider an index 1 ≤ j ≤ 2, set f j = ∂ x j f and observe that one has the following decomposition

∂ j (F (∆ -α f ) -F (∆ α f )) = -F ′ (α • ∇ x f ) (∆ -α f j + ∆ α f j ) + 1 2 F ′ (∆ -α f ) + F ′ (∆ α f ) (∆ -α f j -∆ α f j ) + 1 2 F ′ (∆ -α f ) -F ′ (∆ α f ) + 2F ′ (α • ∇ x f ) (∆ -α f j + ∆ α f j ) .
Now, since the function F ′ is odd, bounded and Lipschitz, one has for any couple of real numbers τ 1 , τ 2 ,

F ′ (τ 1 ) + F ′ (τ 2 ) = F ′ (τ 1 ) -F ′ (-τ 2 ) ≤ sup F ′′ |τ 1 -(-τ 2 )| |τ 1 + τ 2 | , F ′ (τ 1 ) -F ′ (τ 2 ) ≤ 2 sup F ′ 1.
This implies that

(46) ∂ j (F (∆ -α f ) -F (∆ α f )) = -F ′ (α • ∇ x f ) ∆ -α f j + ∆ α f j + R 1 + R 2 + R 3 ,
where

|R 1 (α, •)| ≤ |∆ -α f + ∆ α f | (|∆ -α f j | + |∆ α f j |) , |R 2 (α, •)| ≤ |∆ α f -α • ∇f | (|∆ -α f j | + |∆ α f j |) , |R 3 (α, •)| ≤ |∆ -α f + α • ∇ x f | (|∆ -α f j | + |∆ α f j |) .
These three remainder terms will be treated in a similar way.

The two tricks in [START_REF] Prüss | Moving interfaces and quasilinear parabolic evolution equations[END_REF] are that: (i) this is an identity and not an inequality and (ii) we have factored out a coefficient F ′ (α • ∇ x f ) in front of the symmetric difference ∆ -α f j + ∆ α f j which does not depend on the length |α|. Remembering that F ′ is bounded and using polar coordinates, we can exploit these two facts by writing

ˆR2 F ′ (α • ∇ x f ) ∆ -α f j + ∆ α f j dα |α| 2 ˆS1 ˆ+∞ 0 ∆ -rθ f j + ∆ rθ f j dr r dH 1 .
Observe that

ˆR2 F ′ (α • ∇ x f ) ∆ -α f j + ∆ α f j dα |α| 2 Ḣ 5 4 ˆS1 ˆ+∞ 0 ∆ -rθ f j + ∆ rθ f j dr r Ḣ 1 4 dH 1 (θ).
The Ḣ 1 4 -norm of the inner integral is computed by means of the Plancherel's identity. Here we use again the fact that the symbol of the symmetric difference operator δ -α + δ α is given by 2 -2 cos(α • ξ). This implies that for any θ ∈ S 1 ,

ˆ+∞ 0 ∆ -rθ f j + ∆ rθ f j dr r 2 Ḣ 1 4 ≤ ˆR2 ˆ+∞ 0 4(1 -cos(rθ • ξ)) 2 |ξ| 1 2 ξ j f (ξ) 2 dξ dr r 3 ˆR2 |θ • ξ| |ξ| 1 2 ξ j f (ξ) 2 dξ ≤ f 2 Ḣ 9 4 .
This proves that

ˆR2 F ′ (α • ∇ x f ) ∆ -α f j + ∆ α f j dα |α| 2 f 2 Ḣ 9 4
, which completes the analysis of the contribution of the first term in the right-hand side of [START_REF] Prüss | Moving interfaces and quasilinear parabolic evolution equations[END_REF].

It remains to estimate the contributions of the remainder terms. To do so, we use three elementary ingredients: (i) a symmetry argument (using the change of variables α → -α to reduce the number of terms that need to be estimated), (ii) the fact that the product is continuous from

Ḣ 5 8 (R 2 ) × Ḣ 5 8 (R 2 ) into Ḣ 1 4 (R 2 ). It follows that 3 ℓ=1 R ℓ Ḣ 1 4 ˆ ∆ -α f + ∆ α f Ḣ 5 8 ∆ α f j Ḣ 5 8 dα |α| 2 + ˆ ∆ α f -α • ∇f Ḣ 5 8 ∆ α f j Ḣ 5 8 + ∆ -α f j Ḣ 5 8 dα |α| 2 . Therefore 3 ℓ=1 R ℓ Ḣ 1 4 ˆR2 δ α f -α • ∇f 2 Ḣ 5 8 dα |α| 2+3 1 2 ˆR2 δ α ∇f 2 Ḣ 5 8 dα |α| 2+1 1 2 + ˆR2 δ -α f + δ α f 2 Ḣ 5 8 dα |α| 2+3 1 2 ˆR2 δ α ∇f 2 Ḣ 5 8 dα |α| 2+1 1 2
.

Hence, we deduce from Lemma 2.9 that

3 ℓ=1 R ℓ Ḣ 1 4 f 2 Ḣ 17 8 .
The desired result [START_REF] Nguyen | Quantitative estimates for regular lagrangian flows with BV vector fields[END_REF] then follows from [START_REF] Nguyen | Potential theory for drift diffusion equations with critical diffusion and applications to the dissipative SQG equation[END_REF]. This completes the proof.

The elliptic term.

We now move to the analysis of the elliptic term. Lemma 4.4. There exist two a positive constant C such that, for all functions f and g in H ∞ (R 2 ),

P (f )g, |D| g ≥ ∇g 2 L 2 f Ẇ 1,∞ 3 -C f Ḣ 9 4 g 2 Ḣ 7 8 .
Proof. Define Φ(r) = 1/ r 3 and set h = |D|

1 2 g so that |D| g = |D| 1 2 h, g = |D| -1 2 h.
It follows from the definition of P (f ) (see [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF]) that

P (f )g, |D| g = 1 2π R 2 ×R 2 Φ (α • ∇ x f (x)) |D| -1 2 δ α h(x) |D| 1 2 h(x) dα dx |α| 3 = 1 4π R 2 ×R 2 Φ (α • ∇ x f (x)) |D| -1 2 δ α h(x) |D| 1 2 δ α h(x) dα dx |α| 3 ,
where, to make appear δ α h in the second line, as usual, we have split the integral I at stake into I = 1 2 I + 1 2 I and then made an elementary change of variable to replace the factor |D| 1 2 h(x) by (|D| 1 2 h)(x -α) in the second half. Then, by using Plancherel's identity, it follows that

