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Abstract

This work focuses on finding optimal locations for charging stations for one-way
electric car sharing programs. The relocation of vehicles by a service staff is generally
required in vehicle sharing programs in order to correct imbalances in the network. We
seek to limit the need for vehicle relocation by strategic location of charging stations
given estimates of traffic flow. A mixed-integer linear programming formulation is pre-
sented with an exponential number of potential charging station locations. A column
generation approach is used which finds the optimal set of locations for the continuous
relaxation for our problem. Numerical experiments using real world traffic and GIS
location data which shows the benefit of our method.

1 Introduction

Electric car sharing programs are a method for urban centres to combat traffic congestion
and pollution (??) as well as to promote the use of green technologies. In one-way car
sharing programs such as in Paris, France (?), users are able to use and return vehicles to
any charging station. Consequently, we generally see large imbalances within the supply of
vehicles and parking spaces in the network, requiring a service staff to continuously transport
vehicles to satisfy demand.

In ? the problem of determining optimal locations for charging stations for electric car-
sharing systems under stochastic demand is addressed. The number of stations and vehicles,
and their optimal placement is determined in order to maximize profit. One assumption
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is that decision makers do not consider operational activities of the service staff, such as
vehicle relocation. Given a set of charging stations, a number of researchers have developed
methodologies for the vehicle relocation problem. ? consider the use of folding bicycles by
workers, which fit into the trunks of cars. ? propose the use of towtrucks which are capable
of moving a number of vehicles at a time. In ?, not only is the scheduling considered, but
also the number of vehicles and workers to use each day. An added complexity with moving
electric vehicles by driving them is that there may not be enough battery power at a given
time. ? consider this, as well as the optimal number of workers and the relocation of workers
themselves across the network assuming the use of bicycles.

The idea of having to relocate vehicles runs counter to the objective of decreasing traffic
congestion, and will cut into profit and system efficiency. In this work we consider a set
of nodes, with an estimated expected traffic flow between each per time period. We place
charging stations strategically, so as to limit supply imbalances in the network by matching
demand for vehicles and parking spots at each charging station.

2 Balanced electric car sharing optimization model

Let N be the set of trip nodes and let T = {1, 2, ...,MT} be a set of time intervals over
a 24 hour cycle with lengths Lt. For each t ∈ T we have an origin-destination matrix
ODt ∈ Z|N |×|N |, indicating for each pair of nodes {n, n′} ∈ N , an estimate of the number of
trips from n to n′. For each node n ∈ N , its outward flow over t is f t−

n =
∑

n′∈N OD
t
n,n′ ,

requiring an electric vehicle near n, and its inward flow over t is f t+
n =

∑
n′∈N OD

t
n′,n, re-

quiring a parking space near n.

Let S be the set of potential charging stations. We assume that people are willing to walk
up to w = 0.5 km to or from an electric vehicle station as used in (??). For each s ∈ S
we define its neighbourhood as N (s) = {n ∈ N : d(n, s) ≤ w}, where d(n, s) is the dis-
tance in km between n and s. Likewise, we define the neighbourhood of each n ∈ N as
N (n) = {s ∈ S : d(s, n) ≤ w}. We have to assign the flow from node n to its neighbouring

stations. Let F t− ∈ R|S|×|N |+ be a matrix of the number of trips from each node n assigned to

leave from each station s over t, and likewise let F t+ ∈ R|S|×|N |+ be a matrix of the number

of trips to each node n assigned to arrive at each station s over t. Let Et ∈ R|N |×|N |+ be the
traffic flow in ODt which we do not satisfy, and e be a vector of ones. We then assign the out-
ward flow of n to its neighbouring stations, f t−

n =
∑

s∈N (n) F
t−
s,n +Et

n,·e, as well as its inward

flow, f t+
n =

∑
s∈N (n) F

t+
s,n + (Et

·,n)T e. The net flow over t for station s is
∑

n∈N (s) F
t+
s,n − F t−

s,n,
which we want to be zero to minimize network imbalances.

We must decide how many parking spaces at each station. We always choose an even number
of spots, to have half the number of cars as parking spots at each station, given that we want
the demand for both to always be equal. Assuming that OD contains an estimate of the
total traffic flow within the city, we assume that k = 0.5% of flow will eventually be fulfilled
using our service as in (?).
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In order to determine the usage capacity of a pair of parking spots, we need an estimate of
how long it will take for someone to park and plug in a vehicle, and to register a vehicle and
leave the station. We assume that both tasks will take p hours. We also need an estimate
of the average trip length, from which we can estimate the average charging time required
after each trip.

For each time period t, we calculate the average trip length over the network,

lt =

∑
n∈N

∑
n′∈N OD

t
n,n′d(n, n′)∑

n∈N
∑

n′∈N OD
t
n,n′

.

