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ON THE CAUCHY PROBLEM FOR THE MUSKAT EQUATION. II: CRITICAL INITIAL DATA

We prove that the Cauchy problem for the Muskat equation is wellposed locally in time for any initial data in the critical space of Lipschitz functions with three-half derivative in L 2 . Moreover, we prove that the solution exists globally in time under a smallness assumption.

Introduction

The Muskat equation describes the dynamics of the interface separating two fluids in porous media whose velocities obey Darcy's law ( [START_REF] Philibert | à suivre et des formules à employer dans les questions de distribution d'eau, etc[END_REF][START_REF] Muskat | Two fluid systems in porous media. the encroachment of water into an oil sand[END_REF]). This equation belongs to the family of nonlocal parabolic equations that have attracted a lot of attention in recent years. Indeed, it has long been observed that one can reduce the Muskat equation to an evolution equation for the free surface parametrization (see [START_REF] Caflisch | A localized approximation method for vortical flows[END_REF][START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF][START_REF] Prüss | Moving interfaces and quasilinear parabolic evolution equations[END_REF][START_REF] Siegel | Global existence, singular solutions, and ill-posedness for the Muskat problem[END_REF]). One interesting feature of the Muskat equation is that it admits a compact formulation in terms of finite differences, as observed by Córdoba and Gancedo [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF]. More precisely, assume that the free surface is the graph of some function f = f (t, x) with x ∈ R. Then, Córdoba and Gancedo [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF] showed that the Muskat equation reduces to [START_REF] Abedin | Regularity for a special case of two-phase hele-shaw flow via parabolic integro-differential equations[END_REF] ∂

t f = 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 dα,
where ∆ α f is the slope, defined by

∆ α f (x, t) = f (x, t) -f (x -α, t) α • (2)
It is easily verified that the Muskat equation is invariant by the change of unknowns:

(3)

f (t, x) → f λ (t, x) := 1 λ f (λt, λx) (λ = 0).
Now, by a direct calculation,

f λ   t=0 Ẇ 1,∞ = f 0 Ẇ 1,∞ ; f λ   t=0 Ḣ 3 2 = f 0 Ḣ 3 2 .
This means that the spaces Ẇ 1,∞ (R) and Ḣ 3 2 (R) are critical for the study of the Cauchy problem. Let us clarify that we denoted by Ẇ 1,∞ (R) the space of Lipschitz functions, and by H s (R) (resp. Ḣs (R)) the classical Sobolev (resp. homogeneous Sobolev) space of order s. They are equipped with the norm defined by u Ẇ 1,∞ := sup , u 2

H s = u 2 Ḣs + u 2 L 2 .
We are interested in the study of the Cauchy problem for the latter equation. Our main result states that the Cauchy problem for the Muskat equation is well-posed locally in time for any initial data in the critical space Ẇ 1,∞ (R) ∩ H 3 2 (R).

Our analysis is inspired by many previous works, and we begin by reviewing the literature on this problem. The first well-posedness results were established by Yi [START_REF] Yi | Global classical solution of Muskat free boundary problem[END_REF], Ambrose [START_REF] Ambrose | Well-posedness of two-phase Hele-Shaw flow without surface tension[END_REF][START_REF] Ambrose | Well-posedness of two-phase Darcy flow in 3D. Quart[END_REF], Córdoba and Gancedo [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF], Córdoba, Córdoba and Gancedo [START_REF] Córdoba | Interface evolution: the Hele-Shaw and Muskat problems[END_REF], Cheng, Granero-Belinchón, Shkoller [START_REF] Cheng | Well-posedness of the Muskat problem with H 2 initial data[END_REF]. In recent years, these results were extended in several directions. In particular, the well-posedness of the Cauchy problem has been established in many sub-critical spaces: see Constantin, Gancedo, Shvydkoy and Vicol [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF] for initial data in the Sobolev space W 2,p (R) for some p > 1, Deng, Lei and Lin [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF] and Camerón [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF] for initial data in Hölder spaces, and Matioc [START_REF] Matioc | The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results[END_REF], Alazard and Lazar [START_REF] Alazard | Paralinearization of the Muskat equation and application to the Cauchy problem[END_REF], Nguyen and Pausader [START_REF] Huy | A paradifferential approach for well-posedness of the Muskat problem[END_REF] for initial data in H s (R) with s > 3/2.

Special features of the Muskat equations were exploited to improve the analysis of the Cauchy problem in several directions. Constantin, Córdoba, Gancedo, Rodríguez-Piazza and Strain [START_REF] Constantin | On the Muskat problem: global in time results in 2D and 3D[END_REF] (see also [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF][START_REF] Patel | Large time decay estimates for the Muskat equation[END_REF]) proved a global well-posedness results assuming that the Lipschitz semi-norm is smaller than 1. Deng, Lei and Lin in [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF] proved the existence of solutions whose slope can be arbitrarily large. Cameron [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF] exhibited the existence of a modulus of continuity for the derivative (see also [START_REF] Abedin | Regularity for a special case of two-phase hele-shaw flow via parabolic integro-differential equations[END_REF]) and obtained a global existence result assuming only that the product of the maximal and minimal slopes is bounded by 1. Córdoba and Lazar established in [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF] the first global well-posedness result assuming only that the initial data is sufficiently smooth and that the critical Ḣ3/2 (R)-norm is small enough (see also [START_REF] Gancedo | On the Muskat problem with viscosity jump: global in time results[END_REF][START_REF] Gancedo | Global regularity for gravity unstable Muskat bubbles[END_REF][START_REF] Granero-Belinchón | On an asymptotic model for free boundary Darcy flow in porous media[END_REF] for related global well-posedness results in Wiener spaces in the critical case, for small enough initial data). This result was extended to the 3D case by Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical sobolev space[END_REF] for initial data in the critical Sobolev space Ḣ2 (R 2 ). Eventually, in our companion paper [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF], we initiated the study of the Cauchy problem for non-Lipschitz initial data.

