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Abstract

The aim of this paper is to provide a rigorous mathematical analysis of an optimal control
problem with SIR dynamics. The main feature of our study is the presence of state constraints
(related to intensive care units ICU capacity) and strict target objectives (related to the immu-
nity threshold). The first class of results provides a comprehensive description of different zones
of interest using viability tools. The second achievement is a thorough mathematical analysis of
Pontryagin extremals for the aforementioned problem allowing to obtain an explicit closed-loop
feedback optimal control. All our theoretical results are numerically illustrated for a further
understanding of the geometrical features and scenarios.

Keywords: Optimal control; SIR; Pontryagin principle; State constraints; Viability; Epi-
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1 Introduction

The optimal control of epidemics ([AAM92, Beh00, HD11, Mar15], ...) has been awakening
lots of interest recently, and even more so after the start of the COVID-19 pandemic – see for
example [AAL20, KS20, Ket21]. In this paper, we focus on the optimal “contact control” of
the following two-dimensional SIR model [KMW27] :

ds

dt
(t) = −b(t) s(t) i(t)

di

dt
(t) = b(t) s(t) i(t)− γi(t)

(1.1)

(the third “recovered class” of SIR being classically obtained by using the conservation of mass).
In our problem, the control parameters are chosen as b ∈ B := [β∗, β] for some 0 < β∗ < β.

The derivatives in (1.1) are meant in a distibutional sense and the trajectories are constructed
from admissible controls b ∈ L0 (R;B) (B-valued Borel-measurable functions). Whenever the
control b and the initial conditions s(0) = s0, i(0) = i0 are fixed, the unique solution to (1.1)
will also be denoted by

(
ss0,i0,b, is0,i0,b

)
. The reader is invited to note that the trajectory can

be computed for positive and negative times t ∈ R.
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Our aim is to consider the optimization problem of minimizing an effort-related cost func-
tional of the form

J(tf , b) =

ˆ tf

0

[λ1 + λ2 (β − b(t))] dt, (1.2)

for two fixed non-negative weight parameters λ1, λ2, under an intensive care unit (ICU) con-
straint on the number of infected [KK20, MSW20]

i(t) ≤ iM ,

for some fixed 0 < iM < 1, and starting from initial positions

(s0, i0) ∈ TiM :=
{

(s, i) ∈ R2
+ : s+ i ≤ 1, i ≤ iM

}
.

In this model, the prescribed level iM represents an upper bound to the capacity of the health-
care system to treat infected patients. The time tf should be seen as a monitoring horizon.
The λ1 cost is related to the (psychological) stress of the epidemics and λ2 is an economic
cost of confinement. The second part λ2 (β − b) depends on the severity of the confinement
measures, b = β meaning no confinement, whileas b = β∗ meaning maximal confinement that
avoids economic shut-down.

Even for the simplest cost (1.2), the decision maker is faced with hard fundamental choices:
to aim for eradication of the epidemics [BBSG17, BBDMG19], which corresponds to a target
i(tf ) = ε, where ε < i0 is very small, or merely for a “modus vivendi”, which could be modeled
via the “safe zone/no-effort zone constraint” in the spirit of [ACMM+21]. More precisely, this
no-effort condition requires that the trajectory (1.1) controlled with β satisfy the ICU constraint:

(s(tf ), i(tf )) ∈ A :=
{

(s, i) ∈ R2
+ : is,i,β(t) ≤ iM , ∀t ≥ 0

}
.

We will see shortly after that this constraint can be regularized and it can be completely de-
scribed cf. Theorem 2.3, assertion 5, b. In our precise statement, we will ask a final qualification
stricter than (s(tf ), i(tf )) ∈ A, i.e. s(tf ) < γ

β . On one hand, the method we develop here can
be applied to a wide range of real-life systems and, in particular, it can be extended to more
complex models of epidemiology. Roughly said, we exhibit a set B0 that is the largest subset
of the viability kernel in which the ICU constraint can be fully saturated, while the remain-
ing of the manageable configurations (B1) describes a backward-in-time “trace” of B0. We are
currently working on a paper detailing this tool-kit in the identification of safe zones in other
epidemic models.

Let us further emphasize that this kind of backward-in-time invariance is of particular rel-
evance in control problems under state constraints (cf. [FP00]), especially when the boundary
may be degenerate. It allows extensions of the control problems to discontinuous costs and the
use of verification theorems coming from the Hamilton-Jacobi-Bellman theory.
On the other hand, the proof of Theorem 2.3 makes explicit how the curves describing the
boundaries (∂A and ∂B) can be obtained and are generalizable to different models.

The main tool for solving the problem is Pontryagin’s maximum/(minimum) principle (see
for example [Pon18, BP03, BP05, SL12, SM17, DGI18, SS78]). However, unlike the usual
approach for SIR problems consisting in writing down Pontryagin’s conditions and using a
numerical method to find the/an optimal control, we provide a thorough analysis of extremals
and optimal control(s). The main features of the work are the following.

1. It provides a comprehensive, self-contained description of different zones of interest (in
Section 2) via classical viability and invariance tools.

2. It provides, in Section 4 a work-through mathematical analysis of the features of Pon-
tryagin extremals for the considered problems. As opposed to an important part of the
literature on the subject, we look deeply into the extremals instead of using numerical
methods to deal with the (dual) co-state problem. We would like to emphasize that our
Problems 3.1 and 3.2 deal with both state constraints and target constraints, and, for 3.1,
due to a strict constraint, existence of optimal controls is obtained a posteriori.
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The analysis of the optimality via Pontryagin extremals allows to prove that the optimal con-
trol in such problems is unique, which is only assumed when directly applying numerical tools.
Furthermore, we show that, for the problem we consider, an “act only when imperative” con-
finement is, indeed, optimal (see Theorem 5.6).

The paper is organized as follows. In Section 2 we define the different sets of initial configu-
rations according to the controls one can employ. Precise characterizations of these regions (in
terms both of reachable sets and of the explicit separating borders) are provided in Theorem
2.3. The proof of this theorem, relaying on viability tools is relegated to an appendix (Section
8). Section 3 provides the description of two types of control problem under investigation with
fixed time horizon. The first (Problem 3.1) deals with a relaxed constraint on the infections
and a strict no-effort target. The second problem (Problem 3.2) relaxes the no-effort target
and approximates the previous one. Section 4 presents general considerations on Pontryagin’s
principle in the presence of state and target constraints. In Section 5, we provide a detailed
analysis of the shape of Pontryagin extremals in each region (see Theorem 5.1 and Theorem
5.2). After having done it for Problem 3.2, we present, by extrapolation, the implications on
Problem 3.1. The optimality is gathered in Theorem 5.6 with emphasis on the a posteriori con-
tinuity of the value function(s), on zone-related feedback forms and uniqueness considerations.
Section 6 provides numerical illustrations in the different region-related scenarios. The last two
sections are devoted to conclusions and appendix.

Notations: Throughout the paper, we will make use of the following notations:

1. given an interval I ⊂ R and a (subspace of a) metric space B, L0(I;B) will stand for the
family of Borel-measurable B-valued functions whose domain is I;

2. the usual 0/1-valued indicator function of sets will be denoted by 1, while the 0/∞-version
is denoted by χ.

2 No-Effort, All-Control and Feasible Zones

Before getting into optimality considerations, let us take some time in order to describe regions
of feasibility and the no-effort zone by means of viability tools. For our readers’ sake, and in
an effort of providing a self-contained material, we gather these notions of viability, viability
kernel, invariance, capture basin in the Appendix.

Definition 2.1 1. We call a no-effort zone the set A ⊆ T :=
{

(s0, i0) ∈ R2
+ : s0 + i0 ≤ 1

}
of all initial configurations (s0, i0) ∈ T such that the associated trajectories controlled with
β satisfy the state constraint is0,i0,β(t) ≤ iM , for all t ≥ 0.

2. We call an all-control zone the family A0 of all initial data such that, for every b ∈
L0 (R; [β∗, β]), one has is0,i0,b(t) ≤ iM , for all t ≥ 0.

3. We call feasible (or viable, see next remark) zone the set B ⊆ T of all initial configurations
(s0, i0) ∈ R2 for which there exists a control b ∈ L0 (R; [β∗, β]) keeping the associated
trajectory is0,i0,b ≤ iM .

Remark 2.2 1. The feasible or viable zone B is the maximal set of initial configurations on
which at least one trajectory satisfies the afore-mentioned constraint. All-control zones
are the sets on which constrained and unconstrained problems give the same value (inde-
pendently on the cost). No-effort zones are useful in target problems.

2. The reader will easily note that A is the viability kernel of

TiM :=
{

(s0, i0) ∈ T : is0,i0,β ≤ iM
}
, (2.1)

when the flow is only controlled with B = {β}.
3. Similarly, B is the viability kernel of TiM when B = [β∗, β]. This is why feasible zones are

viable in the sense of the preceding subsection (see also Remark 8.2).
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4. The set A0 is the largest subset of TiM that is time-invariant (using B = [β∗, β]). It can
be referred to as an invariance kernel.