P (f )g, |D| g = 1 4π R 2 ×R 2 |D| 1 2 Φ (α • ∇ x f ) δ α |D| -1 2 h (x)δ α h(x) dα dx |α| 3 •
Now we want to commute |D| 1 2 with the multiplication by Φ (α • ∇ x f ). To do so, recall that the operator |D| 1 2 can be written as

|D| 1 2 u = 2 1 2 Γ(5/4) π |Γ(-1/4)| ˆR2 u(x) -u(x -z) |z| 1/2 dz |z| 2 . It follows that |D| 1 2 (f 1 f 2 )(x) -f 1 (x) |D| 1 2 f 2 (x) ˆR2 |f 1 (x) -f 1 (x -z)| |f 2 (x -z)| |z| 1/2 dz |z| 2 •
Consequently, by setting

I 0 := R 2 ×R 2 Φ (α • ∇ x f (x)) |h(x) -h(x -α)| 2 dα dx |α| 3 ,
we get that

| P (f )g, |D| g -I 0 | (R 2 ) 3 |δ z Φ ( α • ∇ x f )| δ α |D| -1 2 h(x -z) |δ α h(x)| dz dα dx |z| 5 2 |α| 3
• Directly from the definitions of Φ and g, we notice that

I 0 ≥ R 2 ×R 2 1 ∇f (x) 3 |D| 1 2 g(x) -|D| 1 2 g(y) |x -y| 1 2 2 dx dy |x -y| 2 .
Consequently, it remains only to prove that [START_REF] Siegel | Global existence, singular solutions, and ill-posedness for the Muskat problem[END_REF] | P (f )g, |D| g -

I 0 | f Ḣ 9 4 h 2 Ḣ 3 8 .
To do so, we begin by using the elementary estimate

|δ z Φ ( α • ∇ x f )| |∇ x δ z f | .
By combining this with the Cauchy-Schwarz inequality, we obtain

| P (f )g, |D| g -I 0 | ¨ ˆ|∇ x δ z f (x)| 2 dz |z| 7 2 1 2 ˆ δ α |D| -1 2 h(x -z) 2 dz |z| 3 2 1 2 |δ α h(x)| dx dα |α| 3 • Using the Hölder inequality L 4 • L 4 • L 2 ⊂ L 2 , this gives | P (f )g, |D| g -I 0 | ∇ x f Ḟ 3 4 4,2 ˆ I 1 2 |δ α |D| -1 2 h| 2 1 2 L 2 δ α h L 2 dα |α| 3 ,
where we used the notation

∇ x f Ḟ 3 4 4,2 = ˆR2 ˆR2 |δ z ∇ x f (x)| 2 dz |z| 2+2 3 4 2 dx 1 4
.

It follows from the estimate (15) that

∇ x f F 3 4 4,2 f Ḣ 9 4 .
On the other hand, the classical estimate for Riesz potentials (see ( 7)) implies that

I 1 2 |δ α |D| -1 2 h| 2 1/2 L 2 δ α |D| -1 2 h L 8 3 δ α |D| -1 4 h L 2 .
It follows that

| P (f )g, |D| g -I 0 | f Ḣ 9 4 ˆR2 δ α |D| -1 4 h L 2 δ α h L 2 dα |α| 3 f Ḣ 9 4 ˆR2 δ α |D| -1 4 h 2 L 2 dα |α| 2+ 7 4 1 2 ˆR2 δ α h 2 L 2 dα |α| 2+ 3 4 1 2 f Ḣ 9 4 h 2 Ḣ 3 8
where we have used the elementary estimate ( 14) to obtain the last inequality. This implies the wanted estimate (47

) since h Ḣ 3 8 g Ḣ 7 8
. This completes the proof of the proposition. Proposition 4.5. There exists a positive constant C such that, for all functions f and g in H ∞ (R 2 ), ( 48)

R(f, g) L 2 ≤ C f Ḣ 9 4 g Ḣ 3 4
. In particular, there holds

(49) R(f, |D| 3 2 ,φ f ) L 2 ≤ C f Ḣ 9 4 |D| 9 4 ,φ f L 2 .
Proof. Recall that the remainder term R(f, g) has the form

R(f, g)(x) = 1 2π ˆR2 M α (x)δ α g(x) dα,
for some symbol M α satisfying the following point-wise bound:

|M α (x)| ≤ 6 |α| 3 |∆ α f (x) -α • ∇ x f (x)| + 3 |α| 3 |∇ x (δ α f )| .
By using successively the Minskowski, Hölder, Cauchy-Schwarz and Sobolev inequalities, we deduce that

R(f, g) L 2 ˆR2 1 |α| M α L 4 δ α g L 4 dα |α| 2 ˆR2 M α 2 L 4 dα |α| 7 2 1 2 ˆR2 δ α |D| 1 2 g 2 L 2 dα |α| 5 2 1 2 ˆR2 M α 2 L 4 dα |α| 7 2 1 2 g Ḣ 3 4
where we have used ( 6) to obtain the last inequality. Now, by Hölder inequality, we have

ˆR2 M α 2 L 4 dα |α| 7 2 ˆR2 ∇ x δ α f 2 L 4 + ∆ α f -α • ∇ x f 2 L 4 dα |α| 7 2 ˆR2 δ α f 2 Ḣ 3 2 + ∆ α f -α • ∇ x f 2 Ḣ 1 2 dα |α| 7 2 = c f 2 Ḣ 9 4
where the last equation is obtained by using Plancherel's identity. This completes the proof.

The commutator estimate.

Proposition 4.6. There exists a positive constant C such that, for all function

f in H ∞ (R 2 ), |D| 3 2 ,φ , L(f ) (f ) L 2 ≤ C f Ḣ 9 4 |D| 9 4 ,φ f L 2 + f Ḣ 17 8 |D| 17 18 ,φ f L 2 + f 2 Ḣ 25 12 |D| 25 12 ,φ f L 2 .
Proof. Recall that by definition .

L(f )f = - 1 2π ˆR2 F α (x)G α (x) dα |α| 2 where    F α = 1 ∆ α f (x) 3 , G α = α • ∇ x ∆ α f (x).

