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On the dynamics of the roots of polynomials under differentiation

This article is devoted to the study of a nonlinear and nonlocal parabolic equation introduced by Stefan Steinerberger to study the roots of polynomials under differentiation; it also appeared in a work by Dimitri Shlyakhtenko and Terence Tao on free convolution. Rafael Granero-Belinchón obtained a global well-posedness result for positive initial data small enough in a Wiener space, and recently Alexander Kiselev and Changhui Tan proved a global well-posedness result for any positive initial data in the Sobolev space H s (S) with s > 3/2. In this paper, we consider the Cauchy problem in the critical space H 1/2 (S). Two interesting new features, at this level of regularity, are that the equation can be written in the form ∂tu + V ∂xu + γΛu = 0, where γ is non-negative but not bounded from below and V / √ γ is not bounded. Therefore, the equation is only weakly parabolic. We prove that nevertheless the Cauchy problem is well posed locally in time and that the solutions are smooth for positive times. Combining this with the results of Kiselev and Tan, this gives a global well-posedness result for any positive initial data in H 1/2 (S). Our proof relies on sharp commutator estimates and introduces a strategy to prove a local well-posedness result in a situation where the lifespan depends on the profile of the initial data and not only on its norm.

Introduction

Stefan Steinerberger studied in [START_REF] Steinerberger | A nonlocal transport equation describing roots of polynomials under differentiation[END_REF] the following question: Considering a polynomial p n of degree n having all its roots on the real line distributed according to a smooth function u 0 (x), and a real number t ∈ (0, 1), how is the distribution of the roots of the derivatives ∂ k x p n with k = ⌊t • n⌋ ? This question led him to discover a nice non-local nonlinear equation which reads as follows (1)

∂ t u + 1 π ∂ x arctan Hu u = 0,
where the unknown u = u(t, x) is a positive real-valued function.

Besides its aesthetic aspect, this equation has many interesting features. Shlyakhtenko and Tao [START_REF] Shlyakhtenko | Fractional free convolution powers[END_REF] derived the same equation in the context of free probability and random matrix theory (see also [START_REF] Steinerberger | Free convolution of measures via roots of polynomials[END_REF]). However, our motivation comes from the links between this equation and many models studied in fluid dynamics.

In this paper, we assume that the space variable x belongs to the circle S = R/(2πZ), and H is the circular Hilbert transform (which acts on periodic functions), defined by ( 2)

Hu(x) = 1 2π pv ˆS g(x) -g(x -α) tan(α/2) dα,
where the integral is understood as a principal value. Granero-Belinchón ( [START_REF] Granero-Belinchón | On a nonlocal differential equation describing roots of polynomials under differentiation[END_REF]) proved the local existence of smooth solutions for positive initial data u 0 in the Sobolev space H 2 (S) = {u ∈ L 2 (S) ; ∂ 2 x u ∈ L 2 (S)}, as well as the global existence under a condition in appropriate Wiener spaces. Then, Kiselev and Tan [START_REF] Kiselev | The flow of polynomial roots under differentiation[END_REF] proved that the Cauchy problem for ( 1) is globally well-posed for positive initial data in the Sobolev space H s (S) for all s > 3/2, with H s (S) = {u ∈ L 2 (S) ; Λ s u ∈ L 2 (S)} where Λ denotes the fractional Laplacian:

Λ = ∂ x H = (-∂ xx ) 1 2 .
In fact, the equation ( 1) enters the family of fractional parabolic equations, which has attracted a lot of attention in recent years. To see this, introduce the coefficients

V = - 1 π Hu u 2 + (Hu) 2 , γ = 1 π u u 2 + (Hu) 2 •
Then the equation (1) has the following form (3)

∂ t u + V ∂ x u + γΛu = 0.
We can see that this last equation shares many characteristics with the Hele-Shaw equation, the Muskat equation or the dissipative surface quasi-geostrophic equation, to name a few. For the dissipative SQG equation, the global regularity has been proved by Kiselev, Nazarov and Volberg [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF], Caffarelli-Vasseur [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[END_REF] and Constantin-Vicol [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] (see also [START_REF] Kiselev | A variation on a theme of Caffarelli and Vasseur[END_REF][START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF][START_REF] Vasilyev | Variation on a theme by Kiselev and Nazarov: Hölder estimates for non-local transport-diffusion, along a non-divergence-free BMO field[END_REF][START_REF] Nguyen | Potential theory for drift diffusion equations with critical diffusion and applications to the dissipative SQG equation[END_REF]). The nonlinearity in the Muskat equation is more complicated. However, Cameron has succeeded in [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF] to apply the method introduced by Kiselev-Nazarov-Volberg to prove the existence of global solutions in time when the product of the maximum and minimum slopes is less than 1 (see also [START_REF] Cameron | Eventual regularization for the 3d Muskat problem: Lipschitz for finite time implies global existence[END_REF][START_REF] Cameron | Global wellposedness for the 3d Muskat problem with medium size slope[END_REF]). Recently, many works have extended this last result. The main results in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF][START_REF] Alazard | On the Cauchy problem for the Muskat equation. II: Critical initial data[END_REF][START_REF] Alazard | Endpoint Sobolev theory for the Muskat equation[END_REF][START_REF] Alazard | Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem[END_REF] imply that the Cauchy problem can be solved for non-Lipschitz initial data, following earlier work by Deng, Lei and Lin [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF], Córdoba and Lazar [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF], Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF] which allowed arbitrary slopes of large size. Recently, in [START_REF] Chen | The Muskat problem with C 1 data[END_REF] Chen, Xu and the third author proved local existence with C 1 initial data. The main issue is that it is difficult to dispense with the assumption of finite slopes. Indeed, the classical nonlinear estimates require to control the L ∞ norm of some factors, which is the same for the Muskat problem to control the L ∞ norm of the slope, which in turn amounts to controlling the Lipschitz norm of f . Second, the Muskat equation is a degenerate parabolic equation for solutions which are not controlled in the Lipschitz norm. Last but not least, it is worth mentioning that equation (1) shares many similarity with 1D transport equations with a nonlocal velocity given by the Hilbert transform (see e.g. [START_REF] Constantin | A simple one-dimensional model for the three-dimensional vorticity equation[END_REF][START_REF] Córdoba | Formation of singularities for a transport equation with nonlocal velocity[END_REF][START_REF] Li | Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation[END_REF][START_REF] Dong | Well-posedness for a transport equation with nonlocal velocity[END_REF][START_REF] Lazar | Infinite energy solutions for a 1D transport equation with nonlocal velocity[END_REF][START_REF] Lazar | On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion[END_REF][START_REF] Bae | Global existence for some transport equations with nonlocal velocity[END_REF].