5. Finally, the simple inclusion A0 ⊆ A ⊆ B holds true.

The following result, whose proof is based solely on viability theory, provides an extensive
characterization of the previously-introduced zones.

Theorem 2.3 1. The all-control zone A0 contains the set

A0 :=
([

0,
γ

β

]
×
[
0, iM

])
∩ T,

as well as [0, 1]× {0}.
2. The viable zone B contains the set

B0 :=
([

0,
γ

β∗

]
×
[
0, iM

])
∩ T,

as well as [0, 1]× {0}.
3. One has the explicit (capture basin) characterizations

(a) A = A0 ∪ A1, where

A1 :=
{(
s
γ
β ,i0,β(−t), i

γ
β ,i0,β(−t)

)
:
(γ
β
, i0
)
∈ A0, t ≥ 0

}
∩ T.

(b) B = B0 ∪ ([0, 1]× {0}) ∪ B1, where

B1 :=
{(
s
γ
β∗ ,i0,b(−t), i

γ
β∗ ,i0,b(−t)

)
:
( γ
β∗
, i0
)
∈ B0, b ∈ L0 (R; [β∗, β]) , t ≥ 0

}
∩ T.

4. If (s0, i0) ∈ B (resp. A0 or A), then, for every 0 < i1 ≤ i0, (s0, i1) ∈ B (resp. A0 or A).
As a consequence, there exist maps ΦA0 , ΦA and ΦB from [0, 1] to [0, iM ] such that

A0 =
{

(s, i) ∈ T : i ≤ ΦA0(s)
}
, A =

{
(s, i) ∈ T : i ≤ ΦA(s)

}
,

B =
{

(s, i) ∈ T : i ≤ ΦB(s)
}
.

(2.2)

5. The sets in (2.2) can be expressed using the following regular (piecewise C1) functions

(a)

ΦB(s) =


iM , if s ≤ γ

β∗
,

iM − s+ γ
β∗

+ γ
β∗

log
(
β∗s
γ

)
, if s ∈

(
γ
β∗
, s∗M

)
,

0, otherwise,

(2.3)

where

iM − s∗M +
γ

β∗
+

γ

β∗
log
(β∗s∗M

γ

)
= 0.

(b) A0 = A and

ΦA(s) =


iM , if s ≤ γ

β ,

iM − s+ γ
β + γ

β log
(
βs
γ

)
, if s ∈

(
γ
β , sM

)
,

0, otherwise,

(2.4)

where

iM − sM +
γ

β
+
γ

β
log
(βsM
γ

)
= 0.
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6. If s∗M ≤ 1 then, starting from (s0, i0) ∈ ∂B with s0 > 0 and i0 > 0, the only viable controls

are identically β∗ on
[
0, τs0,i00

)
, where

τs0,i00 := inf
{
t ≥ 0 : ss0,i0,β∗(t) ≤ γ

β∗

}
,

with the convention inf ∅ = +∞.

The proof is relegated to Subsection 8.2, allowing the reader to get familiarized with the viability
notions. The pictures show the intersection with the triangle T of the qualitative graphs of the
viability boundaries ΦA and ΦB in the cases in which s∗M < 1 and s∗M > 1. From them, the
reader can recognize the sets A0 and B0, A and B.

Figure 1: Viability regions

From now on, and unless otherwise stated, we assume that s∗M ≤ 1. This implies that{
(s, i) ∈ [0, 1]2 : i ≤ ΦB

}
⊆ T.

Remark 2.4 1. Assertion 3 tells us that the feasible/viable region B is the capture basin of
B0 (completed by the stationary regimes [0, 1]× {0}).

2. Similarly, the no-effort region A is the capture basin of A0 (completed by the stationary
regimes [0, 1]× {0}).

3 A Strict No-Effort Formulation

Let us begin with an optimal control problem on a finite and fixed time horizon [0, tf ]. To
lighten notation, from this point on and unless explicitly stated otherwise, the states is0,i0,b

and ss0,i0,b, corresponding to the specific initial conditions (s0, i0) and control b, will be simply
denoted by i and s, respectively.

Problem 3.1 Given a fixed tf > 0 (large enough) and the initial data (s0, i0) ∈ B (i.e. i0 ≤
ΦB (s0)) in the feasible region, minimize, over all admissible controls b ∈ L0

(
R; [β∗, β]

)
,

• the cost functional

J(tf , b) =

ˆ tf

0

[
λ1 + λ2 (β − b(t))

]
dt; (3.1)
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• under the ICU constraint on the trajectory of (1.1)(
s(t), i(t)

)
∈ B, ∀t ∈ [0, tf ] ; (3.2)

• under a strict no-effort constraint s(tf ) < γ
β .

In the sequel, we refer to this formulation as problem P.

Due to the strict constraint s(tf ) < γ
β , the existence of an optimal control does not follow

from the embedding in a lower semicontinuous functional. However, should such an optimal
control exist, it is also the optimal solution of the following problem (for some ε0 > 0 and all
ε < ε0).

Problem 3.2 Given a fixed tf > 0 (large enough) and ε > 0 (small enough) and the initial
data (s0, i0) ∈ B (i.e. i0 ≤ ΦB (s0)) in the feasible region, minimize, over all admissible controls
b ∈ L0 (R; [β∗, β]),

• the cost functional (3.1);

• under the ICU constraint on the trajectory (3.2);

• under a no-effort constraint s(tf ) ≤ γ
β − ε.

In the sequel, we refer to this formulation as problem Pε.

Remark 3.1 Form a mathematical point of view, because of the properties of indicator func-
tions, instead of directly working with a half-open set s(tf ) ∈ [0, γβ ), we prefer working with

closed sets s(tf ) ∈ [0, γβ − ε0] by approximating γ
β from the left. Let us note that

1. the ε-formulation (as opposed to merely writing an interior condition
(
i(tf ), s(tf )

)
∈
◦
A)

is due to the fact that the lower-semicontinuous penalty χs(tf )≤ γβ−ε is needed in order to

guarantee the existence of optimal controls for every ε;

2. non-emptiness of the set of viable controls satisfying the no-effort constraint is guaranteed
for tf large enough by using, for example, (5.13);

3. furthermore, in view of the comment preceding the introduction of problem Pε, we can
restrict our attention to controls b satisfying s(tf ) < γ

β − ε.

Whenever needed, we will specify the initial data (s0, i0) ∈ B by writing J(tf , b; s0, i0). The
value functions of P and Pε will be denoted by V (tf ; s0, i0), respectively Vε(tf ; s0, i0).

Proposition 3.2 1. For every ε > 0, (s0, i0) ∈ B with i0 > 0 and every tf large enough, the
problem Pε has an optimal solution.

2. Furthermore, for every ε > 0, (s0, i0) ∈ B, with i0 > 0, for every tf large enough and
every i0

2 > η > 0 such that Vε(tf ; s1, i1) <∞ for every (s1, i1) ∈ B ∩ Bη (s0, i0), the value
function Vε(tf ; ·, ·) is lower semi-continuous on B ∩Bη (s0, i0) (with Bη being the η-radius
open ball);

3. V = infε>0 Vε.

Proof. The existence of optimal solutions to problem Pε with fixed ε > 0 is a standard matter.
It follows by the Direct Method of the Calculus of Variations as, for instance, in [Fre] or using

[Cla13, Theorem 23.11] by noting that B and
{

(s, i) ∈ B : s ≤ γ
β − ε

}
are compact ([Cla13,

Theorem 23.11 (a), (c), (e)]), B := [β∗, β] is convex and compact ([Cla13, Theorem 23.11 (b),
(f.i)]), the running cost f(b) := λ1 +λ2(β− b) is lower-bounded (by λ1), continuous and convex
([Cla13, Theorem 23.11 (d)]).

The final state constraints in the problem Pε can classically be dropped by considering a
lower semi-continuous final cost g(s, i) := χs≤ γβ−ε, where χ stands for the usual 0/∞-valued

indicator function. As a consequence, one gets the lower semi-continuity of Vε. This result is
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standard, and further references for state-constrained dynamics can be found in [FP00, Propo-
sition 4] (see also [BFZ11, Remark 2.2]).

The last assertion is straightforward. For every ε > 0, V does not exceed Vε, as it minimizes
over a larger set, implying the inequality V ≤ inf

ε>0
Vε. On the other hand, if (s0, i0) is fixed

and b is an admissible control for P, it is admissible for Pε0 for some ε0 > 0. As such,
J(tf , b; s0, i0) ≥ Vε0(s0, i0) ≥ inf

ε>0
Vε(s0, i0). The conclusion follows by taking the infimum over

any admissible b. �

4 Pontryagin Approach. General Considerations

To write necessary conditions of optimality let us introduce the adjoint variables p0 ≥ 0, ps, pi ∈
R, and the pre-Hamiltonian

H(t, b, s, i, p0, ps, pi) = p0f0(s, i, b) + psfs + pifi

where f0(s, i, b) = λ1 + λ2 (β − b) is the running cost function and fs = −sbi, fi = sbi− γi are
the dynamics of the state equations. After some manipulations, the pre-Hamiltonian turns out
to be

H(t, b, s, i, p0, ps, pi) = p0 (λ1 + λ2 (β − b)) + ηsbi− γpii
where η := pi − ps. The usage of η is quite natural. Nevertheless, the idea that two adjoint
variables can be summarized into a single new variable is already in [Beh00] and used also in
[KS20] and [Fre].