Let us introduce

Γ α := |D| 3 2 ,φ [F α G α ] -F α |D| 3 2 ,φ G α -G α |D| 3 2 ,φ [F α ] .
We will prove that

(I) f Ḣ 9 4 |D| 9 4 ,φ f L 2 (50) + f Ḣ 17 8 |D| 17 18 ,φ f L 2 + f 2 Ḣ 25 12 |D| 25 12 ,φ f L 2 , (II) f Ḣ 9 4 |D| 9 4 ,φ f L 2 . ( 51 
)
Step 1: We prove [START_REF] Vasilyev | Variation on a theme by Kiselev and Nazarov: Hölder estimates for non-local transport-diffusion, along a non-divergence-free BMO field[END_REF]. Starting from Minkowski's inequality, write

(I) = ˆGα |D| 3 2 ,φ F α dα |α| 2 L 2 ≤ ˆ G α |D| 3 2 ,φ F α L 2 dα |α| 2 .
Since the product is continuous from

Ḣ 1 2 (R 2 ) × Ḣ 1 2 (R 2 ) to L 2 (R 2 ) (in view of the Hölder inequality L 4 • L 4 ֒→ L 2 and the Sobolev embedding Ḣ 1 2 (R 2 ) ֒→ L 4 (R 2 )), this gives (I) ˆ G α Ḣ 1 2 |D| 3 2 ,φ F α Ḣ 1 2 dα |α| 2 ˆ G α 2 Ḣ 1 2 dα |α| 7/2 1 2 ˆ |D| 3 2 ,φ F α 2 Ḣ 1 2 dα |α| 1/2 1 2
.

The first factor is estimated directly from the definition of G α . Indeed, using Plancherel's identity, one has

ˆ G α 2 Ḣ 1 2 dα |α| 7/2 = ˆ|ξ| α.ξ 1 -e iα.ξ |α| 2 dα |α| 7/2 | f (ξ)| 2 dξ = c f 2 Ḣ 9 4 .
The analysis of the second factor is more difficult. Set

Q = ˆ |D| 3 2 ,φ F α 2 Ḣ 1 2 dα |α| 1/2 . We claim that Q satisfies Q |D| 2,φ f 2 Ḣ 1 4 + f 2 Ḣ 17 8 |D| 17 18 ,φ f 2 L 2 + f 4 Ḣ 25 12 |D| 25 12 ,φ f 2 L 2 .
This will imply the wanted result [START_REF] Vasilyev | Variation on a theme by Kiselev and Nazarov: Hölder estimates for non-local transport-diffusion, along a non-divergence-free BMO field[END_REF].

Notice that

|D| 3 2 ,φ F α 2 Ḣ 1 2 = |D| 2,φ F α 2 L 2 = |D| 1,φ ∇ x F α 2 L 2 .
On the other hand, there exists a positive constant C such that, for any function u ∈ H 1,φ (R 2 ), there holds

(52) 1 C R 2 ×R 2 δ 2 h u(x) 2 |h| 2 κ 2 1 |h| dh |h| 2 dx ≤ |D| 1,φ u 2 L 2 ≤ C R 2 ×R 2 δ 2 h u(x) 2 |h| 2 κ 2 1 |h| dh |h| 2 dx.
To clarify notations, we recall that κ 2 (y) = (κ(y)) 2 and δ 2 h u = δ h (δ h u) where recall that δ h g(x) = g(x) -g(x -h). It follows from the previous observations that

Q ˚ δ 2 h ∇ x F α (x) 2 |h| 2 κ 2 1 |h| dx dh |h| 2 dα |α| 1 2 • We now have to bound δ 2 h ∇ x F α (x) 2 .
To do so, we use the following analogue of the Leibniz rule:

δ h (uv) = u(δ h v) + (δ h u)(τ h v) where τ h v(x) = v(x -h).
With this property, it is easy to check that δ

2 h ∇ x F α q 1 + • • • + q 4 where q 1 = δ 2 h ∇ x ∆ α f , q 2 = δ 2 h ∆ α f τ 2 h ∇ x ∆ α f , q 3 = |δ h ∆ α f | |τ h δ h ∇ x ∆ α f | , q 4 = |δ h τ h ∆ α f | |δ h ∆ α f | τ 2 h ∆ α ∇ x f . It follows that Q Q 1 + • • • + Q 4 with Q j = ˚q2 j (x, h, α) |h| 2 κ 2 1 |h| dx dh |h| 2 dα |α| 1 2
(1 ≤ j ≤ 4).

Using the equivalence (52) and Plancherel's identity, we find that

(53) Q 1 ˆ |D| 1,φ ∇ x ∆ α f 2 L 2 dα |α| 1 2 = ˆ |D| 2,φ δ α f 2 L 2 dα |α| 2+ 1 2 ∼ |D| 2,φ f 2 Ḣ 1 4 .
• To estimate the term Q 2 , we write

Q 2 = ˚ δ 2 h ∆ α f 2 τ 2 h ∇ x ∆ α f 2 (x, h, α) |h| 2 κ 2 1 |h| dx dh |h| 2 dα |α| 1 2 ≤ ¨ τ 2 h ∇ x ∆ α f 2 L 4 x δ 2 h ∆ α f 2 L 4 x |h| 2 κ 2 1 |h| dh |h| 2 dα |α| 1 2 ≤ ˆ ∇ x ∆ α f 2 Ḣ 1 2 x ˆ δ 2 h ∆ α f 2 Ḣ 1 2 x |h| 2 κ 2 1 |h| dh |h| 2 dα |α| 1 2

•

Then we estimate the innermost integral by applying [START_REF] Yi | Global classical solution of Muskat free boundary problem[END_REF] 

with u = |D| 1 2 ∆ α f . This implies that Q 2 ˆ ∇ x ∆ α f 2 Ḣ 1 2 x ∆ α |D| 3 2 ,φ f 2 L 2 dα |α| 1 2 = ˆ ∇ x δ α f 2 Ḣ 1 2 x |α| 2 δ α |D| 3 2 ,φ f 2 L 2 |α| 2 dα |α| 1 2 ≤ ˆ ∇ x δ α f 4 Ḣ 1 2 x dα |α| 2+4 5 8 1 2 ˆ δ α |D| 3 2 ,φ f 4 L 2 dα |α| 2+4 5 8 1 2
. Now, the elementary estimate ( 14) implies that

ˆ ∇ x δ α f 4 Ḣ 1 2 x dα |α| 2+4 5 8 1 2 ∇ x f 2 Ḣ 1 2 + 5 8 ≤ f 2 Ḣ 17 8 , ˆ δ α |D| 3 2 ,φ f 4 L 2 dα |α| 2+4 5 8 1 2 |D| 3 2 ,φ f 2 Ḣ 5 8 = |D| 17 18 ,φ f 2 L 2 .
This proves that

Q 2 f 2 Ḣ 17 8 |D| 17 18 ,φ f 2 L 2 .
• To estimate the term Q 3 , we apply the Cauchy-Schwarz inequality (and we balance the powers of h and α in an appropriate way), to obtain Q 3 ≤ I 3 J 3 where

