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Accurate energies of transition metal atoms, ions, and monoxides using selected
configuration interaction and density-based basis-set corrections
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The semistochastic heat-bath configuration interaction (SHCI) method is a selected configuration
interaction plus perturbation theory method that has provided near-full configuration interaction
(FCI) levels of accuracy for many systems with both single- and multi-reference character. However,
obtaining accurate energies in the complete basis set limit is hindered by the slow convergence of the
FCI energy with respect to basis size. Here we show that the recently developed basis-set correction
method based on range-separated density-functional theory can be used to significantly speed up
basis-set convergence in SHCI calculations. In particular, we study two such schemes that differ
in the functional used, and apply them to transition metal atoms and monoxides to obtain total,
ionization, and dissociation energies well converged to the complete-basis-set limit within chemical

accuracy.

I. INTRODUCTION

Selected configuration interaction plus perturbation
theory (SCI4+-PT) methods [1-8] are capable of provid-
ing excellent approximations to full configuration inter-
action (FCI) energies, i.e., the exact energies within a
given one-electron basis, for systems and basis-sets that
are considerably larger than those for which FCI is fea-
sible. In this paper, we employ a particularly efficient
SCI method developed by some of the current authors,
namely the semistochastic heat-bath configuration inter-
action (SHCT) method [9-12], which has been used for a
number of challenging problems, including the potential
energy curve of the Crp molecule [13], the dissociation
energies of the 55 molecules comprising the G2 set [14]
, and the ionization and dissociation energies of seven
transition metal elements (their atoms, ions, and monox-
ides) [15].

In particular, the SHCI results on transition metal sys-
tems have served as accurate benchmark energies for 19
other quantum chemistry methods for basis sets from
DZ to 5Z, as well as the extrapolated complete-basis-set
(CBS) limit [15]. However, unlike for the extrapolation
to the FCI limit, whose extrapolation error is on the or-
der of a couple of mHa for the largest monoxide molecules
and much less for most other systems in the study, the
largest extrapolation error to the CBS values can be on
the order of 10 mHa [16]. In addition, the computa-
tional cost goes up rapidly with basis size, so efficient
techniques for accelerating the convergence to the CBS
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limit become important in situations where the available
computational resources limit the basis sizes one can use.

The slow convergence of SCI and other wave-function
methods with respect to basis-set size is due to the fail-
ure of wave functions expanded in finite one-electron
basis sets to reproduce the short-range correlation hole
around the electron-electron cusp present in exact wave
functions. F12 methods [17-21] accelerate the basis-set
convergence of wave function methods by restoring the
electron-electron cusp with a correlation factor, at the
cost of introducing an auxiliary basis. In particular,
F12 methods have been used to accelerate the basis-set
convergence of coupled-cluster calculations on transition
metal systems [22-25]. In this paper, we instead use two
variants of a method based on range-separated density-
functional theory (RS-DFT), recently developed by some
of the current authors [26-30]. The basic idea is that
the electron-electron Coulomb interaction projected in
a one-electron basis resembles the long-range potential,
wl (r12) = erf(uriz)/ri2, used in RS-DFT. The on-top
value of the projected Coulomb interaction provides the
local value of the range-separation parameter p and func-
tionals derived in the context of RS-DFT can be used to
provide a basis-set correction.

The outline of this paper is as follows. In Section II
we briefly review the SHCI method. In Section IIT we
discuss the two basis-set correction schemes we employ
in this paper. Section IV contains the computational
details. In Section V we present the energies obtained
with and without the two basis-set correction formulae.
The conclusions are in Section VI.



II. REVIEW OF THE SHCI METHOD

In this section, we give a brief review of the SHCI
method.