Inspired by these results, our goal here is to solve the Cauchy problem for (1) in the critical Sobolev space H 1 2 (S). Several interesting difficulties appear at that level of regularity.

The main result of this paper is the following. Theorem 1.1. For all initial data u 0 in H 1 2 (S) such that inf x∈S u 0 > 0, the Cauchy problem has a unique global in time solution u satisfying the following properties:

(i) u ∈ C 0 ([0, +∞); H 1 2 (S)) ∩ L 2 ((0, +∞); Ḣ1 (S)) together with the estimate (4) sup t>0 u(t) 2 Ḣ 1 2 + ˆ∞ 0 ˆS u|Λu| 2 u 2 + (Hu) 2 dx dt < +∞.
(ii) u ∈ C ∞ ((0, +∞) × S) and moreover for any ξ 0 > 0 and ε 0 > 0,

sup t>0 t ξ 0 +ǫ 0 u(t) Ḣ 1 2 +ξ 0 < +∞. (iii) inf x∈S u(t, x) ≥ inf x∈S u 0 (x) for t > 0.
Remark 1.2. Notice that the coercive quantity that appears in the left-hand side of (4), i.e.

(5)

ˆ∞ 0 ˆS u|Λu| 2 u 2 + (Hu) 2 dx dt, is insufficient to control the • L 2 t Ḣ1
x -norm of u. Indeed, even if we assume that the initial value of u is bounded (which propagates in time), since the Hilbert transform is not bounded from L ∞ (S) to itself, we would have no control from below of the denominator u 2 + (Hu) 2 .

Plan of the paper. Since Kiselev and Tan ( [START_REF] Kiselev | The flow of polynomial roots under differentiation[END_REF]) proved that the Cauchy problem for (1) is globally well-posed for any positive initial data in H s (S) with s > 3/2, it will be sufficient to prove a local well-posedness result, together with the fact that the solutions are smooth for positive times. We start in Section 2 by studying a toy model, to explain the main difficulty and a commutator estimate. Then in §3 we prove the local-well posedness and then establish the smoothing effect in §4.

A toy model

To prove Theorem 1.1, the main difficulty is that the coefficient γ is not bounded from below by a positive constant. This means that (3) is a degenerate parabolic equation. Although it is not essential for the rest of the paper, it helps if we begin by examining a model equation where, by contrast, the dissipative term is nondegenerate. Then we will see that one can obtain an energy estimate in Ḣ1/2 (S) by means of a commutator estimate. In the next section, we will explain how to modify these arguments to deal with degenerate dissipation.

Consider the equation (6)

∂ t u + a(u, Hu)Λu = b(u, Hu)HΛu, where a and b are two C ∞ real-valued functions defined on R 2 , satisfying a ≥ m > 0 for some given positive constant m, together with sup

(x,x ′ ,y,y ′ )∈R 4 |b(x, y) -b(x ′ , y ′ )| |x -x ′ | + |y -y ′ | < +∞.
Proposition 2.1. There exists a constant C > 0 such that, for all T > 0 and for all u ∈ C 1 ([0, T ]; Ḣ 1 2 (S)) solution to (6), there holds

(7) 1 2 d dt u 2 Ḣ 1 2 + m ˆS |Λu| 2 dx ≤ C u Ḣ 1 2 Λu 2 L 2 .
Remark 2.2. Using classical arguments, it is then possible to infer from the a priori estimate (7) a global well-posedness result for initial data which are small enough in H 1 2 (S). However, the study of the local well-posedness of the Cauchy problem for large data is more difficult and requires and extra argument which is explained in the next section.

Proof. Let us use the short notations a = a(u, Hu) and b = b(u, Hu). Multiplying the equation ( 6) by Λu and integrating over S, we obtain

(8) 1 2 d dt u 2 Ḣ 1 2 + ˆS a |Λu| 2 dx = I := ˆS b(HΛu)(Λu) dx.
To estimate I, we use the fact that H is skew-symmetric to write

(9) |I| = 1 2 ˆS b, H Λu Λu dx . Now we claim that (10) b, H Λu L 2 b Ḣ 1 2 Λu L 2 .
Indeed, this follows from the Sobolev embedding Ḣ 1 2 ⊂ BMO and the classical commutator estimate [START_REF] Cameron | Global wellposedness for the 3d Muskat problem with medium size slope[END_REF] [

H, f ]v L 2 f BMO v L 2 .
(Alternatively one can prove [START_REF] Cameron | Eventual regularization for the 3d Muskat problem: Lipschitz for finite time implies global existence[END_REF] directly using the definition of the Hilbert transform as a singular integral and the Gagliardo semi-norm.) It follows that

(12) I b Ḣ 1 2 Λu 2 L 2 .
Now we estimate the Ḣ 1 2 -norm of b by means of the following elementary estimate.