Given an estimate of the electric vehicle’s charging time per kilometre driven, u in hours/km,
we can estimate the average charging time required after each trip, ht = ult. The amount of
time on average required between trips for a car to be dropped off and recharged, or picked
up is then p+ ht

2
, and the maximum amount of flow a pair of parking spots per time period

t ∈ T can service is

vt =

⌊
2 ∗ Lt

k(p+ ht

2
)

⌋
.

Whereas the objective of a company running a combustion engine car sharing program is
likely to maximize profit, in this work we assume that the electric car sharing program is
funded or heavily subsidized by a government in order to reduce pollution and road conges-
tion, and to promote green technologies. For this reason, the objective in our optimization
problem (??) is to maximize the number of electric vehicle trips. zs is the decision variable
for the number of pairs of parking spaces to install at station s, ms is the maximum number
of pairs of parking spaces that can be put at station s, and cs is the cost of constructing a pair
of parking spaces at station s. We assume all costs, including the electric vehicles themselves
are embedded into the price per pair of parking spaces. b is the budget the government has
allocated for the construction of the car sharing network.

The constraint set (4) enforces that the net flow over each station is zero, so as to minimize
the need for vehicle relocation, as the expected number of cars parking and leaving over
each time period are equal. We have also indicated the corresponding dual variables of each
constraint set for reference.
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min
∑
t∈T

∑
n,n′∈N

Et
n,n′ (OP)

s.t.
∑

n∈N (s)

F t+
s,n + F t−

s,n ≤ vtzs ∀ t ∈ T , s ∈ S Ut,s ≥ 0 (1)

∑
s∈N (n)

F t−
s,n + Et

n,·e = f t−
n ∀ t ∈ T , n ∈ N Gt,n (2)

∑
s∈N (n)

F t+
s,n + (Et

·,n)T e = f t+
n ∀ t ∈ T , n ∈ N Pt,n (3)

∑
n∈N (s)

F t+
s,n − F t−

s,n = 0 ∀ t ∈ T , s ∈ S Rt,s (4)

∑
s∈S

cszs ≤ b q ≥ 0 (5)

zs ≤ ms ∀ s ∈ S hs ≥ 0 (6)

F t+ ∈ R|S|×|N |+ , F t− ∈ R|S|×|N |+ , Et ∈ R|N |×|N |+ z ∈ Z|S|+ (7)

2.1 Determining S using column generation

The most challenging aspect of (??) is determing the optimal set of charging station locations,
as there are up to 2|N | − 1 stations if we consider all non-empty sets of nodes. We begin
with some initial set of stations S ′ and iteratively add stations using a column generation
technique until we have found the optimal set of stations for the continuous relaxation of (??)
and use this set to find a solution to (??). The dual program of the continuous relaxation
of (??) follows which will be used in the solution technique.

max − bq −
∑
s∈S

mshs −
∑
t∈T

∑
n∈N

(f t+
n Pt,n + f t−

n Gt,n) (D)

s.t. 1 +Gt,n + Pt,n′ ≥ 0 ∀ t ∈ T , n, n′ ∈ N (1)

Ut,s + Pt,n +Rt,s ≥ 0 ∀ t ∈ T , s ∈ S, n ∈ N (s) (2)

Ut,s +Gt,n −Rt,s ≥ 0 ∀ t ∈ T , s ∈ S, n ∈ N (s) (3)

hs + qcs −
∑
t∈T

vtUt,s ≥ 0 ∀ s ∈ S (4)

U ∈ RMT×|S|
+ , h ∈ R|S|+ , q ≥ 0 (5)

In order to find a new station s′ to add to S ′, let B ∈ {0, 1}|N |×|S′| be a binary matrix
with B·,s representing N (s). Each node n has coordinates xn and yn, stored in vectors
x ∈ R|N | and y ∈ R|N |. Let s′x and s′y be the coordinates of s′, which we write as convex
combinations of the coordinates of the nodes, s′x = αTx and s′y = αTy. We define dn as
the maximum feasible distance of any s′ from n, which is dn = maxn′∈N d(n, n′). Each
node n has a pre-estimated cost cNn for placing a pair of parking spaces at n, as well as a
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maximum number of possible pairs of parking spaces mN
n . A feasible value of B·,s′ will satisfy

the following constraints in (??). We ensure the uniqueness of B·,s′ with the constraints

BT
·,sB·,s′ + (1 − B·,s)T (1 − B·,s′) ≤ |N | − 1. We also include the constraints

B·,s′

|N | ≤ α which
ensure that the location of each station is unique by not allowing a node to be assigned to a
station while not contributing a positive weighting in α. In addition, we have estimated the
price cs′ and the maximum pairs of parking spots ms′ as the weighted averages of the nodes’
values within N (s′).