The variational stage of SHCI starts from an initial
determinant such as the Hartree-Fock (HF) determinant
and generates the variational wave function, ¥y, through
an iterative procedure. At each iteration, WUy is written
as a linear combination of the determinants in the varia-
tional set V

[Uv) = Y elDi), (1)

D;eV

and new determinants, D,, from the perturbative set P
(i.e., the determinants not in V but connected through
the Hamiltonian to the determinants in V) that satisfy
the criterion

3 D; €V, such that |Hgci| > e (2)

are added to the set V, where H,; is the Hamiltonian
matrix element between determinants D, and D;, and
€1 is a user-defined parameter that controls the accu-
racy of the variational stage [31]. (When e; = 0, the
method becomes equivalent to FCIL.) After adding the
new determinants to the set V, the Hamiltonian matrix
is constructed and diagonalized using the diagonally pre-
conditioned Davidson method [32] to obtain an improved
estimate of the lowest eigenvalue, Fy, and eigenvector,
Wy. This process is repeated until the change in the
variational energy Ey falls below a certain threshold.

Although the selection criterion in Eq. (2) is only an
approximation to selection criteria based on the largest
contributions to the first-order perturbative correction
to the wave function or the second-order perturbative
correction to the energy, the selected determinants are
only slightly inferior to those selected by either of these
perturbative criteria. This is greatly outweighed by the
improved selection speed.

In the perturbative stage of SHCI, a second-order
Epstein-Nesbet perturbative energy correction AE®) is
calculated using the determinants connected to the final
set V that satisfy Eq. (2) but with e; replaced by es,
which is typically orders of magnitude smaller than €;:

(2) o, -)2
D, ey 1aiCi
AE® = Y~ ( - 3
Ev—E, 3)
D,eP
where E, = H,, and 2(62) indicates that only terms in

the sum for which |Hg;c;| > €2 are included. The final
SHCI energy is then Esucr = By + AE®).

In both the variational and the perturbative stages,
the fact that the number of distinct values of the double-
excitation matrix elements scales only as Nfrb, where

Noyp, is the number of orbitals, is used to avoid ever look-
ing at the very large number of unimportant determi-
nants that do not contribute to the final energy. Nev-
ertheless, straightforward approaches for evaluating the
perturbative correction entail either storing all determi-
nants of the perturbative set, P, which creates a memory
bottleneck for large systems, or a significant increase in
computer time.

SHCI circumvents this using a three-step semistochas-
tic approach for the second-order perturbation calcu-
lation, where the energy correction is split into deter-
ministic, “pseudo-stochastic”, and stochastic contribu-
tions [12]. The deterministic step chooses both varia-
tional and perturbative determinants deterministically,
the “pseudo-stochastic” step chooses variational deter-
minants deterministically and perturbative determinants
stochastically, and the stochastic step chooses both vari-
ational and perturbative determinants stochastically. A
threshold value e§'™ (< ¢;), automatically determined to
correspond to a determinant set of manageable size de-
pending on available computer memory, is first used to
obtain a deterministic energy correction. The remain-
ing correlation is calculated as the sum of a “pseudo-
stochastic” part obtained as the difference in the second-
order corrections evaluated with 3™ and a smaller
threshold €5™°, and a stochastic part obtained as the dif-
ference in corrections between €5™° and the final thresh-
old €5 (€3 < 5™ < €d'™ < ¢, separated by one order
of magnitude from one another). Stochastic samples are
taken until the statistical error falls below a specified
threshold, which is typically on the order of a few micro-
Hartree.

In a typical SHCI calculation, the variational energy
and the corresponding perturbative correction are com-
puted for several values of ¢; (for the systems presented
in this study, the lowest €; values are in the 2 —4 x 107°
range). To estimate the FCI energy, we perform a
weighted quadratic fit of Fspcr to —AE®) to obtain
Fsucr at —AFE® = 0, using weights proportional to
(AE®)~2. In order to reduce the extrapolation error,
one can either go to larger variational wave functions by
decreasing €1, incurring a large memory footprint, or op-
timize the orbitals [33] to minimize the variational energy
for the same number of determinants. To limit the com-
putational cost of orbital optimization, the value of the
threshold €; used during optimization can be much larger
than the value used to obtain the final energy.