I 3 = ˚|τ h δ h ∇ x δ α f | 4 |h| 2 |α| 2 dx dh |h| 2 dα |α| 1 2 1 2 
,

J 3 = ˚|δ h δ α f | 4 |h| 2 |α| 6 κ 4 1 |h| dx dh |h| 2 dα |α| 1 2 1 2 . Since Ḣ 1 2 (R 2 ) ⊂ L 4 (R 2
), we have

J 3 ˚ δ h δ α f 4 Ḣ 1 2 |h| 2 |α| 6 κ 4 1 |h| dh |h| 2 dα |α| 1 2 1 2 
. Now recall that, for all a ∈ [0, +∞), all γ ≥ 1 and all b, c ∈ (0, γ), there exists C > 0 such that (54)

¨R2 ×R 2 δ α δ h f 2γ Ḣa κ 2γ 1 |h| dh |h| 2+2b dα |α| 2+2c ≤ C |D| a+ b+c γ ,φ f 2 L 2 .
Consequently, by applying this estimate with (a, b, c, γ) = (1/2, 1, 7/4, 2),

J 3 |D| 17 8 ,φ f 2 L 2 .
Similarly, by using (54) with (a, b, c, γ) = (3/2, 1, 1/4, 2) and κ ≡ 1, we verify that

I 3 f 2 Ḣ 17 8 .
This proves that

Q 3 f 2 Ḣ 17 8 |D| 17 18 ,φ f 2 L 2 .
• It remains to estimate the term Q 4 . Using Hölder's inequality (

L 8 • L 8 • L 4 ֒→ L 2 )
as well as the Sobolev's inequalities (

Ḣ 1 2 (R 2 ) ֒→ L 4 (R 2 ) and Ḣ 3 4 (R 2 ) ֒→ L 8 (R 2 ), we obtain Q 4 = ˚|δ h τ h ∆ α f | 2 |δ h ∆ α f | 2 τ 2 h ∆ α ∇ x f 2 |h| 2 κ 2 1 |h| dx dh |h| 2 dα |α| 1 2 ≤ ¨ δ h τ h ∆ α f 2 L 8 δ h ∆ α f 2 L 8 τ 2 h ∆ α ∇ x f 2 L 4 κ 2 1 |h| dh |h| 4 dα |α| 1 2 ˆ ∆ α ∇ x f 2 Ḣ 1 2 ˆ δ h ∆ α f 4 Ḣ 3 4 κ 2 1 |h| dh |h| 4 dα |α| 1 2
. Now, the innermost integral is estimated by

ˆ δ h ∆ α f 4 Ḣ 3 4 κ 2 1 |h| dh |h| 4 ≤ ˆ δ h ∆ α f 4 Ḣ 3 4 dh |h| 2+4 1 2 1 2 ˆ δ h ∆ α f 4 Ḣ 3 4 κ 4 1 |h| dh |h| 2+4 1 2 1 2 ∆ α f 2 Ḣ 5 4 |D| 5 4 ,φ ∆ α f 2 L 2 .
Consequently, .

Q 4 ˆ ∆ α ∇ x f 2 Ḣ 1 2 ∆ α f 2 Ḣ 5 4 |D| 5 4 ,φ ∆ α f 2 L 2 dα |α| 1 2 ≤ ˆ δ α f 2 Ḣ 3 2 δ α f 2 Ḣ 5 4 |D| 5 4 ,φ δ α f 2 L 2 dα |α| 6+ 1 2 . It follows that Q 4 is bounded by ˆ δ α f 8 Ḣ 3 2 dα |α| 2+8 7
It follows from Lemma 2.9 that,

Q 4 f 4 Ḣ 25 12 |D| 25 12 ,φ f 2 L 2 .
The estimate (50) is proven.

Step 2: We now move to the proof of the estimate [START_REF] Wu | The quartic integrability and long time existence of steep water waves in 2D[END_REF]. We want to estimate the term

Γ α := |D| 3 2 ,φ [F α G α ] -F α |D| 3 2 ,φ G α -G α |D| 3 2 ,φ [F α ] .
The key point will be to exploit a representation of the operator |D| 3 2 ,φ in terms of finite differences. To do so, given h ∈ R 2 , let us introduce the finite difference operator s h defined by

(s h f )(x) = 2f (x) -f (x -h) -f (x + h).
With this notation, the identity (12) reads

|D| 3 2 ,φ g(x) = ˆsh g(x) |h| 3/2 κ 1 |h| dh |h| 2 •
Now, it is easily verified that for any functions u and v,

s h (uv) -u(s h v) -v(s h u) = (δ h u)(δ h v) -(δ -h u)(δ -h v).
Hence, we obtain that

|Γ α (x)| ˆ|δ h F α (x)| |δ h G α (x)| κ 1 |h| dh |h| 2+ 3 2 |α| ˆ|∆ α δ h f (x)| |∇ x ∆ α δ h f (x)| κ 1 |h| dh |h| 2+ 3 2 •
So, using successively Minkowski's inequality, Hölder's inequality and Sobolev's inequality, we find that (II)

¨ ∆ α δ h f L 8 ∇ x ∆ α δ h f L 8 3 κ 1 |h| dh |h| 2+ 3 2 dα |α| 2 ¨ ∆ α δ h f Ḣ 3 4 ∆ α δ h f Ḣ 5 4 κ 1 |h| dh |h| 2+ 3 2 dα |α| 2 .
By using the Cauchy-Schwarz inequality, it follows that (II) is bounded by .

C ¨ δ α δ h f 2 Ḣ 3 4 κ 2 1 |h| dh |h| 2+
This completes the proof of the claim [START_REF] Wu | The quartic integrability and long time existence of steep water waves in 2D[END_REF], which in turn completes the proof of Proposition 4.6.