In the sequel we use a constrained version of Pontryagin’s theorem developed in [BdlV10,
BDLVD13]. In particular, we refer to [BDLVD13] for the definition of the space of functions
with bounded variation BV ([0, tf ]) which is given by extending functions in a constant way on
an open interval containing [0, T ]. We adopt here also the notation used in [BdlV10, BDLVD13]
of denoting the distributional derivative of a BV function f (which is a measure) by df , instead
than ḟ that we reserve to measures which are absolutely continuous with respect to Lebesgue
as, for instance, in the state equations.

4.1 Optimality Conditions for Problem Pε

By Pontryagin’s theorem, given an optimal solution (s, i, b), there exist a constant p0 ∈ {0, 1},
adjoint state real functions ps, pi ∈ BV ([0, tf ]), a multiplier for the state constraint µ ∈
BV ([0, tf ]) with a nondecreasing representative (hence with measure distributional derivative
dµ ≥ 0) such that µ(t+f ) = 0 (recall that the functions are extended outside [0, tf ]), and a
multiplier for the final state constraint p1 ≥ 0 that satisfy

(P1) the non-degeneration property

p0 + dµ([0, tf ]) + p1 > 0; (4.1)

indeed, our problem Pε corresponds to problem (P ) in [BdlV10] with a final condition
Φ(yT ) ∈ K where yT =

(
s(tf ), i(tf )

)
, Φ(s, i) = s − γ

β + ε and K = (−∞, 0]; the normal

cone to K is given by NK(0) = [0,∞) implying p1 ≥ 0; furthermore, NK(x) = {0}, for all
x < 0, implying p1 = 0 whenever s(tf ) < γ

β − ε;
(P2) the complementarity conditionˆ

[0,tf ]

(
i(t)− iM ) dµ(t) = 0; (4.2)

(P3) the conjugate equations with transversality conditions
dps = −ηbi,
dpi = −

(
ηbs− γpi

)
− dµ,

ps(tf ) = p1, pi(t
+
f ) = 0,
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which hold as equalities between measures on [0, tf ]; we observe that the boundary con-
dition for the costate pi is given on the right limit in tf , since pi could be discontinuous
in tf if the measure dµ charges this point; on the contrary, ps is continuous in [0, tf ] since
the derivative is absolutely continuous with respect to the Lebesgue measure;

(P4) the minimality property

H
(
t, b(t), s(t), i(t), p0, ps(t), pi(t)

)
= inf
b∈B

H
(
t, b, s(t), i(t), p0, ps(t), pi(t)

)
,

for almost every t ∈ [0, tf ];

(P5) the conservation property

H
(
t, b(t), s(t), i(t), p0, ps(t), pi(t)

)
= k,

with k constant, for a.e. t ∈ [0, tf ] (see [Bon20, Lemma 7.7]).

Definition 4.1 We recall that a Pontryagin extremal for problem Pε is any control b ∈ L0 (R; [β∗, β])
that satisfies the constraints of problem Pε and conditions (P1)-(P5).

4.2 Remarks and consequences

Throughout all this section we assume that (s = ss0,i0,b, i = is0,i0,b, b) be a local solution of
the control Problem 3.2 (with initial data (s0, i0) ∈ B and write consequences of Pontryagin’s
necessary conditions.

We have the following consequences.

(C1) By (P3) the jump condition [η(t)] = [pi(t)] = −[µ(t)] ≤ 0 holds for every t ∈ [0, tf ] (where
the inequality follows by the fact that µ is non-decreasing); The functions µ, pi and η have
the same set of discontinuity points D; since such functions have bounded variation, the
set D is at most countable; in particular it is a Lebesgue-null set;

(C2) By the conservation of the Hamiltonian

p0

(
λ1 + λ2 (β − b(t))

)
+ η(t)b(t)s(t)i(t)− γpi(t)i(t) = k for a.e. t ∈ [0, tf ]. (4.3)

(C3) (P3) implies that
dη = dpi − dps = ηb(i− s) + γpi − dµ, (4.4)

or, owing to (4.3),

dη = ηbi+
p0

(
λ1 + λ2 (β − b(t))

)
− k

i
− dµ. (4.5)

Remark 4.2 We remark here that, differently from the case in which state constraints are
not considered, the computation of the constant k is not a straightforward consequence of the
transversality conditions, because, as already observed, pi is allowed to jump in the final point
tf .

Since the cost is linear in the control b, the minimum value of the Hamiltonian on K = [β∗, β]
is achieved when b ∈ {β∗, β}. Hence, setting the switching function

ψ := ηsi

the optimal control has to satisfy

b(t) =

{
β, if ψ(t) < p0λ2,

β∗, if ψ(t) > p0λ2.
(4.6)

for almost every t ∈ [0, tf ], where ψ denotes any pointwise representative of the switching
function.

8



Proposition 4.3 If k − p0λ1 ≥ 0 in (4.3) and p1 = 0 then we have η(t) ≥ 0 for almost every
t ∈ [0, tf ].

Proof. We begin with noting that, since µ is nondecreasing, dµ ≥ 0 and, therefore, (4.5)
implies

dη ≤ ηbi+
p0

(
λ1 + λ2 (β − b(t))

)
− k

i
. (4.7)

Without loss of generality, we assume η, and thus ψ, to be right-continuous.
Arguing by contradiction, let us assume that there exists t ∈ (0, tf ) such that η(t) = η(t+) <

0. Since the switching function ψ = ηsi has the same sign as η, and since p0 ≥ 0, we have
ψ(t+) < p0λ2. On the other hand, since ψ is right-continuous, one is able to find some ε > 0
such that ψ < p0λ2, and hence b = β, a.e. in J := (t, t+ ε). Owing to (4.7) with b = β, in J we
have

dη ≤ ηbi− k − p0λ1

i
.

Under the standing assumption of our assertion i.e. k ≥ p0λ1, we have that

dη ≤ ηbi

and ηbi < 0 in J , and therefore η is negative and decreasing in J .
As we shall see, this implies that η < 0, and decreasing, in (t, tf ), which implies η(t−f ) < 0

and hence η(t+f ) < 0 since (by (C1)) it cannot have increasing jumps, thus contradicting the

fact that η(t+f ) = −p1 = 0 by the transversality conditions and the assumption p1 = 0.
To prove the claim that η(s) < 0 in (t, tf ), let us set

t0 := sup{s ∈ (t, tf ] : η(s) < 0}.

Assume, again by contradiction, that t0 < tf . Since η ∈ BV , then there exists the left limit
η(t−0 ) ≤ 0. Since η has no positive jumps in [0, tf ], it follows that η(t+0 ) ≤ 0. On the other
hand, η(t+0 ) < 0 would contradict the choice of t0. It follows that η(t0) = 0. On the other hand,
in the interval (t, t0) we have that η < 0, hence ψ < 0. Then, in (t, t0) we have that ψ < p0λ2,
hence b = β a.e., hence dη ≤ ηbi < 0, hence η is decreasing, which contradicts η(t0) = 0. Our
assumption on t0 is wrong such that t0 = tf and η(s) < 0 in (t, tf ). �

Proposition 4.4 If s(tf ) < γ
β − ε then

1. k = p0λ1 in (4.3),

2. η(t) ≥ 0 for almost every t ∈ [0, tf ],

3. ps is (continuous) nonincreasing and nonnegative in [0, tf ].

Proof. The assumption s(tf ) < γ
β − ε implies p1 = 0, as observed in (P1). Since s is

continuous, then we have that s < γ
β in an interval (tI , tf ] with tI < tf . This implies that

di = (sb− γ)i < γ
β (b− β)i ≤ 0, hence i is decreasing and therefore i < iM in (tI , tf ]. Then, by

complementarity, we have dµ((tI , tf ]) = 0 which implies that pi is continuous in (tI , tf ].

• If p0 = 0 then (4.3) implies

k = η(t)b(t)s(t)i(t)− γpi(t)i(t) a.e. t ∈ (tI , tf ].

By taking a sequence tn → tf on which the equality holds and taking the limit an n→∞
then we get k = 0, which proves 1. in this case.

• If p0 = 1 then ψ(tf ) = 0 < p0λ2 and, by continuity, we have ψ(t) < p0λ2 and hence
b(t) = β in a left neighborhood of tf which we still call (tI , tf ]; (4.3) implies

k = η(t)βs(t)i(t)− γpi(t)i(t) + p0λ1 a.e. t ∈ (tI , tf ].

By arguing as before, we get k = p0λ1, which proves 1. also in this case.

Point 2. follows by Proposition 4.3. Point 3. comes from the previous point 2., the first adjoint
equation and the final conditions.