For our subject matter, another fundamental component of the background is that the Cauchy problem is not well-posed globally in time: there are blow-up results for some large enough data by Castro, Córdoba, Fefferman, Gancedo and López-Fernández ( [START_REF] Castro | Breakdown of smoothness for the Muskat problem[END_REF][START_REF] Castro | Splash singularities for the one-phase Muskat problem in stable regimes[END_REF][START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF]). More precisely, they proved the existence of solutions such that at initial time t = 0 the interface is a graph, at a later time t 1 > 0 the interface is no longer a graph and then at a subsequent time t 2 > t 1 , the interface is

C 3 but not C 4 .
Our main result in this paper is the following

Theorem 1.1. i) For any initial data f 0 in Ẇ 1,∞ (R) ∩ H 3 2 (R)
, there exists a time T > 0 such that the Cauchy problem for the Muskat equation has a unique solution

f ∈ L ∞ [0, T ]; Ẇ 1,∞ (R) ∩ H 3 2 (R) ∩ L 2 (0, T ; Ḣ2 (R)).
ii) Moreover, there exists a positive constant δ such that, for any initial data

f 0 in Ẇ 1,∞ (R) ∩ H 3/2 (R) satisfying 1 + f 0 4 Ẇ 1,∞ f 0 Ḣ 3 2 ≤ δ, the Cauchy problem for the Muskat equation has a unique global solution f ∈ L ∞ [0, +∞); Ẇ 1,∞ (R) ∩ H 3 2 (R) ∩ L 2 (0, +∞; Ḣ2 (R)).
Some remarks are in order.

• Let us discuss statement ii) about the global well-posedness component of this result. This is a 2D analogous to the recent result by Gancedo and Lazar [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical sobolev space[END_REF] for the 3D problem; it improves on a previous result by Córdoba and Lazar [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF] which proves a similar global existence result for the 2D-problem with a similar smallness assumption, but under the extra assumption that the initial data belongs to H 5/2 (R).

• We now come to statement i) about the local well-posedness result for arbitrary initial data. This is, in our opinion, the main new result in this paper. Since we are working in a critical space, this result is optimal in several directions. Firstly, it follows from the results about singularity formation by Castro, Córdoba, Fefferman, [START_REF] Castro | Splash singularities for the one-phase Muskat problem in stable regimes[END_REF][START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF]) that one cannot solve the Cauchy problem for a time T which depends only on the norm of f 0 in Ẇ 1,∞ (R) ∩ Ḣ3/2 (R). Otherwise, one would obtain a global existence result for any initial data by an immediate scaling argument using [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. Notice that this argument does not contradict our main result: it means instead that the time of existence must depend on the initial data itself, and not only on its norm.

The previous discussion shows that one cannot prove statement i) by using classical Sobolev energy estimates. This in turn poses new challenging questions since on the other hand the Muskat equation is a quasi-linear equation. To overcome this problem, we will estimate the solution for a norm whose definition depends on the initial data.

• We will also prove a result which elaborates on the previous discussion, stating that whenever one controls a bigger norm than the critical one, the time of existence is bounded from below on a neighborhood of the initial data.

To introduce this result, let us fix some notations. Definition 1.2. Given a real number s ≥ 0 and a function φ : [0, ∞) → [1, ∞) satisfying the following assumptions:

(H1) φ is increasing and lim φ(r) = ∞ when r goes to +∞; (H2) there is a positive constant c 0 such that φ(2r) ≤ c 0 φ(r) for any r ≥ 0; (H3) the function r → φ(r)/ log(4 + r) is decreasing on [0, ∞).

Then |D| s,φ denotes the Fourier multiplier with symbol |ξ| s φ(|ξ|), so that

F(|D| s,φ f )(ξ) = |ξ| s φ(|ξ|)F(f )(ξ).
Moreover, we define the space

X s,φ (R) = {f ∈ Ẇ 1,∞ (R) ∩ L 2 (R) : |D| s φ(|D x |)f ∈ L 2 (R)}, equipped with the norm f X s,φ := f Ẇ 1,∞ + f L 2 + R |ξ| 2s (φ(|ξ|)) 2 f (ξ) 2 dξ 1 2
.

Remark 1.3. The Fourier multiplier |D| s,φ with φ(r) = log(2 + r) a was introduced and studied in [START_REF] Brué | Sharp regularity estimates for solutions to the continuity equation drifted by sobolev vector fields[END_REF][START_REF] Brué | On the Sobolev space of functions with derivative of logarithmic order[END_REF][START_REF] Brué | Advection diffusion equations with sobolev velocity field[END_REF] for s ∈ [0, 1) (also see [START_REF] Nguyen | Quantitative estimates for regular lagrangian flows with bv vector fields[END_REF]). 

(4) f ∈ L ∞ [0, T 0 ]; Ẇ 1,∞ (R) ∩ H 3 2 (R) ∩ L 2 (0, T 0 ; Ḣ2 (R)).
Remark 1.5. Statement i) in Theorem 1.1 is a consequence of Theorem 1.4. Indeed, it is easily seen that (cf [3, Lemma 3.8]), for any f 0 in the critical space Ẇ 1,∞ (R) ∩ Ḣ 3 2 (R), one may find a function φ such that f 0 belongs to X The authors would like to thank the referees for their comments, which help to improve the presentation of this article, as well as Gustavo Ponce for pointing out a mistake in a preliminary version.

Proof

2.1. Regularization. In order to rigorously justify the computations, we want to handle smooth functions (hereafter, a 'smooth function' is by definition a function that belongs to C 1 ([0, T ]; H µ (R)) for any µ ∈ [0, +∞) and some T > 0). To do so, we must regularize the initial data and also consider an approximation of the Muskat equation. For our purposes, we further need to consider a regularization of the Muskat equation which will be compatible with the Sobolev and Lipschitz estimates. It turns out that this is a delicate technical problem.

Our strategy will consist in smoothing the equation in two different ways: i) by introducing a cut-off function in the singular integral, removing wave-length shorter than some parameter ε and ii) by adding a parabolic term of order 2 with a small viscosity of size |log(ε)| -1 .

More precisely, we introduce the following Cauchy problem depending on the parameter ε ∈ (0, 1]:

(5)    ∂ t f -| log(ε)| -1 ∂ 2 x f = 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 1 -χ α ε dα, f | t=0 = f 0 ⋆ χ ε , where χ ε (x) = ε -1 χ(x/ε)
where χ is a smooth bump function satisfying 0 ≤ χ ≤ 1 and

χ(y) = χ(-y), χ(y) = 1 for |y| ≤ 1 4 , χ(y) = 0 for |y| ≥ 2, R χ dy = 1.
The equation [START_REF] Ambrose | Well-posedness of two-phase Darcy flow in 3D. Quart[END_REF] does not belong to a general class of parabolic equations. However, we will see that it can be studied by standard tools in functional analysis together with two estimates for the nonlinearity in the Muskat equation which plays a central role in our analysis.

