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Totally Invariant Divisors of non Trivial

Endomorphisms of the Projective Space

MABED Yanis

Abstract

It is expected that a totally invariant divisor of a non-isomorphic endomor-

phism of the complex projective space is a union of hyperplanes. In this paper,

we compute an upper bound for the degree of such a divisor. As a consequence,

we prove the linearity of totally invariant divisors with isolated singularities.

1 Introduction

Only a few complex projective varieties admit non-isomorphic endomorphisms
(which we call non trivial endomorphisms). The projective space of any dimension
is one of them and a subset D ⊂ Pn is said totally invariant if there exists a non
trivial endomorphism f of Pn such that f−1(D) = D. The following statement has
been conjectured in [BCS04]

Conjecture 1.1. All totally invariant prime divisors of Pn are linear.

For n ≥ 3, the conjecture is true for smooth divisors thanks to a result of
Beauville [Bea01, Thm] for smooth divisors of degree higher than two and Cerveau-
Lins Neto [CLN00, Thm 2] for smooth quadrics. Let D ⊂ Pn be a totally invariant
divisor by an non trivial endomorphism f of Pn, the logarithmic ramification formula
(see [BH14, Lemma 2.5]) gives the following

KPn +D = f ∗(KPn +D) +R

where R is an uniquely determined effective divisor. We deduce that the degree d of
a totally invariant divisor is bounded by n+ 1. Hwang and Nakayama showed that
irreducible hypersurfaces of Pn of degree n+1 are not totally invariant [HN11, Thm
2.1.] and Höring proved that no irreducible hypersurface of Pn of degree n is totally
invariant (see [Hör17]). This last statement finishes the proof of the conjecture in P3

thanks to Zhang who showed that no quadric of P3 is totally invariant (see [Zha13,
Thm 1.1.]). Our goal here is to prove the two following theorems.
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Theorem 1.2. Let X be an irreducible totally invariant divisor of Pn of degree d
and let l be the dimension of the singular locus of X (we set l = −1 if X is smooth).
Then we have

d <

(
n

l + 1

)1/(n−l−1)

+ 1.

The proof of this statement follows the method in [Hör17] which involves the
Chern classes of the logarithmic cotangent sheaf Ω1

Pn(log X). To understand the
strengths and weaknesses of this bound, we will see multiple corollaries in the conclu-
sion of the paper.

Theorem 1.3. If X is a divisor of Pk which is not totally invariant then, for all
n ≥ k, no cone of Pn over X (see definition 3.1) is totally invariant .

Since singular quadrics can be seen as cones over smooth quadrics, this result
implies that any quadric is totally invariant by a non trivial endomorphism. Indeed,
smooth quadrics can not be totally invariant by [CLN00, Thm 2]. The two theorems
above join forces to give the following corollary.

Corollary 1.4. Let X be an irreducible divisor of Pn with isolated singularities. If
X is totally invariant then it is a hyperplane.

Aknowledgements. This work was completed during my PhD thesis directed
by Andreas Höring and Ekaterina Amerik. I wish also thank Daniele Faenzi and
Amaël Broustet for their crucial advices. This thesis was supported by Université
Côte d’Azur and by Laboratoire de Mathématiques J.A. Dieudonné.

2 Bound of the degree

Let X be an irreducible divisor of Pn totally invariant by a non trivial endomor-
phism f of Pn with n ≥ 2. The original idea of Höring in [Hör17] is about comparing
the following Chern classes

c2[ΩPn(log X)⊗O(r)]

for r ∈ N∗. We want to adapt this point of vue to the higher Chern classes of these
logarithmic cotangent sheafs. When the variety X is singular, we cannot ensure that
these sheafs are locally free everywhere but it’s locally free and globally generated
wherever X is smooth. That’s why the Theorem 1.2 involves the dimension l of the
singular locus. We set k = n− l − 1, so we have

codimPnXsing = k + 1
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and we want to show the following inequality

d <

(
n

k

)1/k

+ 1.

If X is not normal (i.e. k = 1), one remarks that the bound becomes n + 1 which
is already known. So we can suppose, without any loss of generality, that X is a
normal divisor of Pn.

