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POLYTOPAL BALLS ARISING IN OPTIMIZATION

ANTOINE DEZA, JEAN-BAPTISTE HIRIART-URRUTY, AND LIONEL POURNIN

Abstract. We study a family of polytopes and their duals, that appear
in various optimization problems as the unit balls for certain norms.
These two families interpolate between the hypercube, the unit ball for
the ∞-norm, and its polar cross-polytope, the unit ball for the 1-norm.
We study combinatorial and geometric properties of both families such
as their f -vector, their volume, and the volume of their boundary.

1. Introduction

A family of norms on Rd resembling the usual Euclidean norm, yet poly-
topal in the sense that the balls for these norms are polytopes, were intro-
duced in [25] as a tool to solve linear approximation problems.

These norms, defined by

(1.1) ‖x‖(k) = inf{‖u‖1 + k‖v‖∞ : u+ v = x},

where x is a vector from Rd and k is a parameter that belongs to the in-
terval [1, d], were later considered in the context of robust optimization [3],
a method to deal with linear optimization under uncertain constraints. As
shown in [3], defining the uncertainty constraints using these norms, referred
to as D-norms in this case, allows for an efficient way to solve robust opti-
mization problems. It is further observed in [12, 21] that these norms are
naturally connected with the conditional value at risk, a popular metric used
in quantitative finance: just as the conditional value at risk, these norms,
called the CVaR norms in this other context, put the emphasis on the largest
coordinates of a vector from Rd. In particular, it is shown in [21] that these
norms are a solution to an optimization problem regarding the conditional
value at risk. The same norms also appear in optimization problems over
sets of matrices [26], where they are called vector k-norms, and in sparse
optimization [10, 11]. In the latter case, one is faced with the sparsity con-
straint on the solutions to a problem: the desired solutions—vectors from
Rd—are required to have a prescribed number of non-zero coordinates. This
happens for instance in data science, in machine learning [22], in mathemat-
ical imaging, or in statistics among other fields. The number of non-zero
coordinates of a vector x of Rd is often denoted by ‖x‖0 in the optimization
literature. Formally, if x1 to xd denote the coordinates of x,

‖x‖0 = |{i : xi 6= 0}| .
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Figure 1. The polytope ρ3,k, when k is equal to 1, 3/2, 2,
5/2, and 3 (from left to right).

Despite what the notation suggests, this quantity does not define a norm
since it is not absolutely homogeneous. In fact, the map x 7→ ‖x‖0 is not
convex, or even continuous and as a result, it is often replaced by x 7→ ‖x‖1
in order to make sparse optimization problems computationally tractable
[15]. Another approach is to replace ‖x‖0 by the difference of two of the
norms introduced above. Indeed, it is observed in [10, 11] that the sparsity
constraint ‖x‖0 ≤ k is equivalent to the equality

‖x‖(k) − ‖x‖(l) = 0

for any l such that k < l ≤ d. Hence, the norms defined by (1.1) allow for a
computationally effective way to estimate sparsity.

As we mentioned above, the balls for these norms are polytopes. The pur-
pose of this article is to study the combinatorics of these polytopes and their
duals, by which we mean their f -vector, as well as some of their geometric
properties such as their volume and the volume of their boundary.

Throughout the article, we denote by γd the d-dimensional hypercube
[−1, 1]d and by βd the cross-polytope whose vertices are the center of the
facets of γd, following the notation used by Coxeter [5]. Note that the former
is the unit ball for the ∞-norm and the latter the unit ball for the 1-norm.

We consider the family of polytopes

(1.2) ρd,k = conv

(
βd ∪

1

k
γd

)
when k ranges from 1 to d. It is shown in [10] that ρd,k is the unit ball for
the norm defined by (1.1). Note that these polytopes interpolate between
the hypercube and its dual cross-polytope (for another example of polytopes
with that property, in a loose sense, see [18]). In particular, ρd,1 coincides
with the hypercube γd because βd is a subset of that hypercube. Similarly,
ρd,d is equal to the cross-polytope βd as this cross-polytope admits the di-
lated hypercube γd/d as a subset. More precisely, the vertices of γd/d are
exactly the center of the facets of βd, just as the vertices of βd are the cen-
ters of the facets of γd. As we shall see, this observation can be generalized,
allowing to determine the whole face lattice of ρd,k.