Proposition 2.1. For any ε in (0, 1] and any initial data f 0 in H 3 2 (R), there exists a unique global in time solution f ε satisfying

f ε ∈ C 1 ([0, +∞); H ∞ (R)).
We postpone the proof of this proposition to §2.9.

An estimate of the Lipschitz norm.

Lemma 2.2. For any real number β 0 in (0, 1/2), there exists a positive constant C 0 ≥ 1 such that, for any ε ∈ (0, 1] and any smooth solution

f ∈ C 1 ([0, T ]; H ∞ (R)) of the Muskat equation (5), (6) d dt f (t) Ẇ 1,∞ ≤ C 0 f (t) 2 Ḣ2 + C 0 ε β 0 f (t) Ċ2,β 0 , where u Ċ2,β 0 = ∂ xx u C 0,β 0 = sup x,y∈R x =y |(∂ xx u)(x) -(∂ xx u)(y)| |x -y| β 0 • Proof.
The proof is partially based on arguments from [START_REF] Córdoba | A maximum principle for the Muskat problem for fluids with different densities[END_REF][START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF][START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical sobolev space[END_REF]. Firstly, it follows from the proof of [20, Lemma 5.1] that

∂ x 1 π R ∂ x ∆ α f (x) 1 + (∆ α f (x)) 2 dα = ∂ 2 x f (t, x) 2π 1 1 + (∆ α f (t, x)) 2 - 1 1 + (∆ -α f (t, x)) 2 dα α - 2 π ∂ x f (t, x) -∆ α f (t, x) α 2 1 + ∂ x f (t, x)∆ α f (t, x) 1 + (∆ α f (t, x)) 2 dα.
Moreover,

∂ x 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 χ |α| ε dα |α|≤2ε |∆ α f xx | + |∆ α f x | 2 dα R |∆ α f x | 2 dα + ε β 0 f xx Ċ0,β 0 , (7) 
where we used the notations f x = ∂ x f and f xx = ∂ xx f . Thus, for any t and any x, we have

(8) (∂ x ∂ t f )(t, x) -| log(ε)| -1 ∂ 2 x f x (t, x) ≤ ∂ 2 x f (t, x) 2π 1 1 + (∆ α f (t, x)) 2 - 1 1 + (∆ -α f (t, x)) 2 dα α - 2 π ∂ x f (t, x) -∆ α f (t, x) α 2 1 + ∂ x f (t, x)∆ α f (t, x) 1 + (∆ α f (t, x)) 2 dα + C |∆ α f x (t, x)| 2 dα + Cε β 0 f xx (t) Ċ0,β 0 . Consider the function ϕ(t) = ∂ x f (t) L ∞ and a function t → x t such that ∂ x f (t) L ∞ = (∂ x f )(t, x t ). Then (∂ 2 x f )(t, x t ) = 0 and -(∂ xx f x )(t, x t ) ≥ 0. So, it follows from (8) that φ(t) ≤ - 2 π ∂ x f (t, x t ) -∆ α f (t, x t ) α 2 dα - 2 π (∂ x f (t, x t ) -∆ α f (t, x t )) 2 α 2 ∆ α f (t, x t ) 1 + (∆ α f (t, x t )) 2 dα + C |∆ α f x (t, x t )| 2 dα + Cε β 0 f xx (t) Ċ0,β 0 .
As already observed in [START_REF] Córdoba | A maximum principle for the Muskat problem for fluids with different densities[END_REF] (see also [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF][START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical sobolev space[END_REF]), the first term in the right-hand side has a sign since

∂ x f (t, x t ) ≥ ∆ α f (t, x t ) for any α. It follows that φ(t) ≤ 1 π (∂ x f (t, x t ) -∆ α f (t, x t )) 2 α 2 dα + C |∆ α f x (t, x t )| 2 dα + Cε β 0 f xx (t) Ċ0,β 0 .
We now apply Hardy's inequality to infer that

(∂ x f (t, x t ) -∆ α f (t, x t )) 2 α 2 dα |∆ α f x (t, x t )| 2 dα.
Consequently, we end up with

φ(t) ∆ α f x (t) 2 L ∞ dα + ε β 0 f xx (t) Ċ0,β 0 .
Introducing the difference operator δ α g(x) = g(x)-g(x-α), the previous inequality is better formulated as follows:

φ(t) δ α (∂ x f )(t) 2 L ∞ dα |α| 1+ 1 2 2 + ε β 0 f xx (t) Ċ0,β 0 .
Now the right-hand side is equivalent to the following homogeneous Besov norm:

∂ x f (t) 2 Ḃ 1 2 ∞,2
(see [START_REF] Triebel | Theory of function spaces[END_REF][START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces: a unified approach[END_REF] or Section 2 in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]). Then it follows from Sobolev embed-

dings that φ(t) f (t) 2 Ḣ2 + ε β 0 f xx (t) Ċ0,β 0 which is the wanted result.
2.3. Sobolev estimates. In this paragraph we recall a generalized Sobolev energy estimate proved in our companion paper [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. By generalized Sobolev energy estimate, we mean that, instead of estimating the

L ∞ t (L 2 x )-norm of (-∆) s f , we shall estimate the L ∞ t (L 2 
x )-norm of |D| s,φ f for some function φ satisfying the assumptions in Definition 1.2.

There two technical results that we will borrow from [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. The first result, which is Lemma 3.4 in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF], gives an energy estimate.