d(s′, n) ≤ w + (1−Bn,s′)(dn − w) for n ∈ N (8)

s′x = αTx, s′y = αTy

αT e = 1,
B·,s′

|N |
≤ α ≤ B·,s′

BT
·,sB·,s′ + (1−B·,s)T (1−B·,s′) ≤ |N | − 1 for s ∈ S ′

cs′ = αT cN , ms′ = αTmN

α ∈ R|N |+ , Bn,s′ ∈ {0, 1}|N |

After solving the dual program (??) for some set S ′, we seek to find a feasible solution
to (??) which would result in a decrease in its objective. The dual objective will decrease
if hs′ > 0, which will occur for sufficiently large

∑
t∈T vtUt,s′ . From the second and third

constraint sets of (??), Ut,s′ ≥ −
(Pt,n+Gt,n′ )

2
for all n, n′ ∈ N (s′) and will be tight for some

particular n, n′ ∈ N (s′) or equal to 0. Let us build the matrices PGt ∈ R|N |×|N |+ , where

PGt
n,n′ = max

(
− (Pt,n+Gt,n′ )

2
, 0
)

. The optimal value for Ut,s′ will be the maximum value of

PGt ∈ R|N |×|N |+ . We can determine Ut,s′ with the following program, where A ◦ B is the
Hadamard product.

max
∑
t∈T

vtUt,s′ (9)

s.t. Ut,s′ =
∑
n∈N

∑
n′∈N

(PGt ◦Dt)n,n′ for t ∈ T

eTDte = 1 for t ∈ T
Dt

n,n′ ≤ Bn,s′ for t ∈ T, n, n′ ∈ N
Dt

n,n′ ≤ Bn′,s′ for t ∈ T, n, n′ ∈ N

D ∈ R|N |×|N |×MT
+

Putting things all together, we determine the next charging station s′ to include in (??) by
solving the following optimization problem.
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max hs′ =
∑
t∈T

vtUt,s′ − qcs′ (NS)

s.t. Ut,s′ =
∑
n∈N

∑
n′∈N

(PGt ◦Dt)n,n′ for t ∈ T

eTDte = 1 for t ∈ T
Dt

n,n′ ≤ Bn,s′ for t ∈ T, n, n′ ∈ N
Dt

n,n′ ≤ Bn′,s′ for t ∈ T, n, n′ ∈ N
d(s′, n) ≤ w + (1−Bn,s′)(dn − w) for n ∈ N
s′x = αTx, s′y = αTy

αT e = 1,
B·,s′

|N |
≤ α ≤ B·,s′

BT
·,sB·,s′ + (1−B·,s)T (1−B·,s′) ≤ N − 1 for s ∈ S ′

cs′ = αT cN , ms′ = αTmN

α ∈ R|N |+ , B·,s′ ∈ {0, 1}|N |, D ∈ R|N |×|N |×MT
+

If hs′ > 0 we add the station to S ′ and resolve the dual program, where we round ms′ to
the nearest integer. Else, we have found our set of stations, and proceed to solve the primal
problem with our final set S = S ′.

2.2 Valid inequalities for (??)

Many instances of (??) must be solved, which can be challenging for larger problem instances
given the binary variables B·,s′ . A set of valid inequalities were added to (??) which were
found to reduce the computation time by an order of magnitude on average. The general
idea is that if we are given a subset of nodes N ′ where d(n, n′) > 2w for all n, n′ ∈ N ′, then∑

n∈N ′ Bn,s′ ≤ 1. The algorithm for adding these constraints is found in Algorithm ??. In
line 8 by unique we mean a constraint has not already been added for subset V .

Algorithm 1 Valid inequalities for (??)

1: for n ∈ N do
2: V = {n}
3: for n′ ∈ N do
4: if d(y, n′) > 2w ∀y ∈ V then
5: V = V + {n′}
6: end if
7: end for
8: if |V | > 1 and unique then
9: add

∑
y∈V By,s′ ≤ 1 to (??)

10: end if
11: end for
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2.3 Solution algorithm

We now present the solution algorithm for finding a balanced electric car sharing charging
station network. In general we can expect there to be many ”island” nodes, for which there
does not exist another node within distance 2w from it. For this reason we start with S ′ = N
to prevent solving many instances of (??) to regenerate stations for which we already have
all information for.