�
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Using (4.4), one easily proves the following result.

Proposition 4.5 The distributional derivative of ψ is the measure given by

dψ = siγps − si dµ.

Theorem 4.6 Let us assume that λ2 > 0. Let (t1, t2) ⊂ [0, tf ] be an interval in which ψ = p0λ2.
Then the following hold true

1. if p0 = 1, then ps(t) > 0 and i(t) = iM for every t ∈ (t1, t2);

2. if p0 = 0, then we have that, either

(a) i is constant in (t1, t2), or

(b) k = p0λ1, η ≥ 0 in [0, tf ], η = pi = ps = 0 in (t1, tf ] and dµ([0, t1]) > 0.

Proof. Let us consider the case when p0 = 1 and prove the first assertion. First of all, the
reader is invited to note that η > 0 in (t1, t2). Since ψ is constant, on this interval, it follows
that dψ = 0 in (t1, t2). Since s and i are strictly positive, by Proposition (4.5), we have

dµ = γps in (t1, t2). (4.8)

Then, using the complementarity condition (P2) and γ > 0, we have thatˆ
(t1,t2)

ps(iM − i(t)) dt = 0. (4.9)

Since i is continuous, in order to prove that i = iM , it suffices to prove that ps > 0.
Since dµ ≥ 0, from (4.8) we have

ps ≥ 0 in (t1, t2). (4.10)

Now we prove that the strict inequality holds. Suppose now, by contradiction, that there exists
t0 ∈ (t1, t2) such that ps(t0) = 0. By the adjoint equation dps = −ηbi we have that dps ≤ 0 in
(t1, t2), hence ps(t) ≤ 0 for every t ∈ (t0, t2) and, by (4.10), the equality holds in this interval.
Then in (t0, t2) we would have dps = 0, hence η = 0 by the adjoint equation, and finally
ψ = 0 < p0λ2, thus giving a contradiction. The first assertion is now completely proved.

Let us assume p0 = 0 and prove 2. In the interval (t1, t2), we have that ψ = 0, hence η = 0;
by the adjoint equations then dps = 0, hence there exists a constant c such that ps = c on this
interval. Since 0 = η = pi− ps, we also get pi = c. By conservation of the Hamiltonian we have

p0λ1 − γci(t) = k, (4.11)

hence i is constant in (t1, t2) whenever c 6= 0.
In the case in which c = 0, by (4.11), we have k = p0λ1 = 0. By Proposition (4.3), it

follows that η ≥ 0 in [0, tf ]. Then dps ≤ 0 and ps is nonincreasing. Since ps is zero on (t1, t2)
and at the end point tf , we must have ps = 0 in (t1, tf ], hence p1 = 0. By the first adjoint
equation, it follows that η = 0 on (t1, tf ] which implies that pi = 0 on (t1, tf ]. By (4.5), we
have dµ((t1, tf ]) = −dη((t1, tf ]) = 0. Finally, the non degeneration condition (4.1) requires
dµ ([0, tf ]) > 0, which implies dµ([0, t1]) > 0.

�

Proposition 4.7 If i = i0 ∈ (0, iM ] in an interval (t1, t2) then there exists a positive constant
ks such that

b(t) =
γ

s(t)
=

γ

ks − γi0t
(4.12)

a.e. in the interval. The constant is given by

ks = s(t1) + γi0t1 = s(t2) + γi0t2.

Moreover, since b ∈ [β∗, β], we have

s(t1) ≤ γ

β∗
and s(t2) ≥ γ

β
.
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Proof. By the second state equation with i = i0 we immediately have sb = γ. Then the
first becomes ds = −γi0. Integrating we obtain that there exists a constant ks such that
s(t) = ks−γi0t. The moreover part of the statement follows by imposing β∗ ≤ γ

s ≤ β and using
the fact that s does not increase.

�

5 Pontryagin Extremals and Optimal Controls

Let us set, for (s0, i0) ∈ A, the reaching time∗

t̄s0,i0f := inf
{
t ≥ 0 : ss0,i0,β(t) =

γ

β

}
. (5.1)

It is easy to see that this quantity is well defined, that is the set on the right hand side is non-
empty. By continuity we have ss0,i0,β(t̄s0,i0f ) = γ

β . If i0 > 0, the state s is strictly decreasing,

so that, tf > t̄s0,i0f implies γ
β − ss0,i0,β(tf ) > 0. Hence, for every ε > 0 small enough (i.e.

ε < γ
β − s

s0,i0,β(tf )) we have

ss0,i0,β(tf ) <
γ

β
− ε.

As a consequence, the control b ≡ β is admissible for problem Pε for this choice of ε (and
actually for every ε′ < ε). The reader is invited to keep in mind these elements of reasoning
whenever encountering the expression ”ε > 0 small enough”.

Theorem 5.1 1. If (s0, i0) ∈ A \ ∂A, b is a Pontryagin extremal of Pε and s(tf ) < γ
β − ε,

then b = β almost everywhere.

2. If (s0, i0) ∈ A with i0 > 0, and tf > t̄s0,i0f , then,

(a) for every ε > 0 small enough, the optimal solution of Pε is b = β, almost everywhere;

(b) for every ε > 0 small enough, the restriction of the value function Vε(tf ; ·, ·) to A is
continuous at (s0, i0);

(c) The problem P admits the unique optimal control b = β almost everywhere. The
value is the constant λ1tf .

Proof. Let us recall that the states is0,i0,b and ss0,i0,b, corresponding to the specific initial
conditions (s0, i0) and control b, will be simply denoted by i and s, respectively.

First, let us note that if (s0, i0) ∈ A \ ∂A, then we have i < iM on [0, tf ] for every choice of
b among the admissible controls. Indeed, in the sense of distributions,

d

dt

(
i− ΦA (s)

)
= bsi

(
γ

βs
− 1

)−
+ (bs− γ) i.

The later quantity is non-positive. As a consequence, i(t) ≤ ΦA (s(t))+ i0−ΦA(s0) < ΦA (s(t))
which implies the desired inequality. This implies a series of consequences. Indeed, we get

1. dµ([0, tf ]) = 0, by complementarity and the fact that i < iM on [0, tf ];

2. p1 = 0, as observed in (P1), since s(tf ) < γ
β − ε;

3. p0 = 1, by the previous items and the non-degeneration condition (4.1);

4. ψ = p0λ2 in a subinterval (t1, t2) ⊂ [0, tf ] is impossible, due to Theorem 4.6 (otherwise,
we would have i = iM , which is a contradiction);

5. by the first item and 3. of Proposition (4.4), it holds dψ = siγps ≥ 0 and hence ψ is
continuous and non-decreasing;

∗Note that in the statement of Theorem 5.6, equation (5.14), the reaching time has been redefined using the same
notation. When restricted to A the two definitions turn out to be equivalent.
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6. by the second item, ψ(tf ) = 0.

By assumption, there exists some interval [tI , tf ] on which s < γ
β . Owing to Proposition 4.7, it

is clear that i cannot be constant on any interval (t1, t2) ⊂ [tI , tf ]. Combined with ψ(tf ) = 0
and the monotonicity of ψ, one gets ψ(t) < 0 ≤ p0λ2 for all t ∈ (0, tf ) and the first assertion
follows by (4.6).

For the second assertion point (a), let us fix tf > t̄s0,i0f and 0 < ε < γ
β − s

s0,i0,β(tf ) .

• If (s0, i0) /∈ ∂A, and b is a Pontryagin extremal for Pε (with horizon tf ), it is also a
Pontryagin extremal for P ε

2
with the same horizon. Moreover, s(tf ) ≤ γ

β − ε <
γ
β −

ε
2 . By

the first assertion, it follows that b = β (which is admissible for Pε by the choice of ε).
Since this is the only extremal, it follows that it is the optimal control for Pε.

• Let us fix (s0, i0) ∈ ∂A. We define δ := inf {t ≥ 0 : (s(t), i(t)) /∈ ∂A}. Clearly, δ is well
defined and δ < tf ; indeed, since s(tf ) < γ

β −ε then i is strictly decreasing in the last part

of the time horizon, hence i(tf ) < iM , which implies (s(tf ), i(tf )) /∈ ∂A. It is also clear
by the previous point that b = β a. e. on (δ, tf ). Furthermore, the only control keeping
the solution on ∂A is again β. It follows that b = β (almost surely).

By (a) and the continuity of (s, i) 7→ γ
β − s

s,i,β(tf ) (for i > 0) there exists a neighbourhood U

of (s0, i0) such that the restriction of Vε(tf ; ·, ·) to U ∩A is the constant λ1tf , hence proving (b).

Let us prove (c). Since b ≤ β, one has J(tf , b) ≥ λ1tf . On the other hand, we have

J(tf , b) = λ1tf if and only if b = β a.e.. On the other hand, the assumption tf > t̄s0,i0f implies

ss0,i0,β(tf ) < γ/β which means that b ≡ β is admissible, hence optimal and unique.
�

Theorem 5.2 Let λ2 > 0. Let us assume that 0 < i0, and 0 < s0 are such that (s0, i0) ∈ B\A.
Assume moreover that b is a Pontryagin extremal for Problem Pε such that s(tf ) < γ

β − ε.
1. The ICU saturation time

τ1 := sup
{
t ∈ (0, tf ] : i < iM in [0, t)

}
if the set on the right hand side is nonempty and τ1 := 0 if it is empty, satisfies τ1 < tf .