Lemma 2.3. Consider a C ∞ function σ : R 2 → R satisfying ∀(x, x ′ , y, y ′ ) ∈ R 4 , σ(x, y) -σ(x ′ , y ′ ) ≤ K x -x ′ + K y -y ′ .
Then, for all s 0 ∈ (0, 1) and all u ∈ Ḣs 0 (R), one has σ(u, Hu) ∈ Ḣs 0 (R) together with the estimate

(13) σ(u, Hu) Ḣs 0 ≤ 2K u Ḣs 0 .
Proof. By assumption, for any α ∈ R, we have

δ α σ(u, Hu) L 2 ≤ K( δ α u L 2 + δ α Hu L 2 ).
Then by using the Gagliardo semi-norms, we get

σ(u, Hu) Ḣs 0 ≤ K u Ḣs 0 + K Hu Ḣs 0 ,
and the desired result follows since Hu Ḣs 0 = u Ḣs 0 .

The previous lemma implies that

b Ḣ 1 2 u Ḣ 1 2 + Hu Ḣ 1 2 u Ḣ 1 2
, and we deduce from (12) that

I u Ḣ 1 2 Λu 2 L 2 .
Therefore the wanted result [START_REF] Bae | Global existence for some transport equations with nonlocal velocity[END_REF] follows from (8).

Local well-posedness

We construct solutions to (1) as limits of solutions to a sequence of approximate nonlinear systems. We divide the analysis into three parts.

(1) We start by proving that the Cauchy problem for these systems systems are well posed globally in time and satisfy the maximum principles. In particular, the approximate solutions are bounded by a positive constant. (2) Then, we show that the solutions of the approximate systems are bounded in C 0 ([0, T ]; Ḣ 1 2 (S)) on a uniform time interval that depends on the profile of the initial data (and not only on their norm).

(3) The third task is to show that these approximate solutions converge to a limit which is a solution of the original equation. To do this, we use interpolation and compactness arguments.

3.1. Approximate systems. Fix δ ∈ (0, 1] and consider the following approximate Cauchy problem:

(14)      ∂ t u + 1 π uΛu -(Hu)∂ x u u 2 + (Hu) 2 -δ∂ 2 x u = 0, u| t=0 = e δ∂ 2 x u 0 .
The following elementary lemma states that this Cauchy problem has smooth positive solutions (see Granero-Belinchón in [START_REF] Granero-Belinchón | On a nonlocal differential equation describing roots of polynomials under differentiation[END_REF] for the maximum principle).

Lemma 3.1. For any initial data u 0 ∈ L 2 (S) with inf x∈S u 0 > 0 and for any δ > 0, the initial value problem (14) has a unique solution u in C 1 ([0, +∞); H ∞ (S)). This solution is such that, for all t ∈ [0, +∞),

(15) inf x∈S u(t, x) ≥ inf x∈S u 0 (x).
In addition, if max x∈S u 0 (x) < +∞ then max x∈S u(t, x) ≤ max x∈S u 0 (x).

3.2. Uniform estimates. Fix δ > 0 and c 0 and consider an initial data u 0 in H 1 2 (S) with inf x∈S u 0 (x) ≥ c 0 . As we have seen in the previous paragraph, there exists a unique function u ∈ C 1 ([0, +∞); H ∞ (S)) satisfying ( 16)

           ∂ t u + 1 π uΛu -(Hu)∂ x u u 2 + (Hu) 2 -δ∂ 2 x u = 0, u| t=0 = e δ∂ 2 x u 0 , inf x∈S u(t, x) ≥ c 0 .
We shall prove estimates which are uniform with respect to δ ∈ (0, 1] and this is why we are writing simply u instead of u δ , to simplify notations.

Notice that

∂ t u + 1 π arctan Hu u -δ∂ 2 x u = 0.
This implies that the mean value of u is preserved and hence it will be sufficient to estimate the homogeneous Ḣ 1 2 (S)-norm of u. For this, we proceed as follows. Given ε > 0 to be determined, we want to estimate

v := u -e (ε+δ)∂ 2 x u 0 . Set u 0,ε = e (ε+δ)∂ 2 x u 0 ,
and introduce the coefficients

γ = 1 π u u 2 + (Hu) 2 , V = - 1 π Hu u 2 + (Hu) 2 , ρ = u 2 + (Hu) 2 .
With the previous notations, we have

(17) ∂ t v + V ∂ x v + γΛv -δ∂ 2 x v = R ε (u, u 0 )
where

R ε (u, u 0 ) = -γΛu 0,ε -V ∂ x u 0,ε + δ∂ 2 x u 0,ε .
The following result is our main technical estimate.