Algorithm 2 Balanced charging station algorithm (BCSA)

1: Initialize S ′ = N
2: Solve (??)
3: Solve (??)
4: if hs′ > 0 then
5: go to 2
6: else
7: Solve (??) with S = S ′

8: end if

3 Numerical Experiments

3.1 Traffic & GIS data

We test our methodology using trip data from the Transportation Tomorrow Survey (TTS)
(??) covering the Greater Golden Horseshoe area of Ontario, Canada. We focused on
trips made by car in Toronto. The city of Toronto comprises 16 planning districts (PD)
containing 625 traffic zones. We focus on the first 6 planning zones which roughly form a
square containing the downtown core and surrounding area. We further reduced the sparsity
of the OD matrices by focusing on traffic zones which had trips to and from many other
traffic zones. Given a number m, we found the subset of nodes N ′ such that for each n ∈ N ′
there would be at least m other nodes in N ′ having trips to or from n. The maximum m was
then found for which the resulting set N ′ was nonempty. With m = 56, our final dataset
contained 149 traffic zones and 468,094 trips over a 24 hour period, broken down into 5 time
periods: 6:00-9:00, 9:00-15:00, 15:00-19:00, 19:00-24:00, and 24:00-6:00. TTS Esri shapefiles
were used to determine node locations as the centroid of each traffic zone.

3.2 Estimating vt

The average trip lengths for our data set is l = [5.1760, 4.4471, 4.7140, 4.7435, 5.9087] and
p was chosen as 10 minutes. We calculated u based on information acquired about the
bluecar used by Autolib’ in Paris, which can travel up to 250 km with a recharge time of
approximately 4 hours (?). The capacity of a pair of parking spots was then estimated as
v = [5767, 11867, 7828, 9774, 11218].
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3.3 Parking spaces, station cost, and budget

The cost of installing a pair of parking spaces and the number of pairs of parking spots were
set to vary between [1,2] and [1,3], respectively. PD1 contains the waterfront and downtown
of the city. We took the centroid of all nodes within PD1 and considered this point P to
be the most expensive and dense part of the city. A node’s distance from P determined its
cost and capacity, with the closest node having a cost of 3 and the furthest having a price of
1, with prices descending linearly with distance. All nodes within 1

3
of the largest distance

from P had a capacity of 1 pair, within 2
3

had a capacity of 2 pairs and the remaining nodes
had a capacity of 3 pairs of parking spaces. All distances in this work were calculated using
the 1-norm. We then set our budget b = αcTm for α = [0.1, 0.2, 0.3]. Given an average cost
of 2 to build a pair of parking spots, α = 0.1 allowed 25 average priced pairs and α = 0.2
allowed 51 average priced pairs of parking spots.

4 Results

All experiments were done on a Windows 10 Pro 64-bit, Intel Core i7-7820HQ 2.9GHz
processor with 8 GB of RAM computer using Gurobi 8.01. Table ?? presents the results of
comparing our method (BCSA) with the solution given by solving (??) with S = N . We can
see that on average, (S = N) does not satisfy 28% more trips than (BCSA). |N (s)| reports
the number of stations with a neighbourhood of size [1, 2, 3, ...]. In the appendix we display
figures of the set of nodes and the optimal stations found for each test problem. Table
?? presents the improved computation time of (??) using Algorithm ??. These statistics
were calculated based on the first 50 calls to (??) with and without the use of the valid
inequalities.
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Table 1: Experimental results: (BCSA) vs. (S = N)

(BCSA) (S = N)

b = 0.1cTm

obj value 286731.4 325189

comp time (s) 7366.00 29.77

# (NS) calls 140 N/A

mean (NS) comp time (s) 31.42 N/A

|N (s)| [16,10,3] [32]

b = 0.2cTm

obj value 198996.7 244815

comp time (s) 4515.50 29.18

# (NS) calls 76 N/A

mean (NS) comp time (s) 43.14 N/A

|N (s)| [30,19,4,0,1] [58]

b = 0.3cTm

obj value 127549.7 188284

comp time (s) 3097.33 27.42

# (NS) calls 78 N/A

mean (NS) comp time (s) 25.06 N/A

|N (s)| [45,29,2,1,0,1] [81]

Table 2: Experimental results: benefit of valid inequalities

with without

min (NS) comp time (s) 19.17 48.87

max (NS) comp time (s) 36.15 614.12

mean (NS) comp time (s) 26.43 259.42

5 Conclusion

We have developed a novel approach to designing one-way car sharing networks, determining
the locations of charging stations so as to maximize the balanced usage of the car sharing
network. Though our method is computationally intensive requiring the use of an MILP
subproblem, we were able to solve large scale problems and present its ability to increase
network flow. Though we were interested in creating a self-regulating car sharing network
without the need for vehicle relocation, there is nothing preventing the use of both method-
ologies. This could be an interesting extension of this work, which could be modeled as a
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two-stage stochastic optimization problem, where we make the initial decision of charging
stations’ locations, and then given the random daily network usage, determine the number of
required employees and their deployment. We also see our methodology to be useful in other
programs, such a one-way bicycle sharing, which suffer from the same network imbalance
problem and can be found in major cities around the world.
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11