Recall that the norm defined by (1.1) can also be viewed as the support
function of the polytope ρ?d,k polar to ρd,k [13]. Since γd is the polar of βd, the
polytopes ρ?d,k provide another way to continuously deform βd into γd, and
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Figure 2. The polytope ρ?3,k, when k is equal to 1, 3/2, 2,

5/2, and 3 (from left to right).

give rise to alternate (dual) norms. These polytopes have been considered
in [4] in the context of monotone path computation within certain polytopal
graphs. It follows from (1.2) that

(1.3) ρ?d,k = (kβd) ∩ γd.

By duality, the f -vector of ρ?d,k is obtained by reversing that of ρd,k.
However, the volume of ρ?d,k requires a separate computation, which we will
also provide here. While we are mainly interested in the polytopes ρd,k and
ρ?d,k when k is an integer, most of our results hold for any k within the

interval [1, d]. The combinatorics of ρd,k and ρ?d,k is studied in Section 2.
The volume of ρd,k and of its boundary are computed in Section 3. The
same two volumes, but for ρ?d,k instead of ρd,k are computed in Section 4.

2. The combinatorics of ρd,k and ρ?d,k

As we mentioned earlier, the number of the (d− i− 1)-dimensional faces
of ρ?d,k is equal to the number of the i-dimensional faces of ρd,k. Therefore,
we only need to compute the number of the faces of one of them. In order
to do that, we will give a close look at the continuous deformation of γd into
βd via the polytopes given by (1.2). It will be convenient to consider the
dilate kρd,k instead of ρd,k itself. Recall, in particular that a polytope has
the same combinatorics as any of its dilates by a non-zero coefficient.

First observe that kρd,k is obtained by pulling the centers of each facet of
the hypercube γd away from the hypercube along the axes of coordinates,
until they are at a distance k − 1 from the hypercube, and by taking the
convex hull of these pulled points together with the vertices of γd. In partic-
ular, when k is greater than 1 but close enough to 1, kρd,k is obtained from
the hypercube γd by glueing pyramids over each of its facets. It immediately
follows that, except for its facets, all the proper faces of γd, are still faces
of kρd,k. Moreover, all the facets of kρd,k are pyramids over a (d − 2)-face
of γd. More precisely, if γd−2 is a (d − 2)-dimensional face of γd, the two
facets of kρd,k incident to it are the two pyramids over γd−2 whose apices
are the points pulled from the center of the facets of γd incident to γd−2.
This describes the boundary complex of kρd,k whenever 1 < k < 2. when
k = 2 the two facets of kρd,k incident to γd−2 merge into a single facet, a
bipyramid over γd−2 whose two apices are the points pulled from the center
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of the facets of γd incident to γd−2. By our description, all the facets of 2ρd,2
are built this way. In particular, they are pairwise isometric.

Now let us describe how the boundary complex of kρd,k get modified
when 2 < k < 3. In this case, the two apices of the bipyramid over γd−2 are
further pulled away from the hypercube, which splits that bipyramid into
the convex hulls of the line segment that joins these two apices with each
of the facets of γd−2. Again, all the facets of kρd,k are isometric to such a
convex hull. Now recall that the facets of γd−2 are (d− 3)-dimensional faces
of γd. In particular these faces are (d−3)-dimensional hypercubes. Let γd−3
be one of these hypercubes. Observe that γd−3 is contained in exactly three
facets of kρd,k because it is incident to exactly three (d − 2)-dimensional
faces of γd. Upon reaching k = 3, these three facets merge into a single facet
of 3ρd,3, obtained as the convex hull of γd−3 and the equilateral triangle
whose vertices are the points pulled from the centers of the three facets of
γd incident to γd−3. As above, all the facets of 3ρd,3 are obtained this way.
That process repeats when k belongs to an interval between two consecutive
integers. In particular, when k is an integer, each of the (d−k)-dimensional
faces of the hypercube gives rise to a facet of kρd,k and all the facets of kρd,k
are obtained this way. More precisely, we obtain the following.