Lemma 3.2. For any u 0 ∈ H 1 2 (S) with inf x∈S u 0 (x) > 0, there exist a constant ε 0 and a function T : (0, 1] → (0, 1) with lim ε→0 T (ε) = 0, such that the following result holds: for all δ ∈ (0, 1], all u ∈ C 1 ([0, +∞); H ∞ (S)) satisfying [START_REF] Constantin | On the global existence for the Muskat problem[END_REF] with initial data u| t=0 = e δ∂ 2

x u 0 , and for all ε ∈ (0,

ε 0 ], the function v = u -e (ε+δ)∂ 2 x u 0 satisfies sup t∈[0,T (ε)] v(t) 2 Ḣ 1 2 + ˆT (ε) 0 ˆS u |Λv| 2 u 2 + (Hu) 2 dx dt + δ ˆT (ε) 0 v 2 Ḣ 3 2 dt ≤ F(ε), (18) 
for some function F : R + → R + with lim ε→0 F(ε) = 0.

Proof. Hereafter, C denotes various constants which depend only on the constant c 0 (remembering that c 0 is some given constant such that inf u(t, x) ≥ inf u 0 ≥ c 0 ) and we use the notation A c 0 B to indicate that A ≤ CB for such a constant C.

Consider a parameter κ ∈ (0, 1] whose value is to be determined. Then decompose the Hilbert transform as H = H κ,1 + H κ,2 where

H κ,1 g(x) = 1 2π ˆS g(x -α)χ α κ dα tan(α/2) , H κ,2 g(x) = 1 2π ˆS g(x -α) 1 -χ α κ dα tan(α/2)
,

for some cut-off function χ ∈ C ∞ satisfying χ = 1 in [-1, 1] and χ = 0 in R \ [-2, 2].
Multiply equation ( 17) by Λv and then integrate over S, to obtain

(19) 1 2 d dt v 2 Ḣ 1 2 + ˆS γ(Λv) 2 dx = A + B + R + R ′
where

A = ˆS V (H κ,1 Λv)(Λv) dx, B = ˆS V (H κ,2 Λv)(Λv) dx, R = ˆS(-γΛu 0,ε -V ∂ x u 0,ε )(Λv) dx, R ′ = ˆS δ(∂ 2 x u 0,ε )Λv dx. Set W := √ γΛv,
so that the dissipative term in ( 19) is of the form ˆS γ(Λv) 2 dx = ˆS W 2 dx.

Step 1: Estimate of B, R and R ′ . Directly from the definition of γ and V , we have

(20) γ ≤ 1 πc 0 , |V | ≤ 1 2πc 0 .
One important feature of the critical problem is that the dissipative term is degenerate. This means that the coefficient γ is not bounded from below by a fixed positive constant. As a result, we do not control the L 2 -norm of Λv. Instead, we merely control the L 2 -norm of W = √ γΛv. Hereafter, we will systematically write Λv under the form

Λv = 1 √ γ √ γΛv = 1 √ γ W.
To absorb the contribution of the factor 1/ √ γ in the estimates for B and R, it will be sufficient to notice that we have the pointwise bound

V √ γ = 1 u δ + u 2 + (Hu) 2 |Hu| c 0 |Hu| .
In particular, remembering that the Hilbert transform is bounded from L p (S) to L p (S) for any p ∈ (1, +∞) and using the Sobolev embedding H s (S) ⊂ L 2/(1-2s) (S), we deduce that

(21) V / √ γ L 4 c 0 Hu L 4 c 0 u Ḣ 1 2 .
Then it follows from Hölder's inequality that

|B| ≤ ˆS V √ γ |H κ,2 Λv| | √ γΛv| dx c 0 u Ḣ 1 2 H κ,2 Λv L 4 W L .
On the other hand,

H κ,2 Λv L 4 = H κ,2 ∂ x Hv L 4 κ -1 Hv L 4 κ -1 v Ḣ 1 2
, where we used the definition of H κ,2 , noting that g x (x -α) = ∂ α (g(x) -g(x -a)) and integrating by parts in α.

By combining the previous estimates, we conclude that

|B| c 0 κ -1 u Ḣ 1 2 v Ḣ 1 2 W L 2 .
The estimate of R is similar. Recall that

R = ˆS(-γΛu 0,ε -V ∂ x u 0,ε )(Λv) dx.
To estimate the contribution of the first term, we write

ˆS γ(Λu 0,ε )(Λv) dx ≤ √ γ L ∞ Λu 0,ε L 2 √ γΛv L 2 c 0 ε -1 2 u 0 Ḣ 1 2 W L 2 ,
where we have used the elementary inequality

u 0,ε Ḣ1 (ε + δ) -1 4 u 0,ε Ḣ 1 2 ε -1 4 u 0 Ḣ 1 2
, since the Fourier transform of u 0,ε = e (ε+δ)∂ 2

x u 0 is essentially localized in the interval |ξ| √ ε + δ. With regards to the second term, we use again the estimate [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF] to get

ˆS V (∂ x u 0,ε )(Λv) dx ≤ V / √ γ L 4 ∂ x u 0,ε L 4 √ γΛv L 2 c 0 ε -1 u Ḣ 1 2 u 0 Ḣ 1 2 W L 2 .
Eventually, we have

δ∂ 2 x u 0,ε Ḣ 1 2 = δ∂ 2 x e (ε+δ)∂ 2 x u 0 Ḣ 1 2 δ∂ 2 x e δ∂ 2 x u 0 Ḣ 1 2 u 0 Ḣ . Hence R ′ u 0 Ḣ 1 2 v Ḣ 1 2 .
So, by combining the previous inequalities, we conclude that

B + R + R ′ c 0 κ -1 u Ḣ 1 2 v Ḣ 1 2 W L 2 + ε -1 2 (1 + u Ḣ 1 2 ) u 0 Ḣ W L 2 + u 0 Ḣ 1 2 v Ḣ 1 2
, hence, replacing u by v + u 0,ε in the right-hand side, we conclude that ( 22)