III. BASIS-SET CORRECTION

One significant drawback of wave-function methods is
the slow convergence of energies with respect to the size
of the one-electron basis set. This is because wave func-
tions expanded in finite one-electron basis sets usually
poorly describe short-range correlation near the electron-



electron cusp. To estimate the basis-set incompleteness
error and speed up basis-set convergence, we employ the
density-based basis-set correction recently developed in
Refs. 26-30 by some of the current authors.

The starting idea of this basis-set correction scheme is
that, in a given basis set B, the exact ground-state energy
Ey of an N-electron system can be approximated by the
energy EB defined by the following minimization over B-
representable one-electron densities n”(r), i.e densities
that can be obtained from a wave function U? belonging
to the N-electron Hilbert space generated by the basis
set B,

EB = min {F[nB] + / dr vye(r)n® (r)} )

where vy(r) is the nuclei-electron potential and F[n] =
min\p_m<\lf|T + Wee|\11> is the standard constrained-
search Levy-Lieb universal density functional [34, 35]
with 7" and ch being the kinetic and electron-electron
Coulomb operators, respectively. Obviously, in the CBS
limit, E¥ tends to the exact ground-state energy, i.e.
limg_.cBs Eég = Fy. Crucially, since the density usu-
ally has a fast convergence with the size of the basis set,
the energy Eég also has a fast basis-set convergence.

As it stands, Eq. (4) is of course not practical due to
the lack of a sufficiently accurate explicit approximation
for the universal density functional F[n]. However, as
shown in Ref. 26, by reintroducing a wave function, U5,
the energy EF can be expressed as

EB :rgign{<\116|fl|\116> +E8[nw]}, (5)

where the minimization is over normalized N-electron
wave functions 5 expanded in the basis set B, H is the
total Hamiltonian, and E®[n] is a complementary basis-
set correction density functional,

EBn) = mnin (U| T+ Wee Ilf)—wrgi_r}n (UB| T+ W, | UP),

(6)
which must be evaluated at the density of the wave
function WB. The basis-set correction density functional
EB[n] compensates for the basis-set restriction on the
wave function U5 in Eq. (5) and vanishes in the CBS
limit. This scheme can be trivially generalized to a basis-

set correction functional depending on spin-resolved den-
sities n4(r) and ny(r) giving the same energy EF as

E(Z)S’ = rglsn {<W8|ﬁ|q/8> + EB[TLqu,B,TLL‘I;B]} 5 (7)

where EB [n4,w8,n| ws] is a new basis-set correction func-
tional evaluated at the spin-1 and spin-] densities of the
wave function UB. Moreover, as shown in Ref. 30, the
basis-set correction scheme can also be extended to a
functional depending on both the density n(r) and the
on-top pair density na(r) giving again the same energy

where EB[nys,ng g5) is yet another basis-set correction
functional evaluated at the density and on-top pair den-
sity of the wave function W5,

In practice, we use two approximate basis-set correc-
tion functionals. For the scheme of Eq. (7), we use the
PBE-UEG functional of the form [27]

Bfpe el i) = [ dr f (ua(e).n,(6), Vnlr), (@),

(9)
where f is a function of the spin-resolved densities n4(r)
and ny(r), the density gradient Vn(r), and the lo-
cal range-separation parameter p5(r). The function f
was constructed based on a short-range version [36] of
the Perdew-Burke-Ernzerhof (PBE) [37] correlation func-
tional. One key ingredient of this short-range functional
is a parametrization (in terms of the spin-resolved densi-
ties) of the on-top pair density of the uniform electron gas
(UEG) [38, 39], hence its name. Its full explicit form was
given in Refs. 27-30. For the scheme of Eq. (8), we use
the spin-unpolarized PBE-OT functional of the form [29]

Bffpe-onfnna] = [ dr g (n(e). V), na(o). ().