2. If (s0, i0) ∈ B0 \ A and i0 < iM , then the control b must have the following structure:

b(t) =

β if t ∈ (0, τ1),
γ

s(τ2) + γiM (τ2 − t)
if t ∈ (τ1, τ2), (5.2)

where τ1 has been defined above, and

τ2 := sup
{
t ∈ [τ1, tf ] : i = iM in [τ1, t]

}
. (5.3)

Furthermore,

s (τ2) =
γ

β
.

3. If (s0, i0) ∈ B \ B0, then, prior to reaching B0, the control b must have the following
structure:

b(t) =

{
β if t ∈ (0, τ1 ∧ τ0),

β∗ if τ0 < τ1, t ∈ (τ0, τ1),
(5.4)

where τ1 has been defined above and

τ0 := inf
{
t ≥ 0 : i(t) = ΦB (s(t))

}
. (5.5)
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Proof. Let us start with some structural remarks.

i. Since, by assumption, s(tf ) < γ
β − ε, Proposition 4.4 implies that η ≥ 0 in [0, tf ], and

ps is non-increasing and non-negative; moreover, ψ is non-negative and, by (P1), we have
p1 = 0.

ii. In the interval [0, τ1), whenever nonempty, we have i < iM and hence

(a) dµ([0, τ1)) = 0 (by complementarity);

(b) if ψ is equal to p0λ2 = 0 in a subinterval (t1, t2) ⊂ [0, τ1), then p0 = 0 and, owing
to Theorem 4.6, we have that i is constant in (t1, t2) (the alternative dµ([0, t1]) > 0
being impossible since [0, t1] ⊂ [0, τ1) and dµ([0, τ1)) = 0 by (a));

(c) ψ = p0λ2 > 0 in a subinterval (t1, t2) ⊂ [0, τ1) is impossible, again due to Theorem
4.6 (otherwise, we would have i = iM , which is a contradiction);

(d) by the first assertion, on this same interval [0, τ1), it holds dψ = siγps dt ≥ 0 and
hence ψ is continuous and non-decreasing (and non-negative as already observed in
i.).

Assertion 1. To prove the first assertion, we assume by contradiction that τ1 = tf , that
is i < iM on [0, tf ). Then the same applies on [0, tf ] since, by assumption, there exists some
interval [tI , tf ] on which s < γ

β and i is strictly decreasing on (tI , tf ]. We claim that (s0, i0) ∈ A,
against one of the hypotheses of the theorem. This will be achieved by showing that among the
three exhaustive cases

1.1. ψ(0) > p0λ2,

1.2. p0λ2 > 0 and ψ(0) ≤ p0λ2,

1.3. ψ(0) = p0λ2 = 0,

only the second can happen. In that case, ψ(s) = p0λ2 on some interval is excluded as discussed
in item (c) at the beginning of the proof. Similarly, ψ(s) > p0λ2 at some point s < tf will
be excluded as in 1.1. It follows that ψ < p0λ2 and b = β on (0, tf ) (by Definition 2.1, this
corresponds to (s0, i0) ∈ A), hence showing that the extremal policy can only keep i < iM if
(s0, i0) ∈ A.

It remains then to exclude the other cases. Since ψ is non-decreasing, in case 1.1 we have
ψ > p0λ2 and the optimal control is β∗ on (0, tf ), which contradicts the nature of our problem
for which β is optimal as soon as one reaches A (thus, at least on (tI , tf )). In case 1.3 we
have p0 = 0. Since, as observed in point (i) of our preliminar discussion, also p1 = 0, by the
non-degeneration condition (4.1) we get dµ([0, tf ]) > 0. ψ(s) > 0 at some point s is excluded
as in 1.1, thus ψ = 0 on (0, tf ). By Theorem 4.6, using dµ([0, tf ]) > 0, we have i = i(0) on
[0, tf ); this is in contradiction with the fact that i is strictly decreasing on [tI , tf ) as observed in 1.

The remaining assertions concern (s0, i0) ∈ B \ A. Due to the previous argument, τ1 < tf ,
and, by continuity, we have that i(τ1) = iM . Moreover, our assumptions imply τ1 > 0.

Assertion 3. We now turn our attention to the last assertion of the theorem. By definition of
the sets B and B0, in this case we have i0 < iM and hence τ1 > 0. It is convenient to split the
proof according to the following subcases:

3.1. (s0, i0) ∈ ∂B \ B0,

3.2. (s0, i0) ∈ B \ (∂B ∪ B0).

Subcase 3.1. When (s0, i0) ∈ ∂B \ B0, the claim directly follows from Theorem 2.3, assertion 6.
Indeed, in this case we have τ0 = 0 and b = β∗ until the time τs0,i00 , and to conclude it suffices

to prove that τs0,i00 = τ1. In fact, s0 >
γ
β∗

(by assumption) and, as long as s ≥ γ
β∗

, we have

d

dt

(
i− ΦB(s)

)
= (β∗s− γ)i− (1− γ

β∗s
)β∗si = 0. (5.6)

13



This implies that i = ΦB(s) on (0, τs0,i00 ). Furthermore, along the associated trajectory,

we have
(
ss0,i0,β∗(τs0,i00 ), is0,i0,β∗(τs0,i00 )

)
∈ ∂B. Since ss0,i0,β∗(τs0,i00 ) = γ

β∗
, it follows that

is0,i0,β∗(τs0,i00 ) = iM which implies τ1 ≤ τs0,i00 . On the other hand, if τ1 < τs0,i00 then there

would exist t̄ ∈ (τ1, τ
s0,i0
0 ) such that is0,i0,β∗(t̄) = iM and ss0,i0,β∗(t̄) > γ/β∗ so exiting the

viable zone B, which is a contradiction.
At τs0,i00 = τ1, the trajectory enters in the set B0.

Subcase 3.2. When (s0, i0) ∈ B \ (∂B ∪ B0) we have i0 < ΦB(s0) and s0 >
γ
β∗

. The proof of the
assertion in this subcase is divided in three steps.

Step 3.2.1. We claim that ψ(0) < p0λ2 (hence p0λ2 > 0, since η and ψ are non-negative).

Indeed, otherwise, since ψ is non-decreasing in [0, τ1) and does not stay equal to p0λ2 on an
interval, we must have ψ > p0λ2 in (0, τ1). According to (4.6), we would have b = β∗ in this
interval. Then the associated trajectory

(
ss0,i0,β∗ , is0,i0,β∗

)
is kept in the interior of B. To see

this, it suffices to note that, as in (5.6), as long as s ≥ γ
β∗

, we have d
dt (i− ΦB(s)) = 0. On the

other hand, since is0,i0,β∗(τ1) = iM , the trajectory has to reach the boundary by entering in the
zone in which s < γ

β∗
. In particular, we have ss0,i0,β∗ (τ1) < γ

β∗
. But, then, there exists some

t < τ1 such that ss0,i0,β∗(t) = γ
β∗

(and is0,i0,β∗(t) < iM ). Since i is decreasing on (t, τ1), we get
a contradiction.

Step 3.2.2. Definition of σ1. Since ψ(0) < p0λ2 and it is continuous, there exists a right
neighbourhood of 0 in which ψ < p0λ2 and where, according to (4.6), we have b = β. Let us
define

σ1 := sup
{
t ∈ [0, tf ] : ψ < p0λ2 in [0, t)

}
.

The reader is invited to note that σ1 < tf . Otherwise, β would be always admissible for (s0, i0)
which contradicts the choice (s0, i0) /∈ A.

Step 3.2.3. The time τ0 is well defined since, due to i(τ1) = iM , the set on the right hand side
in (5.5) is nonempty. We claim that σ1 = τ0 ∧ τ1.

We focus first on the case in which τ0 < τ1. Then, by definition of τ1, i(t) < iM for every
t ≤ τ0. Moreover, s(τ0) > γ

β∗
because (s(τ0), i(τ0)) ∈ ∂B and i(τ0) < iM . Since s is decreasing

then we have s(t) > γ
β∗

for every t ≤ τ0 and we can apply an argument similar to that of Step

3.2.1 to
(
s̃0, ĩ0

)
= (s(σ1), i(σ1)) to get a contradiction with σ1 < τ0. On the other hand, the

only control admissible at (s(τ0), i(τ0)) is (locally in time) β∗ (see Subcase 3.1), and this implies
σ1 ≤ τ0. The conclusion follows.

If τ0 ≥ τ1 > 0, we aim at proving that σ1 = τ1. Assume, by contradiction, that σ1 > τ1.
The control β is admissible at (s(τ1), iM ) ∈ ∂B only if s(τ1) ≤ γ

β (since, otherwise, i would be

increasing in a neighbourhood of τ1 and the ICU state constraint would be violated) and, in
this case, we would have σ1 = tf (excluded before). Thus σ1 ≤ τ1.