Lemma 2.3. There exists a positive constant C such that, for any T > 0 and any smooth solution f ∈ C 1 ([0, T ]; H ∞ (R)) to (1), there holds

(9) d dt |D| 3 2 ,φ f 2 L 2 + R |D| 2,φ f 2 1 + (∂ x f ) 2 dx + | log(ε)| -1 R |D| 5 2 ,φ f 2 dx ≤ CQ(f ) |D| 2,φ f L 2 ,
where [START_REF] Ambrose | Well-posedness of two-phase Hele-Shaw flow without surface tension[END_REF]. Some explanations are in order since the reader may notice several modifications compared to our paper [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. Firstly, in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] we considered a function φ whose definition depends on an extra function κ. Here we ignore this point since it is irrelevant for the present analysis. Indeed, the functions φ and κ are shown in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] to be equivalent (such that cκ(λ) ≤ φ(λ) ≤ Cκ(λ)), and the distinction between them served only to organize the proof. Secondly, in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] we also assume that φ(r) is bounded from below by (log(4 + r)) a for some a ≥ 0. Here we will use that this property holds with a = 0. Once the previous clarifications have been done, it remains to explain that in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] we consider the equation (1) while here we work with [START_REF] Ambrose | Well-posedness of two-phase Darcy flow in 3D. Quart[END_REF]. The elliptic term (-∂ 2

Q(f ) = f Ḣ2 + f 2 Ḣ 7 4 |D| 3 2 ,φ f L 2 + |D| 7 4 ,φ f L 2 f H 7 4 + f 3/2 H 19 12 + f 1/2 Ḣ 7 4 |D| 7 4 ,φ 2 f 1/2 L 2 f Ḣ 7 4 . Remark 2.
x ) is trivial to handle since in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF] we only applied an L 2 -energy estimate and since the latter operator is positive. Eventually, the cut-off function (1 -χ(α/ε)) is also harmless in the various computations used to prove Lemma 3.4 in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF].

Secondly, we recall two interpolation inequalities from [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]Lemma 3.5]. Hereafter, we use the notations (10)

A φ (t) = |D| 3 2 ,φ f (t) 2 L 2 , B φ (t) = |D| 2,φ f (t) 2 L 2 , P φ (t) = |D| 5 2 ,φ f (t) 2 L 2 , and 
µ φ (t) = φ B(t) A(t) -1
.

Lemma 2.5. Consider a real number 7/4 ≤ s ≤ 2. Then, there exists a positive constant C such that, for any T > 0, any smooth solution

f ∈ C 1 ([0, T ]; H ∞ (R)) to (5) and any t ∈ [0, T ], f (t) Ḣs ≤ Cµ φ (t)A φ (t) 2-s B φ (t) s-3 2 , ( 11 
) |D| 7 4 ,φ 2 f (t) L 2 ≤ Cµ φ (t)A φ (t) 1 4 B φ (t) 1 4 . (12) 
From these two lemmas, we get at once the following Proposition 2.6. There exist two positive constants C 1 and C 2 such that, for any T > 0 and any smooth solution

f ∈ C 1 ([0, T ]; H ∞ (R)) of the Muskat equation (5), (13) d dt A φ (t) + C 1 B φ (t) 1 + f x (t) 2 L ∞ + | log(ε)| -1 P φ (t) ≤ C 2 A φ (t) + A φ (t) µ φ (t)B φ (t).
We will also need an estimate for the L 2 -norm.

Lemma 2.7. There holds

1 2 d dt f (t) 2 L 2 ≤ Cε 1 2 f Ḣ 3 2 f L 2 .
In particular,

(14) f (t) L 2 ≤ f 0 L 2 + Cε 1 2 t 0 f (τ ) Ḣ 3 2 dτ. Proof. Set (15) R ε (f ) = - 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 χ α ε dα.
We multiply the equation by f to obtain [START_REF] Constantin | On the global existence for the Muskat problem[END_REF]Section 2], the first term in the right-hand side has a sign. Indeed:

1 2 d dt f (t) 2 L 2 ≤ 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 dα, f + R ε (f ), f . Now, by
R R ∂ x ∆ α f 1 + (∆ α f ) 2 dα f (x) dx = - R 2 log 1 + (f (t, x) -f (t, x -α)) 2 α 2 dx dα.
It remains to estimate R ε (f ). To do so, we use the estimate [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF] to get ( 16)

R ε (f ) L 2 |α|≤2ε ∆ α f x L 2 dα ε 1 2 R ∆ α f x 2 L 2 dα 1 2 ε 1 2 f Ḣ 3 2 ,
which completes the proof.

2.4. Estimate of the Hölder norm. To exploit the Sobolev energy estimate [START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF], the main difficulty is to estimate from above the factor 1 + f x (t) 2 L ∞ . This is where we will apply Lemma 2.2. This in turn requires to estimate the Hölder norm • Ċ2,β 0 of f . This is the purpose of the following result.

We will prove an estimate valid on arbitrary large time scale, which will be used later to prove a global existence result.

Proposition 2.8. For any 0 < β < 1/2, there exist two positive constant ε 0 and c 0 such that, for any ε ∈ (0, ε 0 ], any smooth solution f ∈ C 1 ([0, T ]; H ∞ (R)) of the Muskat equation (5), and any time t ≤ min{ε -c 0 , T }, there holds

ε β t 0 f (τ ) C 2,β dτ ≤ ε β 2 f 0 Ḣ 3 2 + ε β 2 1 + sup s∈[0,t] f (s) H 3 2 2 log 2 + t 0 f (s) 2 Ḣ2 ds 1 2 t 0 f (s) 2 Ḣ2 ds 1 2 
.

Proof. The classical Sobolev embeddings implies that

f (t) Ċ2,β f (t) Ḣ 5 2 +β .
To estimate the latter Sobolev norm, the key point will be to apply the following interpolation inequality. Lemma 2.9. Consider three real numbers γ > 0, β 1 > 0 and 0 < β 2 < 2.

Then, there exists a constant C such that, for any function g = g(t, x), [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF] 

g(t) Ḣγ 1 (νt) β 1 2 g(0) Ḣγ-β 1 + t 0 1 (ν(t -s)) β 2 2 ∂ t g(s) -ν∂ xx g(s) Ḣγ-β 2 ds.
Proof. Set G := ∂ t g -ν∂ xx g. Then, one has, ĝ(t, ξ) = e -νt|ξ| 2 ĝ(0, ξ)

+ t 0 e -ν(t-s)|ξ| 2 Ĝ(s, ξ) ds.
The desired results then follows from Minkowski's inequality. Now, apply [START_REF] Constantin | Global regularity for 2D Muskat equations with finite slope[END_REF] with

γ = 5 2 + β, β 1 = 1 + β, β 2 = 3 2 + β, ν = | log(ε)| -1 , to get f (t) Ċ2,β f (t) Ḣ 5 2 +β | log(ε)| 1+β 2 t -1+β 2 ||f 0 || Ḣ 3 2 + t 0 | log(ε)| 3 2 +β 2 -s) - 3 2 +β 2 ∂ t f -| log(ε)| -1 ∂ 2 x f Ḣ1 ds. ( 18 
)
It remains to estimate the Ḣ1 -norm of ∂ t f -| log(ε)| -1 ∂ xx f . In view of the equation [START_REF] Ambrose | Well-posedness of two-phase Darcy flow in 3D. Quart[END_REF], this is equivalent to bound the Ḣ1 -norm of

1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 1 -χ α ε
dα.