B + R + R ′ c 0 κ -1 u Ḣ 1 2 + ε -1 2 u 0 Ḣ 1 2 v Ḣ 1 2 W L 2 + ε -1 2 u 0 Ḣ 1 2 + u 0 2 Ḣ 1 2 W L 2 + u 0 Ḣ 1 2 v Ḣ 1 2 .
Step 2: Estimate of A. Since H κ,1 is skew-symmetric, one easily verifies that, parallel to (9), we have

A = 1 2 ˆS V, H κ,1 Λv Λv dx.
Then, we multiply and divide by √ γ and use the Cauchy-Schwarz inequality, to find

(23) A ≤ ˆS γ -1 [V, H κ,1 ](Λv) 2 dx 1 2 √ γΛv L 2 .
We now have to estimate the commutator [V, H κ,1 ]. Directly from the definition of H κ,1 , we have the following identities

[V, H κ,1 ](Λv) = 1 4π pv ˆS V (x)(δ α Λv)(x) -δ α (V Λv)(x) tan(α/2) χ α κ dα = - 1 4π pv ˆS (δ α V )(x)(Λv)(x -α) tan(α/2) χ α κ dα = - 1 4π pv ˆS (δ α V )(x) √ γ(x -α) W (x -α)χ α κ dα tan(α/2)
,

where we replaced Λv by W/ √ γ to obtain the last identity.

Therefore,

ˆS γ -1 [V, H κ,1 ](Λv) 2 dx ˆS(γ(x)) -1 ˆ|α|≤2κ |δ α V (x)| γ(x -α) -1/2 |W (x -α)| dα | tan(α/2)| 2 dx c 0 ˆS(ρ 2 (x) ˆ|α|≤2κ |δ α V (x)| ρ(x -α) |W (x -α)| dα | tan(α/2)| 2 dx. Lemma 3.3. Introduce the notation Q α (g) := |δ α g| + |δ α Hg|.
Then there holds

|δ α V | c 0 Q α (v)(1 + Q α (v)) 2 ρ 2 + ε -3 (1 + u 0 H 1 2 ) 3 |α| . ( 24 
)
Proof. One has

|δ α V (x)| |δ α Hu(x)| ρ 2 (x) + |Hu(x -α)| |δ α u(x)|(|u(x)| + |u(x -α)|) ρ 2 (x -α)ρ 2 (x) c 0 |δ α Hu(x)| ρ 2 (x) + |δ α u(x)| 2 + |δ α Hu(x)| 2 ρ(x -α)ρ(x) + |δ α u(x)| + |δ α Hu(x)| ρ(x -α)ρ(x) . Since 1 ρ(x -α) 1 ρ(x) (1 + Q α (u)),
we obtain

|δ α V | c 0 Q α (u)(1 + Q α (u)) 2 ρ 2 •
To get the wanted result [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical Sobolev space[END_REF] from this, we replace u by v + u 0,ε and use the two following elementary ingredients: 3 . It follows from the previous lemma and the preceding inequality that

Q α (u 0,ε )(1 + Q α (u 0,ε )) 2 ρ 2 c 0 Q α (u 0,ε )(1 + Q α (u 0,ε )) 2 , Q α (u 0,ε ) ≤ ∂ x u 0,ε L ∞ + ∂ x (Hu 0,ε ) L ∞ |α| u 0,ε H 2 |α| ε -3 4 u 0 H 1 2 |α| . Since |α| 3 |α|, this completes the proof. Set K(ε) := ε -3 (1 + u 0,ε H 1 2 )
ˆS γ -1 [V, H κ,1 ](Λv) 2 dx c 0 (I) + (II),
where

(I) := ˆS ρ(x) 2 |α|≤2κ Q α (v)(x)(1 + Q α (v)(x)) 2 ρ(x) 2 ρ(x -α) |W (x -α)| dα | tan( α 2 )| 2 dx, (II) := K(ε) 2 ˆS ρ(x) 2 |α|≤2κ ρ(x -α) |W (x -α)| dα 2 dx.
Using the Cauchy-Schwarz inequality, we see that

(I) ¨S2 Q α (v)(x) 2 (1 + Q α (v)(x)) 4 ρ 2 (x -α) ρ 2 (x) dα dx |α| 2 W 2 L 2 . Since ρ 2 (x -α) ρ 2 (x) 1 + |Q α (u)(x)| 2 ,
we end up with (I)

¨S2 Q α (v)(x) 2 (1 + Q α (v)(x)) 4 (1 + Q α (u)(x)) 2 dα dx |α| 2 W 2 L 2 .
On the other hand,

¨S2 Q α (v)(x) 2 (1 + Q α (v)(x)) 4 (1 + Q α (u)(x)) 2 dα dx |α| 2 ¨S2 Q α (v)(x) 2 (1 + Q α (v)(x)) 4 dα dx |α| 2 + ¨S2 Q α (v)(x) 4 (1 + Q α (v)(x)) 8 dα dx |α| 2 1 2 ¨S2 Q α (u)(x) 4 dα dx |α| 2 1 2 v 2 Ḣ 1 2 1 + v Ḣ 1 2 4 1 + u Ḣ 1 2 ) 2
, where we used the fact that

Q α (f )(x) = |δ α f (x)| + |δ α Hf (x)| and ¨S2 |δ α f (x)| 2p + |δ α Hf (x)| 2p dα dx |α| 2 ||f || 2p Ḣ 1 2
for any p ≥ 1.