If, by contradiction, σ1 < τ1, then, in the interval (σ1, τ1) we would have ψ > p0λ2 (since
ψ is non-decreasing in [0, τ1) and cannot stay equal to p0λ2 which is positive, by Step 3.2.1.).
Then we would have b = β∗ in (σ1, τ1) and i would be decreasing so contradicting i(τ1) = iM .

The structure (5.4) follows now by definition of σ1, the fact that σ1 = τ0 ∧ τ1 and (4.6).
Actually, assertion 3 is completely proved.

Assertion 2. Let us now prove the second assertion. The reader is invited to note that the
assumption i0 < iM implies τ1 > 0. The proof is subdivided in five steps.
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Step 2.1. We claim that ψ(0) < p0λ2 (and, thus, p0 = 1, since η and ψ are non-negative).

Again, the case ψ(0) > p0λ2 leads to the control β∗ in (0, τ1) for which i is non-increasing
thus cannot reach iM at time τ1. By remark ii. (c) at the beginning of the proof, the case
ψ(0) = p0λ2 > 0 cannot hold on some non-empty sub-interval. By remark ii. (b), the case
ψ(0) = 0 yields i constant on some initial (possibly empty) interval followed by i decreasing
and it is also excluded.

Step 2.2. The argument on (0, τ1) is identical to the one in Step 3.2.2, with the notable excep-
tion that, starting from B0, we get τ0 = τ1.

Step 2.3. Since i(τ1) = iM , it follows that the time τ2 is well defined, that is, the set on the
right hand side in (5.3) is nonempty. By the assumption s(tf ) < γ

β , one has τ2 < tf . We focus

on the case when τ1 < τ2 for which, in (τ1, τ2), we have i = iM . Then the optimal control in
(τ1, τ2) is given by (4.12), that is

b(t) =
γ

s(τ2) + γiM (τ2 − t)
. (5.7)

Since b ≤ β, we have s(τ2) ≥ γ
β . Since s is strictly decreasing, it follows that

s(t) > s(τ2) ≥ γ

β
for every t ∈ [τ1, τ2). (5.8)

In other terms, we have i(t) > ΦA(s(t)) for every t ∈ [τ1, τ2). Let us set

τ2 := sup
{
t ∈ (τ1, tf ] : i > ΦA(s) in (τ1, t)

}
.

We note that the right-hand side set is nonempty and τ2 ≤ τ2 < tf .

The remaining part of the proof aims to show that τ2 = τ2. By continuity, this yields
∂A 3 (s(τ2), iM ), which implies s(τ2) ≤ γ

β and, together with (5.8), provides the “furthermore”
part of the assertion.

Step 2.4. We claim that if τ2 < τ2, then i < iM in (τ2, τ2].

First of all, we prove that

i < iM in a right neighborhood of τ2. (5.9)

We assume, by contradiction, the existence of a strictly decreasing sequence of points tn ∈
(τ2, τ2) with i(tn) = iM and such that tn → τ2. We claim that this implies that

i = iM in [tn, tn+1] for every n. (5.10)

Again, by contradiction, should there exist t̂n ∈ (tn+1, tn) such that i(t̂n) < iM , the continuity
of i implies the existence of some open interval (a, a) ⊆ [tn+1, tn] such that i < iM inside and
i = iM at the boundary†. By complementarity, we have that dµ((a, a)) = 0 and, therefore,
dψ = siγps ≥ 0 such that ψ is continuous and non-decreasing in (a, a). Moreover ψ cannot stay
equal to p0λ2 in (a, a): otherwise, recalling that p0 = 1, by Theorem 4.6, we would have i = iM ,
which is a contradiction with the choice of t̂n. Then, we have all the ingredients to repeat in
(a, a) the argument that we have used in the interval (0, τ1) (albeit we are now in the interior
of B if τ2 − τ1 > 0), obtaining that b = β in (a, a).

Since we are inside the interval (τ2, τ2), it holds that s(t) > γ
β and, therefore, di = (sβ−γ)i >

0 in (a, a), that is i is increasing in (a, a) which is a contradiction with i(a) = i(a) = iM .

†One may take, for instance, a = inf{t ∈ [tn+1, t̂n] : i(t) < iM} and a = sup{t ∈ [t̂n, tn] : i(t) < iM}.
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Then, we have proved that (5.10) holds true. Since the sequence tn converges to τ2 then, by
continuity, this implies that i = iM on (τ1, t1) with t1 > τ2, against the definition of τ2. This
proves (5.9) and there exists a right neighborhood of τ2 in which we have i < iM .

We can set
τ̂2 := sup

{
t ∈ (τ2, τ2] : i < iM in (τ2, t)

}
By the same argument as before we must have τ̂2 = τ2. Indeed, otherwise, in the interval
(τ2, τ̂2), we would have i < iM inside and i = iM at the boundary and we repeat the same
argument used in the interval (a, a), leading to a contradiction. By the same argument we get
that i(τ2) < iM . Then we have proved that i < iM in (τ2, τ2].

Step 2.5. We claim that if τ2 < τ2 then there exists σ > τ2 such that ψ > p0λ2; hence b = β∗,
in (τ2, σ).

Owing to the assertion in Step 2.4 and to the continuity of i, there exists σ > τ2 such that
i < iM on (τ2, σ). Due to the complementarity conditions, we have that ψ is non-decreasing
and continuous in (τ2, σ). We can exclude that ψ(τ+

2 ) < p0λ2. Indeed, in such case, we would
have ψ < p0λ2 in a right neighborhood of τ2 in which we have also i < iM and i(τ2) = iM .
However, since in such a case b = β and s > γ

β , we would have that di = (sβ− γ)i > 0 and this

provides a contradiction. Moreover it does not stay equal to p0λ2 in a subinterval (as constancy
would imply i = iM ). Then we must have ψ(t) > p0λ2, on some interval (τ2, σ

′). Since ψ is
non-decreasing and does not stay equal to p0λ2 in any sub-interval of (τ2, σ), we have ψ > p0λ2

in (τ2, σ). Therefore, ψ > p0λ2 and b = β∗ in (τ2, σ), as claimed.

By definition, (s (τ2) , i (τ2)) ∈ A and, as we have seen, i(τ2) < iM . Then, for every
t ∈ (τ2, σ), (s(t), i(t)) =

(
ss(τ2),i(τ2),β∗ (t− τ2) , is(τ2),i(τ2),β∗ (t− τ2)

)
∈ A \ ∂A and b = β∗ on

[t, σ). This comes in contradiction with Theorem 5.1, 1.

It follows that τ2 = τ2 and the theorem is completely proved. �

Remark 5.3 Substituting s(τ2) = γ
β in the expression (5.2) of b(t), in assertion 2 we have

b(t) =

β if t ∈ (0, τ1),
β

1 + βiM (τ2 − t)
if t ∈ (τ1, τ2).

(5.11)

Remark 5.4 1. Assertion 2 of the previous theorem yields that the only optimal control for
(s0, i0) ∈ B0, with i0 < iM is of the form (5.2). This optimality statement can easily be
extended to (s0, iM ) ∈ B0 if γ

β < s0 <
γ
β∗

. Indeed, each point of this type can be written

as (s0, iM ) =
(
ss1,i1,β(t), is1,i1,β(t)

)
starting from (s1, i1) =

(
ss0,iM ,β(−t), is0,iM ,β(−t)

)
.

Since s0 <
γ
β∗

, it follows that ss0,iM ,β(−t) < γ
β∗

for t small enough. Furthermore, s0 >
γ
β

implies that r 7→ is0,iM ,β(−r) is decreasing (locally in time). This shows that, for small
t > 0, (s1, i1) ∈ B0 with i1 < iM . Whenever b is an admissible control for tf , s0, i0 and

the problem Pε, one sets b̃(r) := β1r≤t + b(r − t)1r>t. The optimality of bopt given by
(5.2) for the problem Pε, the initial data (s1, i1) and for the time horizon tf (note also
that t = τ1!) yields J (tf , b

opt (·+ t) ; s0, iM ) = J (tf + t, bopt; s1, i1) = V (tf + t; s1, i1) ≤
J(tf + t, b̃; s1, i1) = J(tf , b; s0, iM ).

2. In the same spirit, for the upper-right corner of B0 i.e. (s0, i0) =
(
γ
β∗
, iM

)
, every (locally-

in-time) admissible control b1[0,δ](t) should be followed (on (δ, tf )), by (5.2). ‡ As such,
in this case too, an optimal control can be chosen of form (5.2).

‡This can be made rigorous using the dynamic programming principle.
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Remark 5.5 1. By Theorem 5.2, we have i = iM in the interval (τ1, τ2). By integrating the
state equations (see Proposition 4.7), in this interval the susceptible population s turns
out to be

s(t) = s(τ2) + γiM (τ2 − t).