4.5. End of the proof of Theorem 4.1. We are now in position to complete the proof of Theorem 4.1. Set

A = |D| 2,φ f 2 L 2 , B = |D| 5 2 ,φ f 2 L 2 . Write ˆR2 L(f )f |D| 4,φ 2 f dx = ˆR2 L(f ) |D| 3 2 ,φ f |D| 5 2 ,φ f + |D| 3 2 ,φ , L(f ) f |D| 5 2 ,φ f dx ≥ P (f )(|D| 3 2 ,φ f ), |D| 5 2 ,φ f - [R, V (f )] |D| 5 2 ,φ f L 2 + H L 2 B 1 2 ,
where, by Lemma 4.4, 

P (f )(|D| 3 2 ,φ f ), |D| 5 2 ,φ f ≥ B f Ẇ 1,∞ 3 -C f Ḣ 9 4 |D| 19 8 ,φ f 2 L 2 ≥ B f Ẇ 1,∞ 3 -C f Ḣ 9 4 A 1 4 B 3 
H ≤ R(f, |D| 3 2 ,φ f ) L 2 + |D| 3 2 ,φ , L(f ) (f ) L 2 f Ḣ 9 4 |D| 9 4 ,φ f L 2 + f Ḣ 17 8 |D| 17 18 ,φ f L 2 + f 2 Ḣ 25 12 |D| 25 12 ,φ f L 2 f Ḣ 9 4 A 1 4 B 1 4 + f Ḣ 17 8 A 3 8 B 1 8 + f 2 Ḣ 25 12 A 5 12 B 1 12 
.

By Lemma A.1, one has for s ∈ (2, 5/2),

f Ḣs φ B A -1 A 5 2 -s B s-2 .
Thus,

f Ḣ 9 4 A 1 4 B 3 4 + [R, V (f )] |D| 5 2 ,φ f L 2 + H L 2 B 1 2 A 1 2 (1 + A)B φ B A -1
.

This implies [START_REF] Muskat | Two fluid systems in porous media. the encroachment of water into an oil sand[END_REF] and hence complete the proof.

Well-posedness results

In this section we complete the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3.

To do so, we proceed by following a classical strategy:

(1) We define approximate systems for which the existence of smooth solutions is easily obtained. (2) We then prove uniform estimates for the solutions of the approximate systems, on a uniform time interval. (3) Finally, we verify that the sequence of approximate solutions converges to a solution of the Muskat equation and prove a uniqueness result.

As we will see, this section does not contain any new arguments. Indeed, the core of the whole argument is contained in the estimates already proven in the previous sections. We will also need additional estimates, but they will all be obtained by adapting arguments similar to ones in our previous papers [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF] for the 2D Muskat equation. For the sake of readability, we will state the corresponding estimates for the 3D problem and recall the principles of their proofs. 

Approximate Cauchy problems.

To prove existence, we introduce the following Cauchy problem depending on the parameter ε ∈ (0, 1]:

(56) ∂ t f -| log(ε)| -1 ∆f = N ε (f ), f | t=0 = f 0 ⋆ χ ε ,
where

N ε (f ) = 1 2π ˆR2 α • ∇ x ∆ α f (x) ∆ α f (x) 3 1 -χ |α| ε dα |α| 2
and χ ε (x) = ε -1 χ(x/ε) where χ is a smooth bump function satisfying 0 ≤ χ ≤ 1 and

χ(y) = χ(-y), χ(y) = 1 for |y| ≤ 1 4 , χ(y) = 0 for |y| ≥ 2, ˆR2 χ dy = 1.
Lemma 5.2. For any ε in (0, 1] and any initial data f 0 in H 2 (R 2 ), there exists a unique global in time solution f ε satisfying

f ε ∈ C 1 ([0, +∞); H ∞ (R 2 )).
Proof. See Section §2.9 in [START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF].

Lemma 5.3. For any β 0 ∈ (0, 1/2), there exists c 0 > 0 such that, for any ε ∈ (0, 1] and any solution f

∈ C 1 ([0, T ]; H ∞ (R 2 )) of the approximate Muskat equation (56), (57) 
d dt f (t) L ∞ ≤ c 0 ε β 0 f (t) Ċ1+β 0 , (58) 
d dt ∇f (t) L ∞ ≤ c 0 f (t) 2 Ḣ 5 2 + c 0 ε β 0 f (t) Ċ2+β 0 .
Proof. 1) It follows from the proof of Theorem 4.1 in [START_REF] Córdoba | A maximum principle for the Muskat problem for fluids with different densities[END_REF] that

d dt f (t) L∞ ≤ sup x∈R 2 1 2π ˆR2 α • ∇ x ∆ α f (t, x) ∆ α f (t, x) 3 χ |α| ε dα |α| 2 ε β 0 f (t) Ċ1+β 0 ,
which gives (57).

2) On the other hand, it follows from [36, Section 10] that

d dt ∇f (t) L ∞ ≤ 1 2π f (t) 2 Ḣ 5 2 + sup x∈R 2 1 2π ∇ x ˆR2 α • ∇ x ∆ α f (t, x) ∆ α f (t, x) 3 χ |α| ε dα |α| 2 f (t) 2 Ḣ 5 2 + ε β 0 f (t) Ċ2+β 0 ,
which is the wanted estimate (58).

In view of (58), we also need to estimate the Hölder norm f (t) Ċ2+β 0 . This is the purpose of the following result.

Lemma 5.4. There exists a positive constant K, independent of ε, such that, for any

0 < β 1 ≤ 10 -4 , N ε (f ) Ċβ 1 ≤ K f C 1+2β 1 (1 + f C 1+2β 1 ) , ( 59 
) where f C 1+2β 1 = f L ∞ + f Ċ1+2β 1 . In particular, ˆt 0 f (τ ) Ċ2+ β 1 2 dτ | log(ε)| 2 t 2-β 1 4 ∇f 0 L ∞ (60) + | log(ε)| 2 t β 1 4 ˆt 0 f (τ ) C 1+2β 1 (1 + f (τ ) C 1+2β 1 ) dτ. Proof. One has for α ′ ∈ R 2 , |δ α ′ N ε (f )(x)| ˆR2 α • ∇ x ∆ α δ α ′ f (x) ∆ α f (x -α ′ ) 3 1 -χ |α| ε dα |α| 2 + ˆR2 |α • ∇ x ∆ α f (x)| δ α ′ 1 ∆ α f (•) 3 (x) dα |α| 2 . Since 1 a 3 -1 |a|, 1 a 3 - 1 b 3 |a -b|,
we obtain, for 0 < β 2 ≤ β 1 100 and for any α ′ ∈ R 2 ,

|δ α ′ N ε (f )(x)| ˆR2 α • ∇ x ∆ α δ α ′ f (x) 1 -χ |α| ε dα |α| 2 + ˆ|∇ x δ α δ α ′ f (x)||δ α f (x)| dα |α| 3 + ˆ|∇ x δ α f (x)||δ α δ α ′ f (x)| dα |α| 3 δ α ′ |D| f L ∞ + ε β 2 sup α |δ α (∇ x δ α ′ f )(x)| |α| β 2 + sup α |δ α (∇δ α ′ f )(x)| |α| β 2 ˆ|δ α f (x)| |α| 3-β 2 dα + sup α |δ α δ α ′ f (x)| |α| 1-β 2 ˆ|∇ x δ α f (x)| |α| 2+β 2 dα.
This implies,