This gives (I)

v 2 Ḣ 1 2 1 + v Ḣ 1 2 4 1 + u Ḣ 1 2 ) 2 W 2 L 2 .
On the other hand,

(II) K(ε) 2 κ 1 2 u 4 Ḣ 1 2 W 2 L 2 .
Therefore, it follows from [START_REF] Dong | Well-posedness for a transport equation with nonlocal velocity[END_REF] that

A ≤ ˆS γ -1 [V, H κ,1 ](Λv) 2 dx 1 2 W L 2 (I) + (II) 1 2 W L 2 v Ḣ 1 2 1 + v Ḣ 1 2 2 1 + u Ḣ 1 2 ) W 2 L 2 + K(ε)κ 1 4 u 2 Ḣ 1 2 W 2 L 2 .
By combining this with ( 22), we get from ( 19) that there exists a constant C depending only on c 0 such that (25) 1 2

d dt v 2 Ḣ 1 2 + W 2 L 2 ≤ C v Ḣ 1 2 1 + v Ḣ 1 2 2 1 + u Ḣ 1 2 ) W 2 L 2 + CK(ε)κ 1 4 u 2 Ḣ 1 2 W 2 L 2 + C κ -1 u Ḣ 1 2 + Cε -1 2 u 0 Ḣ 1 2 v Ḣ 1 2 W L 2 + Cε -1 2 u 0 Ḣ 1 2 + u 0 2 Ḣ 1 2 W L 2 + u 0 Ḣ 1 2 W L 2 + C u 0 Ḣ 1 2 v Ḣ 1 2 .
Using the Young's inequality, this immediately yields an inequality of the form

(26) 1 2 d dt v 2 Ḣ 1 2 + Υ W 2 L 2 ≤ M v 2 Ḣ 1 2 + F,
where

M := 4C 2 ε -1 u 0 Ḣ 1 2 + u 0 2 Ḣ 1 2 2 + 1, F := 4C 2 ε -1 u 0 Ḣ 1 2 + u 0 2 Ḣ 1 2 2 , Υ := 1 4 -C v Ḣ 1 2 1 + v Ḣ 1 2 2 1 + u Ḣ 1 2 ) -CK(ε)κ 1 4 u 2 Ḣ 1 2 -C 2 κ -1 u Ḣ 1 2 + ε -1 2 u 0 Ḣ 1 2 2 v 2 Ḣ 1 2 .
In particular, as long as Υ ≥ 0, we have

v(t) 2 Ḣ 1 2 ≤ e 2M t v(0) 2 Ḣ 1 2 + e tM -1 M F.
If one further assumes that tM ≤ 1, it follows that

v(t) 2 Ḣ 1 2 ≤ e 2M t v(0) 2 Ḣ 1 2 + tF.
Introduce the parameter

ν(ε) := 2 v| t=0 Ḣ 1 2 (S) = 2 u 0 -e ε∂ 2 x u 0 Ḣ 1 2 (S)
.

Then choose ε small enough, so that

Cν(ε) 1 + ν(ε) 2 1 + 2 u 0 Ḣ 1 2 ) ≤ 1 16 .
We then fix κ small enough to that

CK(ε)κ 1 4 (2 u 0 Ḣ 1 2 ) 2 ≤ 1 16 ,
where recall that K(ε)

:= ε -3 (1 + u 0,ε H 1 2 ) 3 .
We then deduce the wanted uniform estimate by an elementary continuation argument.

3.3. Compactness. Previously, we have proved a priori estimates for the spatial derivatives. In this paragraph, we collect results from which we will derive estimates for the time derivative as well as for the nonlinearity. These estimates are used to pass to the limit in the equation.

Recall the notations introduced in the previous section, as well as the estimates proved there. Fix c 0 > 0. Given δ ∈ (0, 1] and an initial data u 0 ∈ H 1 2 (S) satisfying u 0 ≥ c 0 , we have seen that there exists a (global in time) solution u δ to the Cauchy problem:

(27)      ∂ t u δ + 1 π u δ Λu δ -(Hu δ )∂ x u δ u 2 δ + (Hu δ ) 2 -δ∂ 2 x u δ = 0, u δ | t=0 = e δ∂ 2 x u 0 .
Moreover, we have proved that one can fix ε small enough such that one can write u δ under the form

u δ (t, x) = (e (ε+δ)∂ 2 x u 0 )(x) + v δ (x),
and there exist T > 0 and M > 0 depending on u 0 such that, for all δ ∈ (0, 1],

sup

t∈[0,T ] v δ (t) 2 Ḣ 1 2 + ˆT 0 ˆS u δ |Λv δ | 2 u 2 δ + (Hu δ ) 2 dx dt + δ ˆT 0 v δ 2 Ḣ 3 2 dt ≤ M. (28) 
Now, to pass to the limit in the equation ( 27), we need to estimate the time derivative. Since ∂ t u δ = ∂ t v δ , it is sufficient to estimate the latter quantity. It is given by ( 29)

∂ t v δ = -V δ ∂ x v δ -γ δ Λv δ + δ∂ 2 x v δ + R δ ,
where

γ δ = 1 π u δ u 2 δ + (Hu δ ) 2 , V δ = - 1 π Hu δ u 2 δ + (Hu δ ) 2 , R δ = -γ δ (Λe (ε+δ)∂ 2 x u 0 ) -V δ (∂ x e (ε+δ)∂ 2 x u 0 ) + δ∂ 2 x e (ε+δ)∂ 2 x u 0 .
As already seen in ( 20), we have γ δ c 0 1 and |V δ | c 0 1. By combining this with the fact that e ε∂ 2 x is a smoothing operator, we immediately see that