(10)
where ¢ is a function of the density n(r), the density gra-
dient Vn(r), the on-top pair density na(r), and the local
range-separation parameter ;5(r). (To avoid confusion,
we point out that the PBE-OT functional of the current
paper was named the SU-PBE-OT functional in Ref. 29.)
The PBE-OT functional has essentially the same physical
content as the PBE-UEG functional with the exception
that it uses the on-top (OT) pair density na(r) of the
wave function U2 as an independent variable, instead of
that of the UEG, which is more accurate for strongly cor-
related systems. Also, it uses the total density instead
of the spin-resolved densities since the additional infor-
mation provided by the spin-resolved densities is largely
already contained in the on-top pair density na(r) [29].
Its full explicit form was given in Refs. 28-30.

The common key ingredient in these basis-set correc-
tion functionals is the local range-separation parameter
1B (r) which provides a local measure of the incomplete-
ness of the basis set, and is given by [26, 30]

p () = TwB (), (11)

where W5(r) is the on-top value of an effective two-
electron interaction representing the Coulomb two-
electron interaction in the basis set B. In an orthonormal
orbital basis {¢,} generated by the basis set B, W5(r) is



defined by
B .
Wh(r) = fgo (0)/nowp (r), if nggp (r) # ()7(12)
+00, otherwise,
with

B
fBs (1) = > Gp(0)0g (VT (1)ou(x),  (13)

pqrstu

B
nap, (1) = br(X)ds (M50, (1) du(r),  (14)
rstu

where the sums run over all the (occupied and virtual)
orbitals generated by the basis set B, V. = (pq|rs) are
the two-electron integrals, and T':% is the (opposite-spin)
two-body reduced density matrix associated with a lo-
calizing wave function \IJE)C. The only purpose of the
wave function W5 is to localize the otherwise nonlocal
effective interaction obtained by projecting the Coulomb
two-electron interaction in the basis set 5. The local
range-separation parameter p5(r) is very weakly depen-
dent on this wave function W _ (the dependence on WP
of the numerator and denominator in Eq. (12) largely
cancels) and it should be thought of as essentially de-
pending only on the basis set B. Importantly, in the
CBS limit, the local range-separation parameter diverges,
i.e. limp_cops p(r) = +oo, independently of W% | and
in this case the form of the PBE-UEG and PBE-OT
basis-set correction functionals ensures that they prop-
erly vanish, ie. limp_cps ESgpypclnt,ny] = 0 and
hmB%CBS EEBE—OT[”’ ng] =0.

Even though it is possible to perform the minimiza-
tions in Egs. (7) and (8) using the PBE-UEG and PBE-
OT basis-set correction functionals [30], in practice, for
energy calculations, a non-self-consistent approximation
can safely be used in which the basis-set correction func-
tionals are added a posteriori to an approximation of the
FCI energy calculated with the basis set B. Here, as in
our previous work [14], we use the total SHCI energy
EByc; in the basis set B. We then have two basis-set
corrected SHCI energies. First, we have the SHCI4+PBE-
UEG energy

EéSHCIJrPBE-UEG = EéSHCI + EgBE-UEG[”T,@ﬁFv ”¢,<I>§F]a

(15)
where the PBE-UEG functional is evaluated at the
spin-resolved densities obtained from the HF single-
determinant wave function ®5,. We calculate the spin
densities at the HF level only since the PBE-UEG func-
tional is weakly dependent on the level at which the
spin densities are calculated. Moreover, we choose also
UB = @B in Eq. (12) for calculating the local range-
separation parameter u5(r) that enters into the PBE-
UEG functional. Second, we have the SHCI+PBE-OT

energy

B _ B B
Esucrype-or = Esuct + Eppr-or [n\ngCIa n2,\ngCI]a
(16)

where the PBE-OT functional is evaluated with the den-
sity and on-top pair density of the variational SHCI wave
function \IlgHCI available at the end of the SHCI cal-
culation. We use the SHCI wave function and not the
HF single-determinant wave function because the PBE-
OT functional is accurate only if it is evaluated at the
on-top pair density obtained from an accurate multi-
determinant wave function. Moreover, we choose also
OB = Wk, for calculating the local range-separation
parameter 1° (r) that enters into the PBE-OT functional,
even though the use of an accurate multideterminant
wave function for \Iffic is not really important here. Com-
paring the two basis-set corrections, the PBE-UEG basis-
set correction is simpler to compute since it uses the
HF single-determinant wave function, but the PBE-OT
basis-set correction which uses the on-top pair density
from the SHCI wave function should be more accurate.