We will split the latter term into two pieces and estimate them separately.

Firstly, directly from ( 7) and Minkowski's inequality, we obtain that

1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 χ α ε dα Ḣ1 |α|≤2ε ∆ α f xx L 2 + ∆ α f x 2 L 4 dα ε 1 2 +β R ∆ α f xx 2 L 2 |α| -2β dα 1 2 + R ∆ α f x 2 L 4 dα.
Now we use the following inequality:

(19) R 2 ∆ α f 2 |α| -2β dα dx ∼ f 2 Ḣ 1 2 +β . Indeed, R 2 ∆ α f 2 |α| -2β dα dx = R 2 f (x) -f (x -α) |α| 1/2+β 2 dα |α| dx ∼ f 2 Ḣ 1 2 +β .
Similarly, using Sobolev embedding in Besov's spaces, we get

R ∆ α f x 2 L 4 dα f 2 Ḣ 7 4 . It follows that (20) 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 χ α ε dα Ḣ1 ε 1 2 +β f Ḣ 5 2 +β + f Ḣ2 f Ḣ 3 2 ,
where we used an interpolation inequality in Sobolev spaces. On the other hand, it follows from the estimate (41) below that,

R ∂ x ∆ α f 1 + (∆ α f ) 2 dα Ḣ1 T (f )f Ḣ1 1 + f H 3 2 2 log 2 + f 2 Ḣ2 1 2 f Ḣ2 . (21) 
By gathering the two previous estimates, we conclude that

∂ t f -| log(ε)| -1 ∂ 2 x f Ḣ1 ε 1 2 +β f H 5 2 +β + 1 + f H 3 2 2 log 2 + f 2 Ḣ2 1 2 f Ḣ2 . Set b = 3 2 + β 2 •
By reporting this bound in [START_REF] Córdoba | Interface evolution: the Hele-Shaw and Muskat problems[END_REF], we find that

f (t) Ḣ 5 2 +β | log(ε)| 1+β 2 t -1+β 2 f 0 Ḣ 3 2 + ε 1 2 +β | log(ε)| b t 0 (t -s) -b f (s) Ḣ 5 2 +β ds + | log(ε)| b t 0 (t -s) -b 1 + f (s) H 3 2 2 log 2 + f (s) 2 Ḣ2 1 2 f (s) Ḣ2 ds. So, t 0 f (τ ) Ḣ 5 2 +β dτ |log(ε)| 1+β 2 t 1-1+β 2 f 0 Ḣ 3 2 + ε 1 2 +β | log(ε)| b t 1-b t 0 f (s) Ḣ 5 2 +β ds + | log(ε)| b t 1-b t 0 1 + f (s) H 3 2 2 log 2 + f (s) 2 Ḣ2 1 2 f (s) Ḣ2 ds.
As a result, there exists c 0 > 0 and

ε 0 ≤ 1 such that, if t ≤ ε -c 0 and ε ≤ ε 0 , t 0 f (τ ) Ḣ 5 2 +β dτ ≤ ε -β 2 ||f 0 || Ḣ 3 2 + | log(ε)| b t 1-b K(t) t 0 log 2 + f (s) 2 Ḣ2 1 2 f (s) Ḣ2 ds,
where

K(t) = sup s∈[0,t] 1 + f (s) H 3 2 2 . Now observe that t 0 log 2 + f (s) 2 Ḣ2 1 2 f (s) Ḣ2 ds ≤ (t + 1) 1 2 log 2 + t 0 f (s) 2 Ḣ2 ds 1 2 t 0 f (s) 2 Ḣ2 ds 1 2
.

Therefore, up to modifying the values of c 0 > 0 and ε 0 , we see that, for t ≤ ε -c 0 and ε ≤ ε 0 , we have

ε β t 0 f (τ ) Ċ2,β dτ ε β 2 f 0 Ḣ 3 2 + ε β 2 K(t) log 2 + t 0 f (s) 2 Ḣ2 ds 1 2 t 0 f (s) 2 Ḣ2 ds 1 2
.

This completes the proof.

2.5. Global in time estimates, under a smallness assumption.

Proposition 2.10. Let T > 0 and consider a smooth solution

f ∈ C 1 ([0, T ], H ∞ (R)) of the Muskat equation (5). Set K = 1 + 16 C 2 C 1 2
and assume that

(22) 2 K + C 0 C 1 1 2 (2 + ∂ x f 0 L ∞ ) 2 f 0 Ḣ 3 2 ≤ 1,
where the constants C 0 , C 1 , C 2 are as defined in the statements of Lemma 2.2 and Proposition 2.6. Then there exists ε 0 depending only on C 0 , C 1 , C 2 and ||f 0 || L 2 such that, if ε ≤ ε 0 , then [START_REF] Deng | On the two-dimensional Muskat problem with monotone large initial data[END_REF] sup

0≤τ ≤T f (τ ) H 3 2 ≤ 1 √ K 2 + ∂ x f 0 L ∞ 2 and T 0 f (τ ) 2 Ḣ2 dτ ≤ 1 C 0 •
Proof. We apply the previous a priori estimate [START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF] in the simplest case where φ = 1. With this choice, the quantities A φ and B φ defined by [START_REF] Cameron | Global well-posedness for the two-dimensional Muskat problem with slope less than 1[END_REF] simplify to ( 24)

A(t) = |D| 3 2 f (t) 2 L 2 , B(t) = |D| 2 f (t) 2 L 2 = f (t) 2 Ḣ2 .
Introduce the set

I = t ∈ [0, T ] ; t 0 B(τ ) dτ ≤ 2 3C 0 and sup 0≤τ ≤t A(τ ) ≤ 1 K 2 + ∂ x f 0 L ∞ 4 .
We want to prove that I = [0, T ]. Since 0 belongs to I by assumption on the initial data, and since I is closed, it suffices to prove that I is open. To do so, we consider a time t * ∈ [0, T ) which belongs to I. Our goal is to prove that

t * 0 B(τ ) dτ ≤ 1 2C 0 and sup 0≤τ ≤t * A(τ ) ≤ 1 4K 2 + ∂ x f 0 L ∞ 4 .
This will imply at once that t * belongs to the interior of I.