R δ L ∞ ([0,T ];L 2 ) c 0 ,ε u 0 Ḣ 1 2 .
Here the implicit constant depends on ε, but this is harmless since ε is fixed now. On the other, directly from (28), we get that

γ δ Λv δ L 2 ([0,T ];L 2 ) c 0 √ γ δ Λv δ L 2 ([0,T ];L 2 ) c 0 M, and δ ∂ 2 x v δ L 2 ([0,T ];H -1 2 ) ≤ √ δ ∂ 2 x v δ L 2 ([0,T ];H -1 2 ) ≤ M.
It remains only to estimate the contribution of V δ ∂ x v δ . For this, we begin by proving that (v δ ) δ∈(0,1] is bounded in L p ([0, T (ε)]; Ḣ1 (S)) for any 1 ≤ p < 2. Indeed, we can write (30)

v δ 2 Ḣ1 ≤ u 2 δ + (Hu δ ) 2 u δ L ∞ ˆS u δ |Λv δ | 2 u 2 δ + (Hu δ ) 2 dx c 0 (u δ , Hu δ ) 2 L ∞ ˆS u δ |Λv| 2 u 2 δ + (Hu δ ) 2 dx c 0 (v δ , Hv δ ) 2 L ∞ + ε -1 2 u 0 2 H 1 2 ˆS u δ |Λv| 2 u 2 δ + (Hu δ ) 2 dx c 0 v δ 2 H 1 2 log 2 + v δ Ḣ1 + ε -1 2 u 0 2 H 1 2 ˆS u δ |Λv δ | 2 u 2 δ + (Hu δ ) 2 dx, to conclude that v δ 2 Ḣ1 log(2 + v δ Ḣ1 ) ˆS u δ |Λv δ | 2 u 2 δ + (Hu δ ) 2 dx
, where the implicit constant depends on c 0 , ε, u 0 H 1 2 and M . Remembering that |V δ | c 0 1, it immediately follows that, for any p ∈ [1, 2), (V δ ∂ x v δ ) δ∈(0,1] is bounded in L p ([0, T ]; L 2 ). Now, by comnbining all the previous estimates, we see that (v δ ) δ∈(0,1] is bounded in the space

X p = u ∈ C 0 ([0, T ]; H 1 2 (S)) ∩ L p ([0, T ]; H 1 (S)) ; ∂ t u ∈ L p ([0, T ]; H -1 2 (S)) .
Since H 1 2 (S) (resp. H 1 (S)) is compactly embedded into H s (S) (resp. H 1 2 +s (S) for any s < 1/2, by the classical Aubin-Lions lemma, this in turn implies that one can extract a sequence (u δn ) n∈N which converges strongly in

C 0 ([0, T ]; H s (S)) ∩ L p ([0, T ]; H 1 2 +s (S)).
Then it is elementary to pass to the limit in the equation.

Smoothing effect

The goal of this section is to prove the second statement in Theorem 1.1 which asserts that the solution are smooth. By classical methods for parabolic equations (see [START_REF] Taylor | Partial differential equations III. Nonlinear equations[END_REF]Chapter 15]), it is easy to prove that solutions which are smooth enough (say with initial data in H 2 (S)) are C ∞ for positive time. So it is sufficient to prove that the solution are at least H 2 for positive times. This is the purpose of the following Proposition 4.1. The solution u constructed in the previous section is such that, for any ξ > 4, there holds [START_REF] Huy | A paradifferential approach for well-posedness of the Muskat problem[END_REF] sup

t∈[0,T ] t ξ u(t) 2 Ḣ 5 2 ξ 1.
Proof. Since u was constructed as the limit of smooth solutions (see §3.1 and §3.3), we will prove only a priori estimates.

As in the previous part, we work with the function v = u -e ε∂ 2

x u 0 , with ε small enough. For this proof, we denote by C(ε) many constants that depend on ε and which are allowed to diverge when ε tends to 0.

Recall from ( 17) that v solves (32)

∂ t v + V ∂ x v + γΛv = R ε (u, u 0 ) where R ε (u, u 0 ) = -γΛu 0,ε -V ∂ x u 0,ε .
We will estimate the Ḣ2 -norm of v. For this introduce ṽ = ∂ 2 x v, solution to

∂ t ṽ + γΛṽ = V H κ,1 Λṽ + R 0 + R 1 where R 0 = ∂ 2 x (V (H κ,2 Λv)) + ∂ 2 x R ε (u, u 0 ) R 1 = -(∂ 2 x γ)(Λv) -2(∂ x γ)(Λ∂ x v) + (∂ 2 x V )(H κ,1 Λv) + 2(∂ x V )(H κ,1 Λ∂ x v). (33) 
Now, we multiply (33) by Λṽ and then integrate in x over S, to obtain

1 2 d dt ṽ 2 Ḣ 1 2 + ˆS γ Λṽ 2 dx = 1 2 ˆS[V, H κ,1 ](Λṽ)Λṽ dx + ˆS R 0 Λṽ dx + ˆS R 1 Λṽ dx.
Set W := √ γΛṽ.