Theorem 2.1. If k is an integer, then the facets of kρd,k are exactly the
convex hulls of the union of a (d− k)-dimensional face γd−k of γd with the
(k−1)-dimensional regular simplex whose vertices are the points pulled from
the centers of the k facets of γd incident to γd−k.

It is noteworthy that the regular simplex mentioned in the statement of
Theorem 2.1 is a face of the cross-polytope kβd.

Remark: Let us assume that k is an integer. According to Theorem 2.1, the
number of facets of ρd,k is equal to the number of (d− k)-dimensional faces
of a d-dimensional hypercube. As a consequence,

(2.1) fd−1(ρd,k) = 2k
(
d

k

)
.

By polarity, it further follows from Theorem 2.1 that the vertices of ρ?d,k
are exactly the 2k

(
d
k

)
points from {0, 1,−1}d with k non-zero coordinates.

When k is not an integer, the facets of ρd,k are obtained, in combinatorial
terms, by splitting each of the facets of the polytope bkcρd,bkc into as many
facets as a (d− bkc)-dimensional hypercube has.

Theorem 2.3. If k is not an integer, then the facets of kρd,k are exactly the
convex hulls of a (d− bkc − 1)-dimensional face γd−bkc−1 of γd with one of
the (bkc− 1)-dimensional simplices whose vertices are any bkc of the points
pulled from the centers of the bkc+ 1 facets of γd incident to γd−bkc−1.

Based on Theorems 2.1 and 2.3, we now compute the f -vector of ρd,k.
From there on, we denote by fi(P ) the number of i-dimensional faces of a
polytope P . According to our description, ρd,k has 2d+2d vertices when 1 <
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k < d. Recall that ρd,1 is a d-dimensional hypercube and ρd,d a d-dimensional

cross-polytope, whose number of vertices are 2d and 2d, respectively.
As mentioned above, in the case when k is an integer, fd−1(ρd,k) is the

number of (d−k)-dimensional faces of a d-dimensional hypercube. By The-
orem 2.3, when k is not an integer the number of facets of ρd,k is the product
of the number of (d−bkc−1)-dimensional faces of a d-dimensional hypercube
with the number of facets of a bkc-dimensional simplex, that is

fd−1(ρd,k) = 2bk+1c
(

d

bkc+ 1

)
(bkc+ 1).

In order to complete the f -vector of ρd,k when k is an integer, let us
remark that the faces of ρd,k are of three types: they can be faces of the
hypercube γd/k, faces of the cross-polytope βd, or neither. We first compute
the number of the i-dimensional faces of ρd,k of the latter type.

Lemma 2.4. If k is an integer, and i satisfies 1 ≤ i ≤ d− 2, then the num-
ber of the i-dimensional faces of ρd,k that are neither a face of the hypercube
γd/k, nor a face of the cross-polytope βd is(

d

k

) u∑
j=l

2d−j

(
d−k
j

)(
k
i−j
)(

d−i
d−k−j

) ,

where l = max{0, i− k + 1} and u = min{i− 1, d− k − 1}.

Proof. Assume that k is an integer. According to Theorem 2.1 any facet
of ρd,k is the convex hull of the union of a (d− k)-dimensional face γd−k of
the hypercube γd/k and the (k−1)-dimensional regular simplex αk−1 whose
vertices are the points pulled from the centers of the k facets of γd incident
to γd−k. By construction the affine hulls of γd−k and αk−1 are orthogonal
subspaces of Rd. Therefore, the proper faces of conv(γd−k ∪ αk−1) that are
not a face of γd−k or a face of αk−1 are exactly the convex hulls of the union
of a proper face of γd−k and a proper face of αk−1. Moreover the dimension
this convex hull is greater by one than the sum of the dimension of the faces
of γd−k and αk−1 it is constructed from. Let us consider a face that arises
this way from a j-dimensional face γj of γd−k and a (i− j − 1)-dimensional
face αi−j−1 of αk−1. Since γd−k is a (d− k)-dimensional cube,

fj(γd−k) = 2d−k−j
(
d− k
j

)
.

Since αk−1 is a (k − 1)-dimensional simplex,

fi−j−1(αk−1) =

(
k

i− j

)
.