IV. COMPUTATIONAL SETUP

Our computations employ the eCEPP pseudopoten-
tials of Trail and Needs [40] and their associated aug-cc-
pVnZ-eCEPP basis sets with n = 2,3,4,5. These are
abbreviated as DZ, TZ, QZ, and 5Z, or generically as
nZ, in what follows. The molecular geometries and the
experimental energies are the same as in the previous
benchmark paper of Ref. 15.

We calculate the total energies in each of the four basis
sets in three different ways:

1. SHCI only. We first perform HF calculations with
the software PYSCF [41] and then perform SHCI
calculations with orbital optimization [33] using the
ARROW package [42]. These results have previously
appeared in Ref. 15.

2. SHCI with PBE-UEG basis-set correction. The
HF wave function is fed into QUANTUM PACK-
AGE [43] to obtain the basis-set correction. The am-
plitude of the dominant determinant in the SHCI
wave function ranges from 0.92 to 0.96 for the
metal atoms and from 0.83 to 0.91 for the ox-
ide molecules. Therefore, we expect the HF spin-
densities to be a reasonable approximation to the
SHCI spin-densities. The HF on-top pair density is
not accurate, but the on-top pair density obtained
from the UEG that has the HF spin-densities is
reasonably accurate.

3. SHCI with PBE-OT basis-set correction. We per-
form SHCI variational calculations for several dif-
ferent values of the threshold ¢; and use the cor-
responding two-body reduced density matrices for
the basis-set correction using QUANTUM PACK-
AGE [43]. As the size of the variational wave func-
tion increases, the on-top pair density decreases,



leading to decreasing magnitudes of the PBE-OT
basis-set correction. We plot the basis-set correc-
tion versus Ey and use a quadratic function to ex-
trapolate to the SHCI total energy limit, Eyv —
FEspcr, which is then taken as the final PBE-OT
basis-set correction for the given system and basis
set.

In two of the above three schemes, we also extrapo-
late the total energies to the CBS limit. In earlier work
by some of the present authors [15], the SHCI-only en-
ergies were extrapolated to the CBS limit using separate
extrapolations for the HF energy and the correlation en-
ergy, [44-46]

ESES = Eﬁ% —aexp (—=bn), (17)
Eg)?rs = E(?ozrr - Cn_g' (18)

In the current paper, the HF energy is still extrapolated
in the same way using n = 3,4,5, but the SHCI-only
correlation energy is extrapolated using the expression

E(S)?rs = E(?()er - %—i—d, (19)

because we find it gives a far better fit for the pseudopo-
tentials and associated basis sets used in this study. Since
Eq. (18) does not give a good fit, one would use only the
larger basis sets n = 4,5 to get a reasonable extrapola-
tion, whereas with Eq. (19) n = 2,3,4,5 can be used.
(Even using just n = 4,5, Eq. (18) gives extrapolated
energies that are too high, as shown in Fig. 4 of the sup-
plementary material. For the heaviest system studied,
CuO, the improved fit using Eq. (19) and n = 2,3,4,5
makes the CBS total energy 6 mHa lower than the fit
using Eq. (18) and n = 4,5. Detailed comparison of the
various fits can be found in the supplementary material.)

In the SHCI4+PBE-OT scheme, we use a single expo-
nential function

CBS
ESI}{BCIJrPBE-OT = E§§CI+PBE-OT —aexp(—bn) (20)

with n = 3,4, 5, since we expect an exponential conver-
gence of the SHCI+PBE-OT energy with respect to n
[47). (In the supplementary material we also show the
SHCI4+PBE-OT energies extrapolated to the CBS limit
using n = 2,3,4.)

Energies from the SHCI+PBE-UEG scheme are not
extrapolated as the SHCI+PBE-UEG energies are non-
monotonic with basis size for many of the systems, as
will be shown in the next section. Note however that our
SHCI+PBE-UEG calculations on the G2 set [14] had a
monotonic dependence on the basis size and so we were
able to extrapolate those energies.