N ε (f ) Ċβ 1 f 1 2 Ċ1+β 1 -β 2 f 1 2 Ċ1+β 1 +β 2 + ε β 2 sup α,α ′ ,x |δ α (∇δ α ′ f )(x)| |α| β 2 |α ′ | β 1 + sup α,α ′ ,x |δ α (∇δ α ′ f )(x)| |α| β 2 |α ′ | β 1 f β 2 L ∞ ∇f 1-β 2 L ∞ + sup α,α ′ ,x |δ α δ α ′ f (x)| |α| 1-β 2 |α ′ | β 1 ∇f 1 2 L ∞ f 1 2 Ċ1+2β 2 .
It is easy to check that

|δ α δ α ′ g(x)| |α| a 1 |α| a 2 g 1 2 Ċa 1 +a 2 -ε 0 g 1 2
Ċa 1 +a 2 +ε 0 , for any 0 < ε 0 < (a 1 + a 2 )/100. Therefore,

N ε (f ) Ċβ 1 f 1 2 Ċ1+β 1 -β 2 f 1 2 Ċ1+β 1 +β 2 + ε β 2 f 1 2 Ċ1+β 1 f 1 2 Ċ1+β 1 +2β 2 + f 1 2 Ċ1+β 1 f 1 2 Ċ1+β 1 +2β 2 f β 2 L ∞ ∇f 1-β 2 L ∞ + f 1 2 Ċ1+β 1 -2β 2 f 1 2 Ċ1+β 1 ∇f 1 2 L ∞ f 1 2 Ċ1+2β 2 .
By interpolation inequality, one gets (59). Now we observe that

f (t, x) = c ˆR2 1 t exp -| log ε| |x -y| 2 4t f 0 (y) dy + c ˆt 0 ˆR2 1 t -τ exp -| log ε| |x -y| 2 4(t -τ ) N ε (f )(τ, y) dy dτ, so, f (t) Ċ2+ β 1 2 | log(ε)| 2 t -2+β 1 4 ∇f 0 L ∞ + | log(ε)| 2 ˆt 0 1 (t -τ ) 1-β 1 /4 N ε (f )(τ ) Ċβ 1 dτ.
This implies (60). The proof is complete.

Corollary 5.5. For 0 < β 0 < 10 -3 and t ≤ | log(ε)|, there holds

(61) sup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 ˆt 0 f (τ ) Ḣ2 dτ + ε β 0 /4 (1 + f 0 W 1,∞ ).
Proof. By (58) and ( 60), one has for any t

≤ | log(ε)|, sup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 ˆt 0 f (t) Ċ2,β 0 ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 /2 ∇f 0 L ∞ + ε β 0 /2 ˆt 0 f (τ ) C 1+4β 0 (1 + f (τ ) C 1+4β 0 ) dτ. By interpolation inequality, sup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 /2 ∇f 0 L ∞ + ε β 0 /2 ˆt 0 f (τ ) L ∞ dτ + ε β 0 /2 .
Combining this with (57), one gets,

sup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 ˆt 0 f (τ ) Ċ1,β 0 dτ + ε β 0 /4 (1 + f 0 W 1,∞ ) ˆt 0 f (t) 2 Ḣ 5 2 + ε β 0 ˆt 0 f (τ ) 1-2β 0 Ḣ2 f (τ ) 2β 0 Ḣ 5 2 dτ + ε β 0 /4 (1 + f 0 W 1,∞ ).
This gives (61). The proof is complete.

Lemma 5.6. For β 0 ∈ (0, 10 -10 ] (62)

ˆR2 α • ∇ x ∆ α f ∆ α f 3 χ |α| ε dα |α| 2 Ḣ 9 5 ε 2β 0 (1 + f Ḣ2 ) 3 (1 + f Ḣ3 ). Proof. Set B α (x) := |D| 9 5 α • ∇ x ∆ α f (.) ∆ α f (.) 3 (x)
We have to prove that

ε 2β 0 ˆ|B α (.)| dα |α| 2+2β 0 L 2 ε β 0 sup α |B α | |α| β 0 1 2 L 2 sup α |B α | |α| 3β 0 1 2 L 2 (63) 
We have

B α (x) |δ α ∇ |D| 9 5 f (x)| + |δ α ∇f (x)| |D| 9 5 1 ∆ α f (.) 3 + ˆ|δ α ′ δ α ∇ x f (x)||δ α ′ 1 ∆ α f (.) 3 (x)| dα ′ |α ′ | 2+ 9 5 .

Using the inequalities

|δ α ′ 1 ∆ α f 3 (x)| |δ α ′ ∆ α f (x)|, |D| 9 5 1 ∆ α f 3 (x) |∆ α |D| 9 5 f (x)| + ˆ|δ α ′ ∆ α f (x)| 2 + |δ α ′ ∆ α f (x)| 3 dα ′ |α ′ | 2+ 9 5 , one obtains, B α (x) |δ α ∇ |D| 9 5 f (x)| + |δ α ∇f (x)||∆ α |D| 9 5 f (x)| (64) + |δ α ∇f (x)| ˆ|δ α ′ ∆ α f (x)| 2 + |δ α ′ ∆ α f (x)| 3 dα ′ |α ′ | 2+ 9 5 + sup α ′ |δ α ′ ∆ α f (x)| |α ′ | 9 10 ˆ|δ α ′ δ α ∇ x f (x)| dα ′ |α ′ | 2+ 9 10
.

It is easy to check that, for any 0

< ε 0 ≤ 10 -4 , α ∈ R 2 , ˆ|δ α ′ δ α ∇ x f (x)| dα ′ |α ′ | 2+ 9 10 ε 0 sup α ′ |δ α ′ δ α ∇ x f (x)| |α ′ | 9 10 -ε 0 1 2 sup α ′ |δ α ′ δ α ∇ x f (x)| |α ′ | 9 10 +ε 0 1 2 , ˆ|δ α ′ ∆ α f (x)| 2 dα ′ |α ′ | 2+ 9 5 ε 0 sup α ′ |δ α ′ ∆ α f (x)| |α ′ | 9 10 -ε 0 sup α ′ |δ α ′ ∆ α f (x)| |α ′ | 9 10 +ε 0 , ˆ|δ α ′ ∆ α f (x)| 3 dα ′ |α ′ | 2+ 9 5 ε 0 sup α ′ |δ α ′ ∆ α f (x)| |α ′ | 3 5 -ε 0 3 2 sup α ′ |δ α ′ ∆ α f (x)| |α ′ | 3 5 +ε 0 3 2

•

Combining these inequalities with (64) and (63), we get (62). This completes the proof.