Therefore, conv(γd−k ∪ αk−1) admits exactly

2d−k−j
(
d− k
j

)(
k

i− j

)
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faces of such as conv(γj∪αi−j−1). Now observe that if we would multiply this
quantity by the number of facets of ρd,k, conv(γj∪αi−j−1) would be counted
as many times as the number of facets of ρd,k it is incident to. Let us compute
this number. The facets of ρd,k incident incident to conv(γj ∪ αi−j−1) are
obtained by choosing one of the (d−k)-dimensional faces F of the hypercube
γd/k incident to γj and contained in all the facets of γd/k the vertices of
αi−j−1 are pulled from, and by then taking the convex hull of its union with
the (k − 1)-dimensional simplex whose vertices are the points pulled from
the centers of the k facets of γd incident to F . Hence, there are(

d− i
d− k − j

)
possible choices for F , and conv(γj ∪ αi−j−1) is incident to that number of
facets of ρd,k. According to these observations, there are(

d

k

)
2d−j

(
d−k
j

)(
k
i−j
)(

d−i
d−k−j

)
faces of ρd,k obtained as the convex hull of the union of a j-dimensional
face of γd/k with a (i − j − 1)-dimensional face of βd. Such faces of γd/k
and βd exist if and only if l ≤ j ≤ u with l = max{0, i − k + 1} and
u = min{i− 1, d− k − 1}, which completes the proof. �

Now recall that, if k > 1, then by our description of ρd,k, the hypercube
γd/k shares all of its faces of dimension less than d − k with ρd,k and no
other. Similarly, if k < d, then the cross polytope βd shares all of its faces
of dimension less than k − 1 with ρd,k, and no other face.

As a consequence of these observations, we obtain the following.

Lemma 2.5. If k > 1, then ρd,k and γd/k share

2d−i
(
d

i

)
faces of dimension i when 0 ≤ i < d − k and they do not share any face of
dimension i when d− k ≤ i < d. If k < d, then ρd,k and βd share

2i+1

(
d

i+ 1

)
faces of dimension i when 0 ≤ i < k−1 and these polytopes do not have any
common face of dimension i when k − 1 ≤ i < d.

The following is an immediate consequence of Lemmas 2.4 and 2.5.

Theorem 2.6. If k is an integer greater than 1 and less than d then, for
any integer i satisfying 1 ≤ i < d− 1,

(i) fi(ρd,k) = f? when i ≥ max{d− k, k − 1},

(ii) fi(ρd,k) = 2i+1

(
d

i+ 1

)
+ f? when d− k ≤ i < k − 1,
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(iii) fi(ρd,k) = 2d−i
(
d

i

)
+ f? when k − 1 ≤ i < d− k,

(iv) fi(ρd,k) = 2i+1

(
d

i+ 1

)
+ 2d−i

(
d

i

)
+ f? when i < min{d− k, k − 1},

where, in the right-hand side of these equalities,

f? =

(
d

k

) u∑
j=l

2d−j

(
d−k
j

)(
k
i−j
)(

d−i
d−k−j

) ,

with l = max{0, i− k + 1} and u = min{i− 1, d− k − 1}.

Remark: A conjecture by Kalai [16] states that a d-dimensional centrally-
symmetric polytope always has at least 3d non-empty faces. The polytopes
ρd,k satisfy this conjecture. Indeed, recall that, when k is an integer such

that 1 < k < d, ρd,k has 2d + 2d vertices and 2k
(
d
k

)
facets. Ignoring the

f? terms in the expression of fi(ρd,k) provided by Theorem 2.6, one obtains
that the number of non-empty faces of ρd,k is at least

1 + 2d+ 2d + 2k
(
d

k

)
+

k−1∑
i=2

2i
(
d

i

)
+

d−k−1∑
i=1

2d−i
(
d

i

)
,

a sum that can be rearranged into the binomial expansion of (1 + 2)d.

3. The geometry of ρd,k

Let us recall that ρd,k is introduced in [10] as an intersection of half-spaces

of Rd. We recover this description as a consequence of Theorem 2.1.