We first recall the lemma 2.2 of [Hör17] :

Proposition 2.1. Denoting by h the equation of X in Pn and assuming that deg X ≥
2, the sheaf ΩPn(log X)⊗OPn(1) is generated by the following global sections

d(X0h)

h
, ... ,

d(Xnh)

h
(1)

on the complement of Xsing.

The key point of the proof of Theorem 1.2 is the following lemma which permits
to compare Chern classes of sheafs.

Lemma 2.2. Let M be a smooth projective variety of dimension k, E1 and E2 be
two vector bundles of rank n ≥ k on M , V ⊂ H0(M, E1) be a vector subspace of
dimension > n and

ϕ : E1 → E2

an injective sheaf morphism on M . We assume the following :

(i) the evaluation morphism ev : V ⊗OM → E1 is surjective,

(ii) for all x ∈ M , one has rg ϕx ≥ n− k, and

(iii) for all 1 ≤ i ≤ k + 1, one has dim {x ∈ M |rg ϕx ≤ n− i+ 1} ≤ k − i+ 1.

Then we have
ck(E1) ≤ ck(E2).

Proof. One denotes by |V | the projective space obtained from the vector space V
and we consider the closed set

B := {(x, σ) ∈ M × |V | |(ϕ ◦ ev)x(σ(x)) = 0}

with its two natural projections

p1 : B → M, p2 : B → |V |.

One sets, for all 1 ≤ i ≤ k + 1,

Ri := {x ∈ M |rg ϕx = n− i+ 1}
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with ∪k+1
i=1Ri = M by (ii).

If x ∈ Ri then rg(ϕ ◦ ev)x = n− i+ 1 and so

dim p−1
1 (x) = dim |V | − n + i− 1.

However, by (iii), we have dim Ri ≤ k − i+ 1 and the dimension of the irreducible
components of B are bounded by dim |V | − n+ k. We finish the proof by induction
on n ≥ k :

If n = k, then the dimension of the irreducible components of B are bounded by
dim |V | so the generic fibers of p2 are finite. We deduce that for a generic section σ
of E1, the section ϕ ◦ σ of E2 has only isolated zeros. Since ϕ is injective, the generic
section σ has also isolated zeros and we naturally obtain ck(E1) ≤ ck(E2).

If n > k, then the dimension of the irreducible components of B are bounded
by dim |V | − n + k < dim |V | so the generic fibers of p2 are empty. Therefore,
for a generic section σ of E1, the section ϕ ◦ σ never vanishes and neither does σ.
These two sections σ and ϕ ◦ σ define a trivial subbundle of E1 and E2 respectively.
Furthermore, the quotients E1/OM and E2/OM , the global section subspace V/Cσ
and the induced morphism

ϕ̃ : E1/OM → E2/OM

satisfy the lemma’s hypothesis so we can apply the induction hypothesis. Finally,
we know that c(Ei) = c(Ei/OM) because of the following short exact sequence

0 → OM → Ei → Ei/OM → 0.

In particular we obtain ck(Ei) = ck(Ei/OM) that finishes the proof. �

Before applying the previous lemma, we shall recall the Proposition III.10.6. in
[Har77].

Proposition 2.3. If f : X → Y is a finite morphism between two n-dimensional
varieties then

codimX{x ∈ X|rg dxf ≤ n− i} ≥ i.

We now set P ⊂ Pn a general k-dimensional plane such that M = f−1(P ) is a
smooth k-dimensional variety and M ∩Xsing = ∅. We also set

ϕ : f ∗(ΩPn(log X)⊗OPn(1))⊗OM → ΩPn(log X)⊗OPn(m)⊗OM

the injective sheaf morphism on M induced by the logarithmic differential of f .
The integer m is the algebraic degree of f , we have m ≥ 2 and f ∗(O(1)) = O(m).
Finally we denote by V ⊂ H0(M,ΩPn(log X)⊗OPn(1)⊗OM ) the subspace generated
by the restrictions to M of the global sections defined by (1). Ones remarks that
M is general k-dimensional variety in the following sense : if V is a variety with
dim V ≤ n− k − 1 then we can assume that M ∩ V = ∅.
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Proposition 2.4. All the objects defined above satisfy the hypothesis of Lemma 2.2.