Then it decreases linearly from s(τ1) to s(τ2) = γ/β. In particular, we have

s(τ1) =
γ

β
+ γiM (τ2 − τ1)

from which we obtain that the time amplitude of this control regime is given by

τ2 − τ1 =
s(τ1)− γ

β

γiM
.

The later provides also an alternative definition of the switching time τ2 in terms of τ1.

2. One can give an estimate of τ1 − τ0 solely based on the initial data and the parameters
β, β∗, γ, iM . Using the fact that between τ0 and τ1 one employs the constant control β∗
and that

(
ss0,i0,β∗ , is0,i0,β∗

)
∈ ∂B with ss0,i0,β∗ ≥ γ

β∗
, one can easily show that

β∗ϑ1 − γ
β∗βs0iM

≤ τ1 − τ0 ≤
β∗ϑ1 − γ
βγϑ2

, (5.12)

where

ϑ0 := iM +
γ

β∗
− γ

β∗
log

γ

β∗
;

ϑ1 := exp

(
s0 + i0 − γ

β log s0 − ϑ0

γ
β∗
− γ

β

)
;

ϑ2 :=
β∗

β − β∗
ϑ0 +

s0 + i0 − γ
β log s0

1− β∗
β

− ϑ1.

5.1 The Optimal Control

Gathering these pieces of information provided by Theorem 5.1, Theorem 5.2, Remark 5.3,
Remark 5.4 and Remark 5.5, we get the following complete characterizations of an optimal
control for problems Pε and P.

Theorem 5.6 Let (s0, i0) ∈ B with 0 < i0, 0 < s0. Let

bopt(t) =



β if t ∈ (0, τ1 ∧ τ0),

β∗ if τ0 < τ1, t ∈ (τ0, τ1),
β

1 + βiM (τ2 − t)
if t ∈ (τ1, τ2),

β if t > τ2,

(5.13)

where

τ0 := inf
{
t ≥ 0 : is0,i0,β(t) = ΦB

(
is0,i0,β(t)

)}
,

τβ1 := inf
{
t ∈ (0, tf ] : is0,i0,β(t) = iM

}
,

τ1 := inf
{
t ∈ (0, tf ] : i

s0,i0,β1
(0,τ

β
1 ∧τ0)

+β∗1
(τ
β
1 ∧τ0,tf )(t) = iM

}
,

τ2 := τ1 +
s
s0,i0,β1(0,τ1∧τ0)+β∗1(τ1∧τ0,tf )(τ1)− γ

β

γiM
.

Furthermore, let us set
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1. the reaching time

t̄s0,i0f := inf
{
t ≥ 0 : ss0,i0,b

opt

(t) =
γ

β

}
; (5.14)

2. ωs0,i0 to be the function

τ 7→ ωs0,i0(τ) :=
γ

β
− s

γ
β ,i

s0,i0,b
opt

(t̄
s0,i0
f ),bopt(τ). (5.15)

Then

1. For every tf > t̄s0,i0f and every ε < ωs0,i0
(
tf − t̄s0,i0f

)
, the problem Pε has a continuous

value and bopt is an optimal control.

2. For every tf > t̄s0,i0f , the problem P admits bopt as optimal control.

3. The optimal control can be given in a feed-back form

b̃opt(s, i) =


β if (s, i) ∈ (B \ ∂B) ∪ ∂A,
β∗ if (s, i) ∈ ∂B \ B0,
γ

s
if (s, i) ∈

(
γ
β ,

γ
β∗

)
× {iM},

and is unique up to the Lebesgue-null set ∂A ∪
(
γ
β∗
, iM

)
.

Remark 5.7 1. The function ωs0,i0 represents the deviation of the susceptible population
from the value γ/β taken at the reaching time, when the latter is taken as new origin of
times and the control is bopt; accordingly, we have ωs0,i0(0) = 0. By the monotonicity of
s, we have that ωs0,i0 is increasing and strictly positive (if i0 > 0) on the interval (0,+∞).
Moreover, if tf > t̄s0,i0f , then

ωs0,i0(tf − t̄s0,i0f ) > ε ⇐⇒ ss0,i0,b
opt

(tf ) <
γ

β
− ε.

2. The only control keeping the solution on ∂A is β (and only as long as s > γ
β ). Furthermore,

an optimal trajectory starting from B\A enters A at
(
γ
β , iM

)
(see assertion 2 in Theorem

5.2). It follows that the occupation time of ∂A is non-singular with respect to the Lebesgue
measure on R+ only if (s0, i0) ∈ ∂A, s0 >

γ
β and only if, on the set {(s, i) ∈ ∂A}, the

control coincides with b̃opt. This shows that bopt is unique Lebesque-almost surely (in
time).

3. If one does not already start in the interior of the no-effort zone, i.e. (s0, i0) /∈ A \ ∂A,

the modulus ω is independent of (s0, i0) and ω(t) = γ
β − s

γ
β ,iM ,β(t).

4. The optimal controls need to be extremals and they are unique in almost all the settings

(excepting i = iM and s ∈
(
γ
β ,

γ
β∗

)
which is dealt with in Remark 5.4. Assertion 2

follows from assertion 3 in Proposition 3.2. Finally, assertion 3 is just a way to say that
we actually have a “positional strategy” but this is merely a way of rewriting the first
assertion.

5. The value function in assertion 1 only depends (in an integral formulation) on the position
ss0,i0,β(τ) where τ is the hitting time of B (with β control). The continuity of (s0, i0) 7→ τ
implies that of the value function V itself. Note that the (relevant part of the) boundary

∂B can be divided into two sets Γ1 :=
(
γ
β ,

γ
β∗

)
× {iM} and Γ2 :=

{
(s,ΦB(s)) : s ≥ γ

β∗

}
with different “qualification” behaviour (see, for instance, the introduction in [FP00]).
Indeed, Γ1 satisfies the “inward pointing” condition, while Γ2 is “outward pointing” with
all but the viable control. This hybrid qualification does not allow direct application of
classical results of continuity of the value function.
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6. The control bopt is continuous at τ2; moreover, starting from B0\A its expression coincides
with the one obtained in [MSW20, Theorem 1].

We end this section with a few elements of comparison with [ACMM+21]. While it is true that
the optimal control is the greedy one in both cases, we wish to emphasize that our problem
is fundamentally different than the one in [ACMM+21]. Indeed, [ACMM+21] focuses on the
minimal time to reach A (cf. line 4 after Eq. (2.1) in [ACMM+21]). Roughly speaking,

1. their cost is λ1 = 1 and λ2 = 0, prior to reaching the safe zone; this has a strong impact
on the proof as their comparison in S1.4 strongly uses the independence of control in the
cost;

2. since they deal with a minimal time problem, the “final” time varies with the controls
used; for us, there is a surveillance until a fixed time tf .

6 Bocop Simulations

To conclude, we present some numeric simulations done by using the Bocop package, [TC17,
BGG+17]. For simplicity, the simulations are made on a fixed time interval [0, tf ] where tf is
taken to be large enough to ensure that in the last part of the epidemic horizon the optimal
control is β (no effort condition). Consequently, we can consider a cost functional in which
λ1 = 0 and λ2 = 1 (indeed, since tf is fixed, the choice λ1 > 0 would simply result in a constant
additive contribution to the cost functional), that is

J(b) =

ˆ tf

0

(
β − b(t)

)
dt.

The cost J(b) is minimized under the SIR state equations
s′ = −sbi
i′ = sbi− γi
s(0) = s0, i(0) = i0

with the ICU contraint
i(t) ≤ iM ∀ t ∈ [0, tf ].

The Bocop package implements a local optimization method. The optimal control problem is
approximated by a finite dimensional optimization problem (NLP) using a time discretization
(the direct transcription approach). The NLP problem is solved by the well known software
Ipopt, using sparse exact derivatives computed by CppAD. From the list of discretization for-
mulas proposed by the package (Euler, Midpoint, Gauss II and Lobatto III C), we have chosen
to use the Gauss II implicit method since it appears to be stable enough for the problem under
consideration.

In our simulations we consider only viable initial conditions outside the no-effort zone (in
which the optimal control would be identically equal to β), in other words we take (s0, i0) ∈ B\A.
Once having choosen s0, this condition writes

ΦA(s0) < i0 < ΦB(s0).

By the theory developed in the previous sections we expect qualitatively different optimal
controls according to the following two scenarios:

1. s0 <
γ
β∗

, in which we expect an optimal control b with a bang-boundary-bang structure,

2. s0 >
γ
β∗

, in which we expect an optimal control b with a bang-bang-boundary-bang struc-
ture.

In both scenarios we consider a time horizon tf of 500 days and choose the coefficients β = 0.16,
γ = 0.06, β∗ = 0.08 (so that γ

β∗
= 0.75), the initial conditions i0 = 0.001 and the ICU upper

bound iM = 0.02, but different values of s0; precisely
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1. s0 = 0.7 < γ
β∗

in the first scenario, so that ΦA(s0) ' −0.071 < i0 < ΦB(s0) ' 0.018;

2. s0 = 0.85 > γ
β∗

in the second, so that ΦA(s0) ' −0.148 < i0 < ΦB(s0) ' 0.014.