V. RESULTS

In this section, we present energies for the seven
monoxide molecules, the eight constituent atoms, and
the corresponding ions using the three schemes described
in the previous section. The results are shown for each
of the four basis sets DZ, TZ, QZ, and 5Z, as well as
for the extrapolated CBS limit. The total energies, first
ionization energies (for the eight atoms) and dissociation
energies (for the seven monoxide molecules) are reported
in Table I.

In what follows, we use as reference values the CBS
results obtained from the SHCI+PBE-OT scheme. We
think it likely that this scheme gives the most accu-
rate energies since the SHCI+PBE-OT scheme employs a
more accurate on-top pair density than the SHCI+PBE-
UEG scheme. In the supplementary material, the quan-
tum Monte Carlo (QMC) energies for the oxygen atom
also corroborate the selection of SHCI+PBE-OT as the
reference. However, we also acknowledge that this choice
of reference values is not certain. In our earlier work
on the G2 set of 55 molecules, we employed only the
SHCI-only and the SHCI+PBE-UEG schemes since those
molecules are sufficiently weakly correlated. There we
found that although for each of the finite basis sets
the SHCI+PBE-UEG energies agreed considerably bet-
ter with experiment than the SHCI-only energies, the
CBS energies from SHCI-only gave slightly better agree-
ment than those from SHCI+PBE-UEG.

A. Total Energies

Figure 1 shows deviations of total energies from the ref-
erence values. Compared to the SHCI-only results, both
basis-set correction schemes significantly reduce the basis
incompleteness error. For each system in a particular ba-
sis, the correction from PBE-UEG is consistently larger
in magnitude than from PBE-OT. This makes the PBE-
UEG-corrected values closer to the CBS limit for smaller
basis sets, but for larger basis sets PBE-UEG tends to
overcorrect. In fact, for many of the systems shown here
the PBE-UEG-corrected energies for 5Z are higher than
for QZ, reversing the trend from DZ to QZ. Similar non-
monotonicity of the corrected values with basis size has
been observed in previous studies as well [30].

We have separately verified the total energy in the CBS
limit by performing QMC calculations on the oxygen
atom (see the supplementary material). The QMC total
energy is in good agreement with the CBS SHCI-only and
SHCI4+PBE-OT energies and differ considerably from the
SHCI4+PBE-UEG energy. The energy difference between
the former two schemes may be viewed as an estimate of
the uncertainty in the CBS energies. Table II reports
the mean absolute deviations (MADs) from the reference



TABLE I. Total, ionization (for the atoms), and dissociation energies (for the monoxide molecules) obtained from the three
schemes in the CBS limit. The SHCI+PBE-OT values (emphasized in bold) are used as reference values in Section V for
comparison. Units: Ha.

Total energy Tonization/Dissociation energy
System SHCI SHCI+PBE-UEG SHCI+PBE-OT SHCI SHCI+PBE-UEG SHCI+PBE-OT
9) -15.8477 -15.8490 -15.8478 0.5000 0.5009 0.5004
Sc -46.4921 -46.4966 -46.4939 0.2409 0.2412 0.2411
Ti -58.0068 -58.0117 -58.0088 0.2508 0.2510 0.2510
\Y% -71.2371 -71.2412 -71.2381 0.2473 0.2475 0.2475
Cr -86.8078 -86.8111 -86.8080 0.2488 0.2489 0.2489
Mn -104.1606 -104.1648 -104.1617 0.2726 0.2732 0.2730
Fe -123.7718 -123.7784 -123.7745 0.2901 0.2905 0.2903
Cu -197.6236 -197.6388 -197.6328 0.2832 0.2836 0.2839
o+ -15.3477 -15.3481 -15.3475 - - —
Sc™ -46.2511 -46.2554 -46.2528 - - —
Tit -57.7560 -57.7607 -57.7578 - - —
A\ -70.9898 -70.9938 -70.9907 —~ —~ —
Crt -86.5591 -86.5622 -86.5591 — — -
Mn™ -103.8879 -103.8917 -103.8887 ~ ~ —
Fe™ -123.4817 -123.4879 -123.4843 ~ ~ —
Cut -197.3404 -197.3552 -197.3489 - - —
ScO -62.5983 -62.6040 -62.6002 0.2585 0.2584 0.2585
TiO -74.1103 -74.1168 -74.1128 0.2557 0.2561 0.2562
VO -87.3302 -87.3363 -87.3318 0.2453 0.2461 0.2458
CrO -102.8299 -102.8358 -102.8316 0.1744 0.1758 0.1758
MnO -120.1529 -120.1596 -120.1550 0.1446 0.1458 0.1455
FeO -139.7769 -139.7861 -139.7814 0.1573 0.1587 0.1591
CuO -213.5821 -213.5980 -213.5903 0.1108 0.1102 0.1097
140 -
Dz TZ Qz 5Z CBS ;
SHCI only - X X X X £
120 4 + PBE-UEG -k- -k- —k- .
+ PBE-OT -