A priori estimate.

In this paragraph, we gather the a priori estimates that can be deduced from the previous estimates for the nonlinearity. Introduce the time dependent functions Proof. Multiply (56) by |D| 4,φ 2 f to obtain the identity 1 2

A φ = |D| 2,φ f 2 L 2 , B φ = |D| 5 2 ,φ f 2 L 2 , Z φ = |D|
d dt D 2,φ f 2 L 2 + | log(ε)| -1 |D| 3,φ f 2 L 2 + ˆL(f )f |D| 4,φ 2 f dx = - 1 2π ˆα • ∇ x ∆ α f (x) ∆ α f (x) 3 χ |α| ε dα |α| 2 D| 4,φ 2 f dx.
Thanks to Theorem 4.1 and Lemma 5.6, LHS of (65) A

1 2 φ (1 + A φ )B φ φ B φ A φ -1 + ε 2β 0 (1 + A φ ) 3 2 (1 + Z φ (t) 1 
2 ) |D| (1 + A φ )

1 2 (1 + Z φ ) 3 10 
.

This completes the proof.

To conclude, it remains to control the factor (1 + ∇f L ∞ ) -1 . To do so, we will use two different arguments depending on the assumptions on the initial data. (ii) If κ(r) ≥ log(4 + r) a for some a ≥ 0, then for t ≤ | log(ε)|

∇f (t) L ∞ 1 + f 0 L ∞ + ε β 0 ˆt 0 (A φ (τ ) + Z φ (τ )) dτ + A φ log(2 + B φ ) 1-2a 2 .
Proof. Statement (i) is obtained from Corollary 5.5. On the other hand, by (71) and (57) we have for any t ≤ | log(ε)|

∇f (t) L ∞ 1 + f (t) L ∞ + A φ log(2 + B φ ) 1-2a 2 1 + f 0 L ∞ + ε β 0 ˆt 0 f (τ ) Ḣ2+β 0 dτ + C 0 A φ log(2 + B φ ) 1-2a 2 1 + f 0 L ∞ + ε β 0 ˆt 0 (A φ (τ ) + Z φ (τ )) dτ + A φ log(2 + B φ ) 1-2a 2 .
This implies (ii) which completes the proof. • Proof of uniform estimates for large data in W 1,∞ (R 2 ) ∩ Ḣ2 .

Consider the weight φ given by Lemma 5.9. We have for β 0 = 10 -10 ∇f (τ ) L ∞ -∇f 0 L ∞ ≤ 10A(0).

1 2 d dt A φ (t) + B φ (t) 1 + ∇f 3 L ∞ + | log(ε)| -1 Z φ (t) ≤ ε 1 B φ (t) + F 1 ε 1 + A φ (t) + C 0 ε 2β 0 (1 + A φ (t)) 2 (1 + Z φ (t))
• Proof of uniform estimates in Ḣ2,log a (R 2 ).

Set a = 3/8. It follows from Lemma 5.9 that there exists k satisfying lim r→+∞ k(r) = +∞ and such that This completes the proof of (68). The proof of statement ii) is similar.

A.2. Interpolation estimates. In this paragraph, we collect various interpolation estimates. These results are not new: we follow closely the proofs of similar results in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] whhi Consider a function f and a weight φ. We want to control the homogeneous Sobolev norms in terms of the following quantities (69) Proof. We follow closely the proofs of similar results in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. ii) One has Choosing λ = (B + 1)

A φ = |D| 2,φ f 2 L 2 , B φ = |D|
∇f L ∞ f L ∞ + ∇(f -f ⋆ χ 1 ) L ∞ f L ∞ + ˆ|ξ| min{|ξ|, 1}| f (ξ)| dξ.
2 ∇f L ∞ 1 + f L ∞ + A log(2 + B) 1-2a 2 ,
we obtain (71). This completes the proof.

Notation 2 . 1 .

 21 Consider s ∈ [0, +∞) and a function φ : [0, +∞) → [1, ∞). By definition, the weighted fractional Laplacian |D| s,φ denotes the Fourier multiplier with symbol |ξ| s φ(|ξ|), such that

Definition 2 . 4 .

 24 An admissible weight is a function κ : [0, ∞) → [1, ∞) satisfying the following three conditions:(H1) κ is increasing; (H2) there exists a positive constant c 0 such that κ(2r) ≤ c 0 κ(r) for any r ≥ 0; (H3) the function r → κ(r)/ log(4 + r) is decreasing on [0, ∞).

3 2

 3 ,φ f , we use Proposition 3.1 and estimate the terms successively in paragraphs §4.1-4.3.

4. 3 .

 3 The remainder term. It remains to estimate the remainder term R(f, g) which is given Proposition 3.1.

3 2

 3 ,φ , L(f ) (f ) L 2 (I) + (II) where,

5. 1 .Definition 5 . 1 .

 151 Functional spaces. We begin by recalling the definition of the spaces in which we shall work to study the Cauchy problem (see §2.3). Consider a function φ : [0, ∞) → [1, ∞), of the form (55) φ(λ) = 4π ˆ∞ 0 1 -cos(r) r 3/2 κ λ r dr r , where κ : [0, ∞) → [1, ∞) is an admissible weight (see Definition 2.4).

11 5 ,φ 2 f L 2 .

 112 Since φ(r) log(2 + r) we have

Proposition 5 . 8 .

 58 (i) For any t ≤ | log(ε)| with ε ≪ 1 and for any β 0 = 10 -10 , there holdssup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ˆt 0 B φ (τ ) dτ (66) + ε β 0 ˆt 0 A φ (τ ) dτ + ε β 0 /4 (1 + f 0 W 1,∞ ).

1 2

 1 together with the following estimate for the slopesup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ≤ C 0 ˆt 0 B(τ ) dτ + C 0 ε β 0 ˆt 0 A(τ ) dτ + ε β 0 /4 (1 + f 0 W 1,∞ ). for any t ≤ | log(ε)|. Therefore, for (1 + ∇f 0 L ∞ ) 3 A(0) ≪ 1 and ε ≪ 1, we have for any t ≤ | log(ε)|, d dt A(t) + B(t) + | log(ε)| -1 Z(t) ≤ ε 0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ≤ C 0 A(0) + ε β 0 4 .

4 5 .