Since µ(t) = 1 for φ ≡ 1, the estimate [START_REF] Castro | Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves[END_REF] implies that there are two positives constants

C 1 , C 2 such that (25) d dt A(t) + C 1 B(t) 1 + ∂ x f (t) 2 L ∞ ≤ C 2 A(t) + A(t) B(t).
By combining Proposition 2.8 with Lemma 2.2, we get, for any t,

∂ x f (t) L ∞ -∂ x f 0 L ∞ ≤ C 0 t 0 B(τ ) dτ + C 0 ε β 2 f 0 Ḣ 3 2 + C 0 ε β 2 sup s∈[0,t] 1 + f (s) H 3 2 2 log 2 + t 0 B(τ ) dτ 1 2 t 0 B(τ ) dτ 1 2
.

By (14), sup s∈[0,t] f (s) L 2 ≤ f 0 L 2 + Cε 1 2 t sup s∈[0,t] f (s) Ḣ 3
2 . This implies [START_REF] Gancedo | Global regularity for gravity unstable Muskat bubbles[END_REF] sup

s∈[0,t] f (s) H 3 2 ≤ f 0 L 2 + (1 + Cε 1 2 t) sup s∈[0,t] f (s) Ḣ 3 2 .
If t ≤ t * , then the bound on the integral of B, sup 0≤τ ≤t * ||f || Ḣ 3 2 ≤ 1 and (26) imply that

∂ x f (t) L ∞ -∂ x f 0 L ∞ ≤ 1 2 + C 0 ε β 2 + C 0 ε β 2 1 + f 0 L 2 + (1 + Cε 1 2 t * ) 2 log (3) 1 2 .
For ε small enough, we conclude that

∂ x f (t) L ∞ ≤ 2 3 + ∂ x f 0 L ∞ .
On the other hand, if t * ∈ I, then for any t ≤ t * we have

A(t) + A(t) ≤ 2 A(t) ≤ 2 √ K 2 + ∂ x f 0 L ∞ 2 •
Consequently, for any t ≤ t ⋆ , (25) gives

d dt A(t) + C 1 B(t) 2 + ∂ x f 0 L ∞ 2 ≤ 2C 2 √ K 2 + ∂ x f 0 L ∞ 2 B(t).
By definition of K, we have

K ≥ 16C 2 2 C 2 1 , so, for any t ≤ t ⋆ , ( 27 
) d dt A(t) + C 1 2 
B(t) 2 + ∂ x f 0 L ∞ 2 ≤ 0.
Integrate this on the time interval [0, t * ], to infer that

sup t∈[0,t * ] A(t) + C 1 2 2 + ∂ x f 0 L ∞ 2 t * 0 B(t) dt ≤ A(0).
Using the smallness assumption [START_REF] Philibert | à suivre et des formules à employer dans les questions de distribution d'eau, etc[END_REF], the previous inequality [START_REF] Gancedo | Global well-posedness for the 3d Muskat problem in the critical sobolev space[END_REF] implies at once that sup

t∈[0,t * ] A(t) ≤ A(0) ≤ 1 4K 2 + ∂ x f 0 L ∞ 4 , t * 0 B(t) dt ≤ 2 2 + ∂ x f 0 L ∞ 2 C 1 A(0) ≤ 1 2C 0 .
These are the wanted bootstrap inequalities. As explained above, by connexity, this proves that I = [0, T ], which implies the desired results in (23).

2.6. A priori estimates locally in time, for arbitrary initial data.

Proposition 2.11. Consider φ satisfying assumptions (H1)-(H3) in Definiton 1.2. Let T > 0 and consider a smooth solution

f ∈ C 1 ([0, T ], H ∞ (R)) of the Muskat equation (5) 
. For any M 0 > 0 there exists ε 0 > 0 and T 0 > 0 such that the following properties holds. If ε ∈ (0, ε 0 ] and

|D| 3 2 ,φ f (0) 2 L 2 ≤ M 0 , then, with T * = min{T, T 0 }, there holds sup t∈[0,T * ] A φ (t) ≤ 5M 0 , T * 0 µ φ (t) 2 B φ (t) dt ≤ 1 C 0 ,
where A φ , B φ , µ φ are defined in (10) while C 0 is given by Lemma 2.2.

Proof. For this proof we skip the index φ and write simply A, B, µ.

Since (see [START_REF] Castro | Breakdown of smoothness for the Muskat problem[END_REF]),

f (t) Ḣ2 ≤ Cµ(t)B(t) 1 2 
. We then apply Proposition 2.8 for some fixed parameter β > 0. Then, it follows from ( 13) that

(28) d dt A(t) + C 1 B(t) ν(t) 2 ≤ C 2 A(t) + A(t) µ(t)B(t),
where

ν(t) = 1 + ∂ x f 0 L ∞ + C 0 t 0 µ(τ ) 2 B(τ ) dτ + C 0 ε β 2 f 0 Ḣ 3 2 + C 0 ε β 2 sup τ ∈[0,t] 1 + f (τ ) H 3 2 2 log 2 + t 0 µ(τ ) 2 B(τ ) dτ 1 2 t 0 µ(τ ) 2 B(τ ) dτ 1 2 
.

Given a positive number T 0 to be determined, introduce the set

I(T 0 ) = t ∈ [0, min{T, T 0 }] ; t 0 µ(τ ) 2 B(τ ) dτ ≤ 2 3C 0 and sup 0≤τ ≤t A(τ ) ≤ 5M 0 .
We want to prove that I(T 0 ) = [0, min{T, T 0 }]. Since 0 belongs to I(T 0 ) by assumption on the initial data, and since I(T 0 ) is closed, it suffices to prove that I(T 0 ) is open. To do so, we consider a time t * ∈ [0, min{T, T 0 }) which belongs to I(T 0 ). Our goal is to prove that

t * 0 µ(τ ) 2 B(τ ) dτ ≤ 1 2C 0 and sup 0≤τ ≤t * A(τ ) ≤ 4M 0 .
This will imply at once that t * belongs to the interior of I(T 0 ).