Corollary 3.1. If k is an integer, then ρd,k is the set of the points x in Rd
such that the absolute value of any k coordinates of x sum to at most 1.

In the remainder of the section, we compute the volume of ρd,k and that
of its boundary. Let us remark that our description of kρd,k naturally pro-
vides a polyhedral subdivision of this polytope into convex hulls of unions
of hypercubes and simplices. Consider a (d− l)-dimensional face γd−l of the
hypercube γd where l < k, and the regular (l− 1)-dimensional simplex αl−1
whose vertices are the points pulled from the facets of γd incident to γd−l
in our description of ρd,k. As l < k, conv(γd−l ∪ αl−1) is a d-dimensional
polytope. When l = 0, we will take as a convention that γd−l is the whole
hypercube γd and αl−1 is the empty set. The family of these polytopes when
l ranges from 0 to bkc form a subdivision of ρd,k. This subdivision turns

out to be regular. In other words, it can be recovered by projecting to Rd
the lower faces of a (d+ 1)-dimensional polytope [6]. In this particular case,
an example of such a polytope can be obtained by identifying Rd as the
subspace of Rd+1 spanned by the first d coordinates, by leaving the vertices
of γd within Rd, by lifting the vertices of kβd in the hyperplane of Rd+1



8 A. DEZA, J.-B. HIRIART-URRUTY, AND L. POURNIN

wherein the last coordinate is equal to 1, and by taking the convex hull of
all the resulting points.

According to this discussion, the volume of ρd,k can be obtained from that
of conv(γd−l ∪ αl−1). This polytope can be alternatively built by starting
from γd−l, constructing the pyramid over γd−l whose apex is a vertex of αl−1,
then taking the pyramid over that pyramid whose apex is another vertex of
αl−1, and so on until all the vertices of αl−1 have been used.

As a consequence, in order to obtain the volume of this polytope, we first
compute the distance of a vertex x of αl−1 to the affine hull of the union of
γd−l and of i vertices of αl−1 other than x.

Lemma 3.2. The distance between a vertex x of αl−1 and the affine space
spanned by γd−l and by i vertices of αl−1 other than x is

k

√
k2 − 2(i+ 1)k + (i+ 1)l

k2 − 2ik + il
.

Proof. Consider a set V of i vertices of αl−1. We assume without loss of
generality that γd−l is the (d − l)-dimensional face of the hypercube γd
wherein the first l coordinates are equal to 1 and that the vertices of αl−1
contained in V are the ones whose positive coordinate is among the first i
coordinates. Let us also translate γd−l and αl−1 by subtracting the center
of γd−l, which can be done without loss of generality as well.

In this setting, the affine space spanned by γd−l ∪ V contains the origin.
After the translation, the first i coordinates of the points contained in V are
given by the columns of the following matrix, their last d− l coordinates are
equal to 0, and their l − i intermediate coordinates are equal to −1:

k − 1 −1 · · · −1 −1

−1 k − 1
. . .

...
...

−1 −1
. . . −1 −1

...
...

. . . k − 1 −1
−1 −1 · · · −1 k − 1

.

By symmetry, the orthogonal projection of x on the affine space spanned
by γd−l∪V is a multiple by a coefficient λ of the sum of the points contained
in V. Now observe that, by symmetry, the equation(

x− λ
∑
v∈V

v

)
· y = 0,

where y is a point from V does not depend on how y is chosen within V.
Solving that equation for λ yields

λ =
−2k + l

k2 − 2ik + il
.
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Finally, we obtain∥∥∥∥∥x− λ∑
v∈V

v

∥∥∥∥∥ = k

√
k2 − 2(i+ 1)k + (i+ 1)l

k2 − 2ik + il
,

as desired. �

Observe that the volume of γd−l is 2d−l. Together with Lemma 3.2, the
expression of the volume of a pyramid in terms of the volume of its base and
the distance of its apex to it, provides the following.

Lemma 3.3. The volume of conv(γd−l ∪ αl−1) is 2d−lkl−1(k − l)(d− l)!
d!

.

We obtain the volume of ρd,k from Lemma 3.3.

Theorem 3.4. The volume of ρd,k is
2dkbkc−d

bkc!
.