Proof. a

(i) This follows directly from the Proposition 2.1.

(ii) If x ∈ M\X then ΩPn(log X)x ≃ ΩPn and the logarithmic differential is only
the classic differential. Since f is finite, we deduce from Proposition 2.3 :

dim {rg (dflog)x ≤ n− k − 1} ≤ n− k − 1

then, since the k-variety M was chosen in a generic way, we have

M ∩ {rg (dflog)x ≤ n− k − 1} = ∅.

so for all x ∈ M\X, rg ϕx ≥ n− k.
If x ∈ X\Xsing then we have ΩX,x ⊂ ΩPn(log X)x. Indeed, if {u1 = 0} is a
local equation of X near x so the C-vector space ΩPn(log X)x admits

du1

u1
, du2, ..., dun

as a basis and ΩX,x has
du2, ..., dun

as a basis. Furthermore, since X is totally invariant by f , we have the follo-
wing commutative diagram where the vertical arrows are injective :

(f |X)
∗ΩX,x

��

d(f |X )
// ΩX,x

��

f ∗ΩPn(log X)x
dflog

// ΩPn(log X)x

But, since f |X is finite, we have

dim {rg d(f |X) ≤ n− k − 1} ≤ n− k − 1

so, again because the k-dimensional variety M was chosen in a generic way,
we obtain

M ∩ {rg d(f |X)x ≤ n− k − 1} = ∅.

In other words, the rank of d(f |X) on M ∩ X is at least n − k and by the
previous diagram, so is the rank of dflog on M ∩X.

(iii) We fix 1 ≤ i ≤ k + 1. For x outside of X and by the same reason as (ii),
we have

dim{rg (dflog)x ≤ n− i+ 1} ≤ n− i+ 1 (2)

and so
dim M ∩ {rg (dflog)x} ≤ n− i+ 1} ≤ k − i+ 1.
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Similarly, on X we have

dim M ∩ {d(f |X)x ≤ n− i} ≤ k − i.

Then, by reusing the diagram in (ii), we find that the dimension of {rg (dflog)x ≤
n− i+ 1} is at most k − i+ 1 and finally

dim {rg ϕx ≤ n− i+ 1} ≤ k − i+ 1.

�

As a consequence of the key lemma, we obtain the following.

Proposition 2.5. Let X be a prime divisor of Pn which is totally invariant by a
non trivial endomorphism f of Pn. We set k = codimXXsing and M defined as in
Proposition 2.4. Then we have the following inequality :

ck(f
∗(ΩPn(log X)(1))⊗OM) ≤ ck(ΩPn(log X)(m)⊗OM). (3)

This brings us to the computation of ck(ΩPn(log X) ⊗ OPn(m)), the result is
summed up in the next proposition.

Proposition 2.6. The k-th Chern class of ΩPn(log X)⊗OPn(1) does not depend of
n. More precisely, we have

ck(ΩPn(log X)⊗OPn(1)) = (d− 1)kHk.

Furthermore, we have the following estimate

ck(ΩPn(log X)⊗OPn(m)) = [

(
n

k

)
mk +

(
n− 1

k − 1

)
(d− n− 1)mk−1 + o(mk−1)]Hk.

Proof. As a first step, we shall compute ci(ΩPn(log X)) for i = 1, ..., k by using the
short exact sequence (2.8) of [Dol07]