As in the previous proof, we use [START_REF] Gancedo | Global regularity for gravity unstable Muskat bubbles[END_REF] to write [START_REF] Matioc | The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results[END_REF] sup

s∈[0,t] f (s) H 3 2 ≤ f 0 L 2 + (1 + Cε 1 2 t) sup s∈[0,t] f (s) Ḣ 3 2 .
It t ≤ t * with t * ∈ I(T 0 ), then

ν(t) ≤ 1 + ∂ x f 0 L ∞ + 2 3 + C 0 ε β 2 M 0 + C 0 ε β 2 (1 + f 0 L 2 + 6M 0 ) 2 log 2 + 2 3C 0 1 2 2 3C 0 1 2
.

Hence, one can define ε 0 small enough, depending only on M 0 , f 0 L 2 and the fixed parameter β, such that if ε ≤ ε 0 and if t * ∈ I(T 0 ), then for any t ∈ [0, t * ], we have

ν(t) ≤ 2 + ∂ x f 0 L ∞ . Consequently d dt A(t) + C 1 B(t) (2 + ∂ x f 0 L ∞ ) 2 ≤ C 2 A(t) + A(t) µ(t)B(t).

Introduce the function

E(r, m) := sup ρ≥0 C 2 √ r + r φ ρ r -1 ρ - C 1 2 ρ m •
Then, for any t ∈ [0, t * ], we have

d dt A(t) + C 1 2 
B(t) 2 + ∂ x f 0 L ∞ 2 ≤ E A(t), ∂ x f 0 L ∞ .
Assume that the number T 0 satisfies

T 0 ≤ A(0) 4E 4A(0), ∂ x f 0 L ∞ •
Then, for any t ≤ t * , we get that sup

τ ≤t A(τ ) + C 1 2 1 2 + ∂ x f 0 L ∞ 2 t 0 B(τ ) dτ ≤ 4A(0).
In particular, for t = t * , this gives [START_REF] Muskat | Two fluid systems in porous media. the encroachment of water into an oil sand[END_REF] sup

t≤t * A(t) ≤ 4A(0), t * 0 B(t) dt ≤ 8A(0) C 1 2 + ∂ x f 0 L ∞ 2 .
To get the result, we must show that (31)

C 0 T 0 µ(t) 2 B(t) dt ≤ 1 2 .
Recall that

µ(t) = φ B(t) A(t) -1
.

Since φ is increasing and since A(t) ≤ 4A(0), we have

µ(t) ≤ φ B(t) 4A(0) -1
. Now, we claim that the function F : [0, +∞) → [0, +∞), defined by

F (r) = φ r 4A(0) -1
r, is increasing. To see this decompose F (r) under the form F (r) = F 1 (r) (F 2 (r)) 2 with

F 1 (r) = r (log(λ 0 + r)) 2 F 2 (r) = log(λ 0 + r) φ(r/4A(0)) • Then t * 0 µ(t)B(t) dt ≤ t * 0 φ B(t) 4A(0) -2 B(t) dt ≤ t * 0 φ r 4A(0) -2 r dt + t * 0 φ r 4A(0) -2 B(t) dt (30) ≤ t * φ r 4A(0) -2 r + φ r 4A(0) -2 8A(0) (2 + ∂ x f 0 L ∞ ) 2 ,
for any r ≥ 1. Now we successively determine two numbers r 0 > 1 and T 0 > 0 such that [START_REF] Nguyen | Quantitative estimates for regular lagrangian flows with bv vector fields[END_REF] C 0 φ r 0 4A(0)

-2 8A(0) (2 + ∂ x f 0 L ∞ ) 2 = 1 4 , and (33) 
T 0 φ r 0 4A(0) -2 r 0 = 1 4 •
With this choice we get [START_REF] Huy | A paradifferential approach for well-posedness of the Muskat problem[END_REF] and we obtain that I(T 0 ) = [0, min{T, T 0 }], which is equivalent to the statement of the proposition.

2.7. Transfer of compactness. Previously, we have proven a priori estimates for the spatial derivatives. In this paragraph, we gather results from which we will infer estimates for the time derivative as well as for the nonlinearity in the Muskat equation. These estimates serve to pass to the limit the equation (which is needed to regularize the solutions).

The Muskat equation ( 1) can be written under the form

∂ t f + |D| f = T (f )f, ( 34 
)
where T (f ) is the operator defined by ( 35)

T (f )g = - 1 π R (∂ x ∆ α g) (∆ α f ) 2 1 + (∆ α f ) 2 dα.
We recall the following result from Proposition 2.3 in [START_REF] Alazard | Paralinearization of the Muskat equation and application to the Cauchy problem[END_REF] and from Remark 2.9 and Propositions 2.10 and 2.13 in [START_REF] Alazard | On the Cauchy problem for the Muskat equation with non-Lipschitz initial data[END_REF]. Proposition 2.12. i) For all δ ∈ [0, 1/2), there exists a constant C > 0 such that, for all functions

f 1 , f 2 in Ḣ1-δ (R) ∩ Ḣ 3 2 +δ (R), (T (f 1 ) -T (f 2 ))f 2 L 2 ≤ C f 1 -f 2 Ḣ1-δ f 2 Ḣ 3
2 +δ . ii) One can decompose the nonlinearity under the form

(36) T (f )g = (∂ x f ) 2 1 + (∂ x f ) 2 |D| g + V (f )∂ x g + R(f, g),
where the coefficient V (f ) and the remainder term R(f, g) satisfy the following estimates:

V (f ) L ∞ ≤ C R |ξ| f (ξ) dξ, (37) R(f, g) L 2 ≤ C g Ḣ 3 4 f Ḣ 7 4 , (38) 
for some absolute constant C. Moreover,

(39) T (f )f Ḣ1 ≤ C f Ḣ 3 2 + f 2 Ḣ 3 2 + 1 + V (f ) L ∞ f Ḣ2 ,
and,

V (f )∂ x g, |D| g ≤ C f Ḣ2 + f 2 Ḣ 7 4 g Ḣ 1 2 g Ḣ1 . (40) 
For later purpose, we need a refinement of (39).

Proposition 2.13. There exists a positive constant C > 0 such that, for all function

f ∈ H 2 (R), (41) 
T (f )f Ḣ1 ≤ C 1 + f H 3 2 2 log 2 + f 2 Ḣ2 1 2 f Ḣ2 .
Proof. In view of (39) and [START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces: a unified approach[END_REF], it is sufficient to estimate the L 1 -norm of |ξ| f . Write,

R |ξ|| f | dξ = |ξ|>λ |ξ| -1 |ξ| 2 | f | dξ + |ξ|≤λ (|ξ| + 1) -1 2 |ξ|(1 + |ξ|) 1 2 | f | dξ |ξ|>λ 1 |ξ| 2 dξ 1 2 f Ḣ2 + |ξ|≤λ 1 (|ξ| + 1) dξ 1 2 f Ḣ 3 2 + f L 2 λ -1 2 f Ḣ2 + log(1 + λ) 1 2 f Ḣ 3 2 + f L 2 . Choosing λ = f 2 Ḣ2 , we obtain R |ξ|| f | dξ 1 + log(1 + f 2 Ḣ2 ) 1 2 f Ḣ 3 2 + f L 2 .
By reporting this in (37) and then using (39), we get the desired result (41).