100 +

Deviation of total energy from reference value (mHa)

=20

Cr Mn Fe Cu

FIG. 1. Deviations of the total energies from reference (CBS SHCI4+PBE-OT) values. Some of the SHCI-only values for the
smaller basis sets are off the scale of the plot.



Deviation of theoretical ionization energy from experiment (eV)

2.5

0.0 1

—2.54

—5.01

—-7.54

Deviation of ionization energy from reference value (mHa)

~10.0
DZ TZ Qz 5Z CBS
SHCI only X X e X e X
1257 | PBE-UEG  -4- —k- k-
+PBE-OT  —e— - o %
-15.0 : : ; . : : : :
[0} Sc Ti \% Cr Mn Fe Cu

FIG. 2. Deviations of the ionization energies from reference
(CBS SHCI4+PBE-OT) values. The shaded area indicates
chemical accuracy, i.e., 1 kcal/mol.
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FIG. 3. Comparison of theoretical ionization energies with
experiments. The theoretical values are obtained from the
three schemes: SHCI only (CBS), SHCI4+PBE-UEG (5Z), and
SHCI4+PBE-OT (CBS). The shaded area indicates chemical
accuracy, i.e., 1 kcal/mol.

values for the different basis sets and methods.

B. Ionization Energies

Figure 2 shows the convergence of the first ionization
energies of the eight atoms with respect to basis size.
For the metal atoms, although the ionization energies
obtained with the DZ basis sets for Cr and Cu show large
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TABLE II. Mean absolute deviations of total energies from
reference (CBS SHCI+PBE-OT) values for different basis
sets. Units: mHa.

Dz TZ QZ 5Z CBS
SHCI 217.67 95.04 4558 26.06 247
SHCI + PBE-UEG 5235 5.63 4.21 3.70 -
SHCI + PBE-OT 70.75 1737  2.87 051 0.00

errors, all three schemes are almost converged to within
chemical accuracy at the level of TZ, and converged to
far better than chemical accuracy at the level of 5Z. The
MADs are reported in Table III. Most of the MADs are
more than an order of magnitude smaller than those for
the total energies because of a large cancellation of error
between the atomic and ionic energies.

Accurate experimental ionization energies are also
available for these systems. In Fig. 3, we compare the
theoretical ionization energies obtained from the three
schemes (i.e. extrapolated energies from the SHCI-only
and SHCI4+PBE-OT schemes, and the 5Z energies from
the SHCI4+PBE-UEG scheme) to experiment. Much bet-
ter agreement than chemical accuracy is obtained for
all the atoms and all three schemes. Remarkably the
largest deviation of the energies obtained from either of
the two correction schemes and experiment is only 0.01
eV. The MADs from experiment are 10.8, 5.9, and 4.3
meV for SHCI-only, SHCI+PBE-UEG and SHCI+PBE-
OT, respectively. The high level of agreement of the
SHCI+PBE-OT energies with experiment provides fur-
ther support for using SHCI+PBE-OT energies as ref-
erence values, and speaks to the accuracy of the experi-
ments as well.