0 → Ω1
Pn → Ω̃1

Pn(log X)
res
→ µ∗OX̃ → 0. (4)

where µ : X̃ → X is a desingularization of X. Since X is a normal variety and by
[Deb01, 1.13.], we have µ∗OX̃ ≃ OX . We deduce that

ci(µ∗OX̃) = ci(OX) = X i = diH i

for all 1 ≤ i ≤ k then

ci(ΩPn(log X)) = (

i∑

j=0

(−1)j
(
n+ 1

j

)
di−j)H i
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for i = 1, ..., k.
We now use the lemma A.2.1 from [Mab21] with E = ΩPn(log X) and L = OPn(m)
to find the following

ck(ΩPn(log X)⊗OPn(m)) = [
k∑

i=0

mk−i(
i∑

j=0

(−1)j
(
n + 1

j

)(
n− i

k − i

)
di−j)]Hk

= [

(
n

k

)
mk +

(
n− 1

k − 1

)
(d− n− 1)mk−1 + o(mk−1)]Hk

and, in particular for m = 1,

ck(ΩPn(log X)⊗OPn(1)) = [
k∑

i=0

i∑

j=0

(−1)j
(
n + 1

j

)(
n− i

k − i

)
di−j]Hk

= [
k∑

j=0

k∑

i=j

(−1)j
(
n + 1

j

)(
n− i

k − i

)
di−j]Hk

= [

k∑

j=0

k−j∑

i=0

(−1)j
(
n + 1

j

)(
n− i− j

k − i− j

)
di]Hk

= [

k∑

i=0

[

k−i∑

j=0

(−1)j
(
n+ 1

j

)(
n− i− j

k − i− j

)
]di]Hk.

After the index change i = k − i in the first summand, we obtain

ck(ΩPn(log X)⊗OPn(1)) = [

k∑

i=0

[

i∑

j=0

(−1)j
(
n + 1

j

)(
n− k + i− j

i− j

)
]dk−i]Hk

Now for proving that ck(ΩPn(log X) ⊗ OPn(1)) = (d − 1)k =
∑k

i=0

(
k
i

)
(−1)idk−i, it

suffices to show that for all 0 ≤ i ≤ k,

i∑

j=0

(−1)j
(
n + 1

j

)(
n− k + i− j

i− j

)
= (−1)i

(
k

i

)
.

We denote this property by P(n, k, i) for 1 ≤ i ≤ k ≤ n.
One first shows that P(n, k, k) for all k :

k∑

j=0

(−1)j
(
n+ 1

j

)(
n− j

k − j

)
= (−1)k

Now let’s do an induction on n ≥ 1 : the n = 1 case is trivial and

k∑

j=0

(−1)j
(
n+ 1

j

)(
n− j

k − j

)
=

k∑

j=0

(−1)j
(
n

j

)(
n− j

k − j

)
+

k∑

j=1

(−1)j
(

n

j − 1

)(
n− j

k − j

)

=
k∑

j=0

(−1)j
(
n

k

)(
k

j

)
−

k−1∑

j=0

(−1)j
(
n

j

)(
n− j − 1

k − j − 1

)

= 0− (−1)k−1 by P(n− 1, k − 1, k − 1)

= (−1)k.
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Fixing n, we now show P(n, k, i) by an induction on k ≥ 1 : the k = 1 case is
trivial so we assume that P(n, k, i) is true for all i ≤ k and it suffices to show that
P(n, k+1, i) is true for all i ≤ k since P(n, k+1, k+1) has been shown previously.

i∑

j=0

(−1)j
(
n+ 1

j

)(
n− k − 1 + i− j

i− j

)
=

i∑

j=0

(−1)i−j

(
n + 1

i− j

)(
n− k − 1 + j

j

)

=

i∑

j=0

(−1)i−j

(
n + 1

i− j

)(
n− k + j

j

)

−

i∑

j=1

(−1)i−j

(
n + 1

i− j

)(
n− k − 1 + j

j − 1

)

= (−1)i
(
k

i

)

−

i−1∑

j=0

(−1)i−j−1

(
n+ 1

i− j − 1

)(
n− k + j

j

)
par P(n, k, i)

= (−1)i
(
k

i

)
+ (−1)i

(
k

i− 1

)
par P(n, k, i− 1)

= (−1)i
(
k + 1

i

)

and the statement follows. �

Now we have computed the Chern classes, we can rewrite (3) in Proposition 2.5.

Proof of theorem 1.2. First of all, we have

ck(f
∗(ΩPn(log X)⊗OPn(1))⊗OM) = f ∗((d− 1)kHk).M

= (d− 1)kmkHk.M

= (d− 1)kmn ∈ Z

because M = f ∗(Hn−k) = mn−kHn−k in the cohomology ring of Pn. And on the
other hand,

ck(ΩPn(log X)⊗OPn(m)⊗OM) =

(
n

k

)
mn +

(
n− 1

k − 1

)
(d− n− 1)mn−1 + o(mn−1).