By using the equation [START_REF] Prüss | Moving interfaces and quasilinear parabolic evolution equations[END_REF], we deduce at once the following bound.

Corollary 2.14. There exists a non-decreasing function F : R + → R + such that, for any T > 0, any ε and any smooth solution

f in C 1 ([0, T ]; H ∞ (R)) of the Muskat equation (5), if one sets M ε (T ) = sup t∈[0,T ] f (t) 2 Ḣ 3 2 + f (t) 2 L 2 + T 0 f (t) 2 Ḣ2 dt+|log(ε)| -1 T 0 f (t) 2 Ḣ 5 2 dt then, (42) 
T 0 T (f )f 2 Ḣ1 log 2 + T (f )f Ḣ1 dt ≤ F(M ε (T )), and (43) 
T 0 ∂ t f 2 Ḣ1 log 2 + ∂ t f 2 Ḣ1 ) dt ≤ F(M ε (T )).
Proof. Let C be the constant given by Proposition 2.13 and set C = max{C, 1}. We claim that

T (f )f 2 Ḣ1 log 2 + T (f )f Ḣ1 ≤ C2 f Ḣ 3 2 + f 2 Ḣ 3 2 + f Ḣ1 + 1 2 f 2 Ḣ2 .
If T (f )f Ḣ1 ≤ f Ḣ2 , then this is obvious. Otherwise, this follows at once from (41). This implies (42).

The proof of (43) follows from similar argument, using the equation to estimate ∂ t f in terms of T (f )f .

It follows from the previous results that one can extract from the solutions of the approximate Cauchy problems (5) a sub-sequence converging to a solution of the Muskat equation ( 1). Since it is rather classical, we do not include the details and refer for instance to [START_REF] Córdoba | Contour dynamics of incompressible 3-D fluids in a porous medium with different densities[END_REF][START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF].

2.8. Uniqueness. To prove the uniqueness of the solution to the Cauchy problem for rough initial data, we shall prove an estimate for the difference of two solutions.

Proposition 2.15. Let T > 0 and consider two solutions f 1 , f 2 of the Muskat equation, with initial data f 1,0 , f 2,0 respectively, satisfying

f k ∈ C 0 ([0, T ]; Ẇ 1,∞ (R) ∩ Ḣ 3 2 (R)) ∩ C 1 ([0, T ]; Ḣ 1 2 (R)) ∩ L 2 (0, T ; Ḣ2 (R)), k = 1, 2.
Assume that

(44) sup t∈[0,T ] f k (t) 2 Ḣ 3 2 + f k (t) 2 Ẇ 1,∞ + T 0 f k 2 Ḣ2 dt ≤ M < ∞, k = 1, 2.
Then the difference g = f 1 -f 2 is estimated by

(45) sup t∈[0,T ] g(t) Ḣ 1 2 ≤ g(0) Ḣ 1 2 exp C(M + 1) 5 T 0 f 1 2 Ḣ2 + f 2 2 Ḣ2 dt .
Proof. Since ∂ t f k + |D| f k = T (f k )f k , it follows from the decomposition (36) of T (f k )f k that the difference g = f 1 -f 2 satisfies

∂ t g + |D| g 1 + (∂ x f 1 ) 2 = V (f 1 )∂ x g + R(f 1 , g) + (T (f 2 + g) -T (f 2 )) f 2 .
Since g belongs to C 1 ([0, T ]; Ḣ 1 2 (R)), we may take the L 

∂ t f -| log(ε)| -1 ∂ 2 x f = N ε (f ), with N ε (f ) = 1 π R ∂ x ∆ α f 1 + (∆ α f ) 2 1 -χ |α| ε dα.
The next proposition shows that Equation (46) can be seen as a sub-critical parabolic equation.

Lemma 2.16. There holds

(47) N ε (f ) Ḣ1 ε 1 2 f Ḣ 5 2 + 1 + f H 3 2 2 log 2 + f 2 Ḣ2 1 2 f Ḣ2 , and 
(48) N ε (f ) L 2 ≤ C 1 + f H 3 2

2

.

Proof. The estimate (47) follows at once from [START_REF] Córdoba | A maximum principle for the Muskat problem for fluids with different densities[END_REF] and [START_REF] Córdoba | Global well-posedness for the 2d stable Muskat problem in H 3 2[END_REF]. To prove (48), we decompose N ε (f ) = -|D| f + T (f )f + R ε (f ) where T (f ) is the operator already introduced in §2.7 and the remainder R ε (f ) is as defined by [START_REF] Constantin | On the Muskat problem: global in time results in 2D and 3D[END_REF]. Recall from Proposition 2.3 in [START_REF] Alazard | Paralinearization of the Muskat equation and application to the Cauchy problem[END_REF] that

T (f )f L 2 f Ḣ1 f Ḣ 3 2 .
So the wanted conclusion follows from the estimate (16) for R ε (f ).

Multiply the latter equation by (I -∆) 

+ | log(ε)| -1 |D| f 2 H 3 2 ≤ N ε (f ) H 1 f H 2 .
Recall that

(50) N ε (f ) Ḣ1 ε 1 2 f Ḣ 5 2 + 1 + f H 3 2 2 log 2 + f 2 Ḣ2 1 2 f Ḣ2 ,
Since ε 1 2 ≪ |log(ε)| -1 for ε ≪ 1, we can absorb the contribution of ε 1 2 f Ḣ 5 2 in the right-hand side of (50) by the left-hand side of (49). On the other hand, since 5/2 > 2, one can absorb the contribution of the other terms by using the Hölder's inequality. This proves an a priori estimate for (46). We also get easily a contraction estimate similar to (but much simpler) the one given by Proposition 2.15. Then by using classical tools for semi-linear equations, we conclude that the Cauchy problem for (46) can be solved by standard iterative scheme.
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