Proof. By the above remarks on the decomposition of ρd,k as a polyhedral

complex, and since a hypercube has 2l
(
d
d−l
)

faces of dimension d−l, it follows
from Lemma 3.3 that the volume of kρd,k is

2d
bkc∑
l=0

kl−1(k − l)
l!

.

Dividing this quantity by kd, we recover the volume of ρd,k. In addition,

bkc∑
l=0

kl−1(k − l)
l!

=
kbkc

bkc!
,

and we obtain the desired result. �

Remark: It is noteworthy that the volume of ρd,2 does not depend on d: by
Theorem 3.4, this volume is equal to 2. Further note that ρd,2 is a non-
zonotopal parallelotope (see for instance [7] and references therein), and
that ρ4,2 is the 24-cell, a 4-dimensional regular polytope. In particular, ρ4,2
is self-dual (in the sense that its face lattice and the face lattice of its polar
are isomorphic). It turns out that, when d is greater than 2, the polytope
ρd,k is only self-dual in this special case.

Let us turn our attention to computing the volume of the boundary of ρd,k.
In the remainder of the section, we assume that k is an integer. Since all of
the facets of ρd,k are isometric and we know their number, we only need to
compute the volume of one of these facets in order to establish the volume
of the boundary of ρd,k. Consider the same γd−l and αl−1 as above but,
this time, assuming that k and l coincide. In this case, conv(γd−l ∪ αl−1)
is a facet of kρd,k. Observe that the polytopes conv(γd−l ∪ S) where S
ranges over the facets of αl−1 collectively define a polyhedral subdivision
of conv(γd−l ∪ αl−1). The volume of these polytopes can be obtained from
Lemma 3.2. As a consequence, we obtain the volume of conv(γd−l ∪ αl−1).
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Lemma 3.6. If k = l, then the volume of conv(γd−l ∪ αl−1) is

2d−kkk−1/2
(d− k)!

d!
.

Since the number of facets of ρd,k is 2k
(
d
k

)
and these facets are all isometric,

the volume of the boundary of ρd,k is obtained as an immediate consequence
of Lemma 3.6. As above, the volume of a facet of kρd,k should be divided

by kd−1 in order to get the volume of a facet of ρd,k.

Theorem 3.7. If k is an integer, then the boundary of ρd,k has volume

2d

k!
kk−d+1/2.

4. The geometry of ρ?d,k

By symmetry, the volume of ρ?d,k is 2d times the volume of its intersection

with the hypercube [0, 1]d. That intersection is precisely made up of the
points within [0, 1]d whose sum of coordinates is at most k. It turns out
that an explicit formula is known for the volume of the intersection of [0, 1]d

with a half-space bounded by an arbitrary affine hyperplane.

Theorem 4.1 ([2]). If a is a vector from Rd whose every coordinate is non-
zero, c a real number, and H− the half space of Rd made up of the points x
satisfying a·x ≤ c, then the volume of [0, 1]d ∩H− is

(4.1)

∑
(−1)σ(v)(c− a·v)d

d!π(a)
,

where the sum is over the vertices v of [0, 1]d contained in H−, σ(x) is the
sum of the coordinates of a point x in Rd and π(x) is their product.

Using this formula, we derive the volume of ρ?d,k ∩ [0, 1]d.

Proposition 4.2. The volume of ρ?d,k ∩ [0, 1]d is

bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!
.

Proof. The desired expression is obtained from Theorem 4.1, where c is
replaced by k and a by the vector whose coordinates are all equal to 1. In
this case the terms of the sum in the numerator of (4.1) only depend on the
sum of the coordinates of the associated vertex v of [0, 1]d. Rearranging these

terms by first summing over the
(
d
i

)
vertices of [0, 1]d whose coordinates sum

to i and then letting i range from 0 to bkc provides the desired result. �

Remark: Note that, when k is an integer, ρ?d,k ∩ [0, 1]d can be naturally
decomposed into hypersimplices. More precisely, consider an integer l such
that 0 ≤ l < k. The portion of [0, 1]d made up of the points whose sum of
coordinates is between l and l + 1 is an hypersimplex. It is known [17, 24]
that the volume of hypersimplices is obtained by dividing Eulerian numbers
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[8] by d!. Therefore, when k is an integer, the volume of ρ?d,k ∩ [0, 1]d can
also be expressed in terms of a sum of the Eulerian numbers.