TABLE III. Mean absolute deviations of ionization energies
from reference (CBS SHCI4+PBE-OT) values for different ba-
sis sets. Units: mHa.

Dz TZ QZ 57 CBS
SHCI 7.23 2.01 0.88  0.50 0.28
SHCI + PBE-UEG 3.50 0.87 038 0.18 -
SHCI + PBE-OT 3.77 0.82 0.30  0.08 0.00

C. Dissociation Energies

Fig. 4 shows the dissociation energies in the different
basis sets for the three schemes. As expected, the basis
incompleteness errors in energy differences are around
one order of magnitude smaller than in the individual
total energies themselves. For both basis-set correction
schemes, at the level of the TZ basis set almost all sys-
tems are converged to within chemical accuracy (with
the single exception of CuO in the PBE-OT scheme).
Table IV reports the MADs for the different basis sets
and methods.
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FIG. 4. Deviations of the dissociation energies from reference (CBS SHCI4+PBE-OT) values. The shaded area indicates
chemical accuracy, i.e., 1 kcal/mol. Some of the SHCI-only values for the smaller basis sets are off the scale of the plot.

TABLE IV. Mean absolute deviations of dissociation energies
from reference (CBS SHCI+PBE-OT) values for different ba-
sis sets. Units: mHa.

Dz TZ QZ 57 CBS
SHCI 15.52 6.36 2.52 1.51 0.88
SHCI+PBE-UEG 3.24 0.66 0.38 0.21 -
SHCI+PBE-OT 3.18 0.91 0.43 0.11 0.00

In Fig. 5, we take the final dissociation energies ob-
tained from the three schemes and compare to experi-
mental values reported over the years (see Ref. 15 and
references therein). These experimental values have been
corrected for zero-point energy contributions but not for
relativistic effects since the pseudopotentials we use in-
corporate scalar-relativistic effects. Unlike the ioniza-
tion energies, the experimental dissociation energies have
large uncertainties and differ significantly among them-
selves. For all systems studied, the theoretical values
from our three schemes agree with each other to much
higher precision than the differences between the various
experimental values.

VI. CONCLUSIONS

In prior work [15] we have shown that the SHCI
method can be used to calculate near exact energies for
transition-metal atoms, ions, and oxides in basis sets up
to 5Z. There, the SHCI energies were used as the ref-
erence for testing the accuracy of 19 other electronic-
structure methods for each of the basis sets. The CBS
energies were also estimated by extrapolation using the
formulae in Egs. (17) and (18). In the current paper we
have shown that a more accurate extrapolation is pos-
sible using Eqgs. (17) and (19). More importantly, we
have shown that density-based basis-set corrections can
be used to estimate the basis incompleteness error of a fi-
nite basis set and speed up convergence to the CBS limit.
Two different schemes have been applied, namely, PBE-
UEG and PBE-OT, differing in the functional used in the
calculation. Both methods produce ionization and disso-
ciation energies converged to within chemical accuracy of
the CBS limit with only the TZ basis set, which avoids
the high cost of going to larger basis sets using a wave-
function method such as SHCI. We have also compared
the ionization and dissociation energies from the two cor-
rection schemes as well as the uncorrected extrapolations
to experimental values reported over the years. Remark-
ably, for ionization energies, the largest deviation of the
experimental energies from the energies obtained by ei-
ther of the two correction schemes is only 0.01 eV. Our
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FIG. 5. Comparison of theoretical dissociation energies

with experiments. The theoretical values obtained from the
three schemes—SHCI only (CBS), SHCI+PBE-UEG (5Z),
and SHCI4+PBE-OT (CBS)—are converged to much higher
precision than the experimental uncertainties.

computed dissociation energies are converged to much
higher precision than the experimental uncertainties.
SUPPLEMENTARY MATERIAL

See supplementary material for detailed comparisons
of basis-set extrapolations for SHCI total energies and
SHCI4+PBE-OT energies, as well as QMC results on the
oxygen atom.
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