The inequality (3) becomes
(
n

k

)
mn +

(
n− 1

k − 1

)
(d− n− 1)mn−1 + o(mn−1) ≥ (d− 1)kmn.

However, when we take iterates of f , the integer m goes to infinity and we have

(d− 1)k ≤

(
n

k

)
.
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Furthermore, if (d − 1)k =
(
n
k

)
, then d = n + 1 since

(
n−1
k−1

)
(d − n − 1) ≤ 0. This

contradicts (d− 1)k =
(
n
k

)
for k ≥ 2. Finally we have shown

(d− 1)k <

(
n

k

)
.

�

3 The cone case

This section is devoted to the study of totally invariant cones of Pn over a hy-
persurface X of Pk with k ≤ n. More precisely, for such a cone, we show that the
hypersurface X is either totally invariant in Pk. First of all, we shall give the precise
definition of a cone.

Definition 3.1. Let X be a divisor of Pk whose equation is h ∈ C[X0, ..., Xk] and
let n ≥ k be an integer, we define the cone of Pn over X as the divisor of Pn whose
equation is h ∈ C[X0, ..., Xn].

Proof of 1.3. Let X be a divisor of Pk which is not totally invariant and whose
equation is h ∈ C[X0, ..., Xk]. We have to show that no cone C over X is totally
invariant. The proof proceeds by induction on the integer n ≥ k. If n = k then
the cone C is equal to X and there is nothing to show. If n > k one assumes by
contradiction that there exists a non trivial endomorphism f = (F0 : ... : Fn) of Pn

with algebraic degree q such that

f−1(C) = C.

The total invariance of C by f is equivalent to the following (see [FS94, Lemma
4.3.]) : there exists λ ∈ C∗ such that

h(F0, ..., Fk) = λh(X0, ..., Xk)
q. (5)

Our goal is to find a non trivial endomorphism g of P
n−1 whose the cone C ′ of

Pn−1 over X is totally invariant. A first idea would be considering the rational map
(F0|Pn−1 : ... : Fn−1|Pn−1) but we meet an issue : this map is not necessarily a mor-
phism because the Fi|Pn−1 for i = 1, ..., n− 1 can have common zeros. However, we
can solve this problem with the following method :

We set P = (0 : ... : 0 : 1) ∈ Pn. Since f is a finite morphism, there exists an
hyperplane H ⊂ Pn such that

H ∩ (f−1(P ) ∪ {P}) = ∅.
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Since H = {a0X0 + ... + anXn = 0} does not contain the point P , we have an 6= 0
and we can assume that

H = {Xn =
n∑

i=0

aiXi}.

We now consider the following endomorphism of H :

g := πP,H ◦ f |H

where πP,H is the projection from P over H whose equations are

πP,H : (x0 : ... : xn) 7→ (x0 : ... : xn−1 :
n−1∑

i=0

aixi).

It is well defined on Pn\{P} and so g is not well defined on x ∈ H if and only if
f(x) = P . This never happens because H ∩ f−1(P ) = ∅ and then the map g is an
endomorphism of H .
Furthermore, H ∩ C is totally invariant by g : indeed, when we restrict (5) on H ,
we find

h(F0|H , ..., Fk|H) = λh(X0, ..., Xk)
q (6)

where h is the equation of C ∩H and F0|H , ..., Fk|H are the k first equations of the
endomorphism g. The inclusion C∩H ⊂ H is isomorphic to the inclusion C ′ ⊂ Pn−1

where C ′ is the cone of Pn−1 over X ⊂ Pk. This is a contradiction to the induction
hypothesis and then C ⊂ P

n is not totally invariant. �

Thanks to bilinear algebra, it is well-known that all singular irreducible quadrics
are cones over a smooth irreducible quadric. These latter aren’t totally invariant
thanks to Cerveau-Lins Neto [CLN00, Thm 2] so we directly obtain the following.