 45 On the other hand,sup τ ∈[0,t] ∇f (τ ) L ∞ -∇f 0 L ∞ ≤ C 0 ˆt 0 B φ (τ ) dτ + C 0 ε β 0 ˆt 0 A φ (τ ) dτ + C 0 ε β 0 /4 (1 + f 0 W 1,∞ )for any t ≤ | log(ε)|. Therefore, there exists T ≪ 1 such that for any ε ≪ 1sup τ ∈[0,T ] A φ (τ ) + ˆT 0 B φ (τ ) dτ + | log(ε)| -1 ˆT 0 Z φ (τ ) dτ ≤ 10A φ (0)and sup τ ∈[0,t]

ˆR2 |ξ| 4 ˆπ 3 ≤r|ξ|≤ 3π 5 dr κ 2 1 |ξ| |ξ| 1+2s κ 2 1

 451 log(2 + |ξ|) 2a k(|ξ|) 2 û(ξ) 2 dξ < +∞.Recalling the notation ξ = ξ/|ξ|, and integrating in polar coordinate, we find that |ξ| |ξ| 2s .

5 2 ,φ f 2 L 2 1 .

 5221 , µ φ = φ B φ A φ -Lemma A.1. i) For all s ∈ (2, 5/2), there exists a positive constant C such that, f Ḣs ≤ Cµ φ A Assume that φ is of the form (55) where κ is an admissible weight satisfying κ(r) ≥ log(4 + r) a for some a ≥ 0. Then(71) ∇f L ∞ 1 + f L ∞ + A φ log(2 + B φ )

i) 2 Ḣsλ 5 2 ,φ f 2 L 2 .

 2522 Let λ > 0. Decompose the frequency space into low and high frequencies, at the frequency threshold |ξ| = λ, to obtainf 2 Ḣs ˆR2 |ξ| 2s | f | 2 dξ = ˆ|ξ|≤λ |ξ| 2s | f | 2 dξ + ˆ|ξ|>λ |ξ| 2s | f | 2 dξ ˆ|ξ|≤λ |ξ| 2s-4 κ(|ξ|) 2 |ξ| 4 φ(|ξ|) 2 | f | 2 dξ + ˆ|ξ|>λ |ξ| 2s-5 κ(|ξ|) 2 |ξ| 5 φ(|ξ|) 2 | f | 2 dξ.It follows thatf 2s-4 (κ(λ)) -2 |D| 2,φ f 2 L 2 + λ 2s-5 (κ(λ)) -2 |D| Chose λ = |D|

5 2 ,φ (f ) 2 L 2 /

 522 |D| 2,φ (f ) 2 L 2 to get the wanted result.

  It is easy to see thatˆ|ξ|≤λ |ξ| min{|ξ|, 1}| f (ξ)|dξ A log(2 + λ) ˆ|ξ|>λ |ξ| min{|ξ|, 1}| f (ξ)|dξ Bλ -1/2 .

  5) If A, B are nonnegative quantities, the inequality A B means that A ≤ CB for some constant C depending only on fixed quantities, and A ∼ B means that A B A. (6) Given two operators A and B, the commutator [A, B] is the difference

  3,φ f Proposition 5.7. Assume that the weight φ(r) log(2 + r). Then+ ε 2β 0 (1 + A φ ) 2 (1 + Z φ (t))

	(65)	1 2	d dt	A φ (t) +	B φ (t) 1 + ∇f 3 L ∞	+ | log(ε)| -1 Z φ (t)
					A φ (1 + A φ )B φ φ 1 2	A φ B φ	-1

The fact that this integral is well-defined follows at once from the assumptions on κ below. The reason for this special choice is to obtain the identity[START_REF] Brué | Sharp regularity estimates for solutions to the continuity equation drifted by Sobolev vector fields[END_REF] which connects |D| 3/2,φ to an expression involving finite differences.
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5.4. Choice of the weight φ. We will apply the previous a priori estimate with three different choices for the weight function φ. In particular, we chose (1) φ = 1: to prove Theorem 1.2 about global well-posedness for small data in Ḣ2 (R 2 ) ∩ W 1,∞ (R 2 ).

(2) φ(r) = log(2 + r) a : to prove Theorem 1.3 about local and global wellposedness in H 2,log a (R 2 ).

To prove Theorem 1.1, about large data in

, following the strategy introduced in [START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF], we need to consider a weight φ = φ 0 depending on the initial data.

To do so, we use the following Lemma 5.9. For any function f 0 in Ḣ2 (R 2 ) there exists an admissible weight κ such that f 0 belongs to the space Ḣ2,φ (R 2 ).

Proof. It is proved 2 in [5] that, for any nonnegative integrable function ω ∈ L 1 (R 2 ), there exists a function η : [0, ∞) → [1, ∞) satisfying the following properties:

(1) η is increasing and lim

η(2r) ≤ 2η(r) for any r ≥ 0, (3) ω satisfies the enhanced integrability condition:

moreover, the function r → η(r)/ log(4 + r) is decreasing on [0, ∞).

Then we apply this result with ω(ξ) = |ξ| 4 f (ξ) 2 and set κ(r) = η(r). Remembering that φ ∼ κ (see ( 13)), we see immediately that the enhanced integrability condition (67) implies that f 0 belongs to H 2,φ (R 2 ).

5.5. End of the proof. The end of the proof of the three main results stated in the introduction is exactly similar to that of our previous work [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF]. As the last works are self-contained, to avoid repetitions, we will simply explain in this paragraph how we use weighted energy estimates to obtain uniform estimates.

.

2 This result is proved in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] for d = 1 only, but the proof clearly applies in any dimension.

We consider the admissible weight κ defined by κ(r) = log(2 + r) a k(r) and then write

,

.

From these estimates, we obtain local existence with f 0 ∈ Ḣ2,log a (R 2 ). To obtain global existence under a smallness assumption A log a (0) ≪ 1, we apply (68) where now κ is simply κ(r) = log(2 + r) a .

Appendix A. Weighted fractional laplacians A.1. Proof of Proposition 2.8. Proposition 2.8 is proved in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. However, the proof in the latter reference is written only in dimension d = 1 and for 1 < s < 2. For the sake of completeness, we reproduce this proof to verify that it applies for d = 2 and for any 0 < s < 2. i) Notice that, for h ∈ R 2 , the Fourier transform of x → 2g(x) -g(x + h) -g(x -h) is given by (2 -2 cos(ξ • h))ĝ(ξ). So, Plancherel's identity implies that

where

for some constant c, C independent of ξ ∈ R.

We begin by proving the bound from above. The proof of the lower bound is straightforward.