By using arguments parallel to those used in the first step of the proof of Lemma 3.2, one finds that

ˆ[V, H κ,1 ](Λṽ)Λṽ dx c 0 (1 + v Ḣ 1 2 ) 2 (1 + u Ḣ 1 2 ) v Ḣ 1 2 (1 + w 2 L 2 + C(ε)κ 1 4 ( v Ḣ 1 2 + 1) 2 w 2 L 2 , and 
ˆR0 Λṽ dx c 0 C(ε, κ) w 9 5 L 2 + C(ε, κ). Since |∂ x γ| + |∂ x V | 1 ρ 2 (|∂ x u| + |Λu|) , |∂ 2 x γ| + |∂ 2 x V | 1 ρ 2 |∂ 2 x u| + |H∂ 2 x u| + 1 ρ 3 |∂ x u| 2 + |Λu| 2 ,
then one finds

|R 1 | c 0 1 ρ 2 |∂ 2 x u| + |H∂ 2 x u| + 1 ρ 3 |∂ x u| 2 + |Λu| 2 (|Λv| + |H κ,1 Λv|) + 1 ρ 2 (|∂ x u| + |Λu|) (|Λ∂ x v| + |H κ,1 Λ∂ x v|) .
Therefore, replacing u by e ε∂ 2 x u 0 + v in the right-hand side, we get

|R 1 | c 0 1 ρ 2 |∂ 2 x v| + |H∂ 2 x v| + 1 ρ 3 |∂ x v| 2 + |Λv| 2 (|Λv| + |H κ,1 Λv|) + 1 ρ 2 (|∂ x v| + |Λv|) (|Λ∂ x v| + |H κ,1 Λ∂ x v|) + C(ε) (|Λv| + |H κ,1 Λv| + |Λ∂ x v| + |H κ,1 Λ∂ x v|) . Thus, ˆS R 1 Λṽ dx c 0 v Ḣ 1 2 (1 + v Ḣ 1 2 ) 3 w 2 L 2 + C(ε)κ 1 4 ( v Ḣ 1 2 + 1) 4 w 2 L 2 + C(κ, ε).
Therefore, we find

∂ t ṽ 2 Ḣ 1 2 + ˆS | w| 2 dx c 0 v Ḣ 1 2 (1 + v Ḣ 1 2 ) 3 w 2 L 2 + C(ε)κ 1 4 ( v Ḣ 1 2 + 1) 4 w 2 L 2 + C(κ, ε).
Choosing ε and then κ small enough, we obtain

∂ t ṽ 2 Ḣ 1 2
+ ˆS | w| 2 dx C(c 0 , κ, ε), for any t ∈ (0, T ). Now that ε and κ are fixed, we shall skip the dependence of the various implicit constants on ε and κ.

So, integrating in time τ ∈ (s, t) we obtained that for 0 < s < t ≤ T , v(t) Let ǫ > 0 and δ 0 > 0, using the following interpolation inequality s ξ-1 u(s) 2 Ḣ5/2 ≤ ǫs ξ-1+δ 0 u(s)

8/5
Ḣ3 ǫ -1 s -δ 0 u(s)

2/5 Ḣ 1 2 ,
together with Young's inequality (with the conjugate exponents p = 10-5δ 8 and q = 10-5δ 2-5δ ) we find ˆT 0 s ξ-1 u(s) Choosing m, δ 0 such that qδ 0 < 1 (so that the last integral in the right hand side is finite) and, for a scaling purpose, we also need that ξ = pξ -p + pδ 0 .

So, ξ = q -δ 0 q > q -1.

Then, for any ξ > 4 (note that q > 4 for any δ > 0) and any ǫ > 0 sufficiently small, we may absorb the Ḣ3 in the left hand side of inequality [START_REF] Patel | Large time decay estimates for the Muskat equation[END_REF], we obtain sup 

0<t<T t ξ v(t) 2 Ḣ 5 2 +

 22 ˆT 0 s ξ u(s) 2-δ Ḣ3 ds 1.In particular, for any ξ >

.

  Then, in order to measure the decay rate in time, we multiply the last inequality by s ξ-1 and then integrate in s ∈ [0, t/2], to find ˆS u|Λ 3 v| 2 u 2 + (Hu) 2 dx ds ˆS u|Λ 3 v| 2 u 2 + (Hu) 2 dx.

	Then,										
				sup 0<t<T	t ξ v(t) 2 Ḣ 5 2	+	ˆT 0	s ξ T ξ+1 +	ˆT 0	s ξ-1 v(s) 2 Ḣ 5 2	ds.
	Now, parallel to (30), we have
							v 2 Ḣ3	
				log(2 + v Ḣ3 ) c 0 ,ε, u 0	Ḣ 1 2
	So we end up with,							
	sup 0<t<T	t ξ v(t) 2 ˙˙H	5 2	+	ˆT 0		s ξ	v 2 Ḣ3 log(2 + v Ḣ3 )	ds T ξ+1 +	ˆT 0	s ξ-1 v(s) 2 Ḣ 5 2	ds.
	Then, we use the fact that for δ > 0 small enough, a 2-δ	a 2 log(2+a) , so
	(34)	sup 0<t<T	t ξ v(t) 2 Ḣ 5 2	+	ˆT 0	s ξ u(s) 2-δ Ḣ3 ds T ξ+1 +	ˆT 0	s ξ-1 u(s) 2 Ḣ5/2 ds.
						2 Ḣ 5 2	+	ˆt s	ˆS u|Λ 3 v| 2 u 2 + (Hu) 2 dx dτ t + v(s) 2 Ḣ 5 2
			ˆt/2								ˆt/2
			0	s ξ-1 v(t) 2 Ḣ 5 2		ds +
												Ḣ 5 2	ds.

0 s ξ-1 ˆt s ˆS u|Λ 3 v| 2 u 2 + (Hu) 2 dx dτ ds ˆt 0 ts ξ-1 + s ξ-1 v(s) 2
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