Corollary 3.2. Let X be a prime divisor of Pn which is totally invariant. Then X
is not a quadric.

4 Conclusion

To conclude this paper, we give some precisions about the impact of Theorems 1.2
and 1.3 on the linearity conjecture. The main effect of this bound appear on totally
invariant divisors with isolated singularities as we already present in the corollary
1.4. Let X be a totally invariant prime divisor of Pn and fix the dimension l of the
singular locus of X. In a natural way, we can wonder for which n the conjecture is
verified. The following statement is devoted to this question.
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Values of l −1 0 1 2 3 4 5 6
The conjecture is true if n ≥ 4 n ≥ 4 n ≥ 6 n ≥ 10 n ≥ 14 n ≥ 19 n ≥ 23 n ≥ 27

Table 1

Corollary 4.1. Let X be a totally invariant prime divisor of Pn with n ≥ 4. In
the Table 1 we have registered for which n the conjecture is true depending on the
dimension l of the singular locus of X.

Proof. Assume that the divisor X is not a hyperplane so Theorem 1.3 gives that the
degree d of X is necessarily at least 3. According to Theorem 1.2, we find

2n−l−1 ≤ (d− 1)n−l−1 <

(
l + 1

n

)
.

We deduce that, fixing the integer l, the conjecture is true when the function

φl(n) = 2n−l−1 −

(
l + 1

n

)

is non negative. For each value of l in the table above, it suffices to find the values
of n such that φl(n) is non negative. A simple study of the function φl in each case
gives the results of the table. �

We deduce from the previous corollary that in order to prove conjecture for P4

and P5, it is sufficient to verify it for divisors with 1-dimensional singular locus.

We now wonder what happens for totally invariant prime divisors of Pn with big
degrees (recall that the degree of such a divisor is bounded by n − 1). Let’s begin
with the general case.

Corollary 4.2. Let X be a totally invariant prime divisor of Pn and let l be the
dimension of the singular locus of X. Assume that the degree of X is n − k for
an integer 1 ≤ k ≤ n − 3 then the divisor X is necessarily non normal whenever
n ≥ nk := 2k + 3/2 +

√
2k2 + 2k + 1/4.

Proof. Let assume that l = n−3 then the theorem 1.2 gives the following inequality

(n− k − 1)2 −
n(n− 1)

2
< 0.

This is a quadratic polynomial whose greater root is exactly

nk = 2k + 3/2 +
√
2k2 + 2k + 1/4.

We conclude that the latter inequality is no longer true when n ≥ nk. �
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In order to give a meaning to the above corollary, we shall precise the two special
cases below : whom involve respectively the n− 1 and n− 2 degree case.

Corollary 4.3. Let X be a totally invariant prime divisor of Pn with n ≥ 4 and let
l be the dimension of the singular locus of X. Assume that the degree of X is n− 1
then :

(1) the dimension l is n− 2 or n− 3 for n = 4, 5 ; and

(2) the divisor X is necessarily non normal when n ≥ 6.

Proof. Theorem 1.2 gives the following inequality

(n− 2)n−l−1 <

(
l + 1

n

)
.

The first assertion is proven by a direct computation of the latter inequality in the
special cases n = 4 and n = 5. For the second statement, one can apply Corollary
4.2 with k = 1. Indeed, one hasn1 ≃ 5, 56. �

We can ask the same question to divisors of degree n−2. The following corollary
answer to that question.

Corollary 4.4. Let X be a totally invariant prime divisor of Pn with n ≥ 5 and let
l be the dimension of the singular locus of X. Assume that the degree of X is n− 2
then :

(1) the dimension l is n− 2 or n− 3 for n = 6, 7, 8 ; and

(2) the divisor X is necessarily non normal when n ≥ 9.

Proof. Theorem 1.2 gives the following inequality

(n− 3)n−l−1 <

(
l + 1

n

)
.

The first assertion is proven by a direct computation of the latter inequality in the
special cases n = 6, 7, 8. For the second statement, one can apply Corollary 4.2 with
k = 2. Indeed, one has n2 = 9. �
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