The volume of ρ?d,k is obtained as a consequence of Proposition 4.2.

Theorem 4.4. The volume of ρ?d,k is 2d
bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!
.

Remark: Since ρd,k and ρ?d,k are polar to one another, their Mahler volume is
the product of their volumes. Hence, by Theorems 3.4 and 4.4, the Mahler
volume of these polytopes is

4dkbkc−d

bkc!

bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!

when k is an integer. We have computed this quantity up to d = 100 for all
integers k such that 1 ≤ k ≤ d and found that, in these cases, the Mahler
volume of ρd,k is at least 4d/d! as Mahler’s conjecture states [14, 19, 20].

Finally, let us compute the volume of the boundary of ρ?d,k. Unlike ρd,k,
the facets of ρ?d,k are not pairwise isometric. The facets of ρ?d,k contained
in a facet of γd are isometric to ρd−1,k−1, and their volume is given by
Theorem 4.4. All the other facets of ρ?d,k are isometric to the intersection

δd−1,k of the hypercube [0, 1]d with the hyperplane made up of the points
whose sum of coordinates is equal to k. It is noteworthy that, when k is an
integer, δd−1,k is an hypersimplex and, as we mention above, its volume can
be computed from the Eulerian numbers. In fact, a formula for the volume
of the intersection of an hypercube with an arbitrary affine hyperplane is
established in [9] based on [1].

Theorem 4.6 (Theorem 2 from [9]). If a is a vector from Rd whose every
coordinate is non-zero, c a real number, and H the half space of Rd made
up of the points x satisfying a·x = c, then the volume of [−1, 1]d ∩H is

(4.2)
‖a‖2

∑
(a·v + c)d−1s(a·v + c)π(v)

2(d− 1)!π(a)
,

where the sum is over the vertices v of [−1, 1]d, s(x) is the sign of a number
x, and π(x) is the product of the coordinates of a point x in Rd.

We derive the volume of δd−1,k for any k within [1, d] using Theorem 4.6.

Proposition 4.7. The volume of δd−1,k is

√
d

(d− 1)!

bkc∑
i=0

(−1)i
(
d

i

)
(k− i)d−1.

Proof. Recall that (4.2) is a sum over the vertices of [−1, 1]d. By a straight-
forward change of variables, that sum can be transformed into a sum over
{0, 1}d that provides the volume of the intersection of the hypercube [0, 1]d

with a hyperplane. Just as in the proof of Proposition 4.2, our special case is
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such that the terms in that sum only depend on the sum of the coordinates
of the point from {0, 1}d they correspond to. These terms can therefore be
rearranged as we did in the proof of Proposition 4.2, by first summing over
the points whose coordinates sum to i and then, by letting i range from 0
to d. The resulting expression for the volume of δd,k is

√
d

2(d− 1)!

 bkc∑
i=0

(−1)i
(
d

i

)
(k − i)d−1 −

d∑
i=bkc+1

(−1)i
(
d

i

)
(k − i)d−1

.
However, it is well-known (see for instance [23]) that

d∑
i=0

(−1)i
(
d

i

)
(k − i)d−1 = 0.

As a consequence,

d∑
i=bkc+1

(−1)i
(
d

i

)
(k − i)d−1 = −

bkc∑
i=0

(−1)i
(
d

i

)
(k − i)d−1,

and the desired result follows. �

Recall that the facets of ρ?d,k are either isometric to ρd−1,k−1 or to δd−1,k.

As ρ?d,k has 2d facets isometric to ρd−1,k−1 and 2d facets isometric to δd−1,k,
we obtain the following from Theorem 4.4 and Proposition 4.7.

Theorem 4.8. The volume of the boundary of ρ?d,k is

2dd

bkc−1∑
i=0

(−1)i(k − 1− i)d−1

i!(d− i− 1)!
+
√
d

bkc∑
i=0

(−1)i(k − i)d−1

i!(d− i)!

.
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