The figures below show the graph of the optimal control, the states and the adjoint states
(adjointState.2 stands for pi and adjointState.1 is ps). In both scenarios the expected structure
of the optimal control is confirmed by the numerical solutions. Moreover, in the second scenario
the adjoint variable pi has two jumps while in the first there is just one discontinuity. As
expected, ps is always continuous and decreasing.
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Scenario 1
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Scenario 2
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Let us end this section with some further insights on the optimal decisions to be taken
depending on the state-of-epidemics. For better understanding, we illustrate this on the COVID-
19 situation in France and explain the optimal decisions in connection with the associated zones
(see Figure 1).

We deal here with a population N = 67, 000, 000 individuals and an alert level of 400
cases per 100, 000 inhabitants (as announced in May 2021 for basis of de-confinement; a very
large level if compared to 40 in Japan or 100 in several other countries). The incubation-to-
recovery average time is set to 1

γ = 14 (days). § A simple computation yields a normalized

iM := 1
γ ×

400
100000 ' 0.056. We consider β = 0.5 (this parameter is computed from the Delta-

variant R0 ' 7 and γ using the Cori method with c = 1 contact per time unit) and β∗ = 0.25
(i.e. roughly 50% of the population is not directly involved in the essential economy or can
work remotely and can be confined if needed), we get

γ

β
' 0.1428571,

γ

β∗
' 0.2857143, sM ' 0.3091318, s∗M ' 0.5037254.

Given a state-of-epidemics (S, I) (under the curve ΦB!):

• If I ≤ IM = iM × N = 3, 752, 000 and S ≤ 0.1428571 × N = 9, 571, 425 (meaning that
53, 676, 571 individuals have recovered or are vaccinated corresponding to a percentage of
roughly 80%), then do nothing. The herd immunity is achieved.

§Indeed, with an exponential law, the average is the inverse of the exponential parameter.
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• If I = IM = iM×N = 3, 752, 000 and S ∈ (9, 571, 425, 19, 142, 857], then apply progressive
de-confinement b = γ×N

S (high bmeans less confinement) until herd immunity (see previous
case).

• If I < 3, 752, 000, compute S− := N × ΦA
(
I
N

)
and S+ := N × ΦB

(
I
N

)
.

– If S ≤ S−, then do nothing (the herd immunity will be achieved).

– If S > S−, monitor the situation without intervention until S = S+. If S+ >
19, 142, 857, then a strict confinement is in order until the number of susceptibles
reaches 19, 142, 857. Otherwise, we are in the second case (progressive de-confinement).

• The reader is invited to note that A0 represents the first case (herd immunity already
attained), A is the zone where no measure is necessary, B0 is a part of the region in which
a progressive de-confinement is possible, while the part of B for which S+ > 19, 142, 857
corresponds to configurations for which a strict confinement cannot be avoided.

7 Conclusions

We considered an optimal control problem for a SIR epidemic where the control is on the
transmission rate coefficient b, under an ICU state constraint which prescribes that the in-
fected population i has to stay always below a critical threshold iM (representing the estimated
maximum capacity of the health-care system) and a final condition which requires that at the
final time tf the susceptible population should be under the immunity threshold γ

β . The cost
functional is assumed to be affine and depending only on the control variable.

We proved that, under viable initial conditions, the optimal strategy is as follows

• do nothing if the initial conditions allow for an evolution in which i(t) ≤ iM for every
y ∈ [0, tf ] (meaning that the capacity of the health-care system is never exceeded, i.e.
(s0, i0) ∈ A);

• do nothing until time τ1 at which i(τ1) = iM , then preserve the saturation i = iM until
reaching the immunity threshold γ

β if the initial conditions allow for this kind of control

(i.e. if (s0, i0) ∈ B are below the curve R+ 3 t 7→
(
s
γ
β∗ ,iM ,β (−t) , i

γ
β∗ ,iM ,β (−t)

)
);

• otherwise, actuate the maximum level of lock-down before reaching i = iM and then pre-
serve saturation; the time length of the lock-down regime (τ1 − τ0) depends on the initial
conditions and on the coefficient β∗ which gives the strength of the lock-down (see the
inequality 5.12).

8 Appendix

8.1 Viability, Invariance and Other Tools

We recall here some tools from the theory of viability and see their qualitative implications on
the system under study.

Definition 8.1 Let xx0,b be a solution to a controlled system governed by a regular (Lipschitz-
continuous) field f : Rn ×B → Rn i.e.

dxx0,b(t) = f
(
xx0,b(t), b(t)

)
dt, xx0,b(0) = x0, (8.1)

where B is some compact (subset of a) metric space and the admissible controls are Borel
measurable functions b ∈ L0 (R;B).

1. A closed set K ⊂ Rn is said to be (forward-in-time) viable w.r.t. (8.1) if for every initial
datum x0 ∈ K there exists an admissible control b such that the associated trajectory
satisfies xx0,b(t) ∈ K for all t ≥ 0.
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2. Given a closed set K+ ⊂ Rn, the largest subset K ⊂ K+ such that trajectories starting at
x ∈ K can be maintained in K+ is called a viability kernel.

3. A closed set K ⊂ Rn is said to be (forward-in-time) invariant w.r.t. (8.1) if for every
initial datum x0 ∈ K and every admissible control b, the associated trajectory satisfies
xx0,b(t) ∈ K for all t ≥ 0.

4. Given a viable constraint set K ⊂ Rn and a target set K0 ⊆ K, the family L ⊂ K of
initial data that can be steered to K0 in finite time (such that the associated trajectories
do not leave K) is called a capture basin of K0 from K.

Remark 8.2 It is easy to note that a viability kernel is viable in time (i.e. trajectories starting
in K remain not only in K+ but actually in K). Indeed, if x0 ∈ K, then xx0,b(t) ∈ K+ for
some control and all t (by definition of the viability kernel). Taking now y0 := xx0,b(t0) (for
some t0 > 0), then xy0,b(·+t0)(s) = xx0,b(s+ t0) ∈ K+. This proves that y ∈ K (instead of the
weaker condition y ∈ K+). Thus the viability kernel is viable. It follows that a viability kernel
is the largest viable set contained in K+.

These notions are related to the Bouligand tangent (or contingent) and the (negative polar)
normal cones. For our readers’ sake, we recall these notions hereafter.

Definition 8.3 Given a closed set K ⊂ Rn, the tangent cone to K at a point x ∈ K is the set

TK(x) =

{
d ∈ Rn : lim inf

ε→0+

dK (x+ εd)

ε
= 0

}
,

where dK(y) denotes the distance of y from the set K. The normal cone to K at x ∈ K is the
negative polar cone to TK(x), i.e.,

NK(x) = {p ∈ Rn : 〈p, d〉 ≤ 0, ∀d ∈ TK(x)} .

The following result(s) gather some tools when dealing with viability and invariance cf. Propo-
sitions 3.4.1, 3.4.2, Theorem 3.2.4, Theorem 5.2.1 in [Aub09]¶.

Theorem 8.4 With the notation of Definition 8.1, let us assume B to be convex and compact,
f(x, ·) to be convex and f to be Lipschitz in x and globally uniformly continuous.

1. A closed set K ⊂ Rn is viable with respect to (8.1) if and only if for every x ∈ ∂K and
every p ∈ NK(x),

inf
b∈B
〈p, f(x, b)〉 ≤ 0;

2. A closed set K ⊂ Rn is invariant with respect to (8.1) if and only if for every x ∈ ∂K and
every p ∈ NK(x),

sup
b∈B
〈p, f(x, b)〉 ≤ 0;

Remark 8.5 In practice, the domainK is often described by a regular frontier φ (C1-diffeomorphism)
i.e. K = {x ∈ Rn : φ(x) ≤ 0} , ∂K = {x ∈ Rn : φ(x) = 0} and the computation of normal sets
is made to direct and inverse images roughly leading to the semi-line spanned by ∇φ(x) (at
x ∈ ∂K with positive multiplicative constants) or intersections of such domains.

8.2 Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3.

¶The cited reference considers differential inclusions but the properties can easily be obtained in these simple
cases via the regularity assumptions we state in the theorem.
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1. We use 2. of Theorem 8.4 with the vector field

f(s, i, b) =
(
− sbi, (bs− γ)i

)
.

The picture displays the set A0 with the normal cones in the singular points of the bound-
ary. The set degenerates into a rectangle if iM ≤ 1− γ

β .

To prove that A0 is invariant (viable with any measurable control that takes the values
in [β∗, β]) by checking that along the boundary condition 2. of Theorem 8.4 is always
satisfied is an easy task. Let us do it in the less trivial cases and left the others to the
reader:

• along the upper side of ∂A0 we have

NA0
(s, iM ) = {r(0, 1) : r ≥ 0}, ∀s ∈

(
0,min{γ

β
, 1− iM}

)
;

〈f(s, iM , b), (0, 1)〉 = (bs− γ)iM ≤ 0, ∀s ≤ γ

β
, ∀b ≤ β.

• the diagonal side of ∂A0 appears only if γ
β > 1− iM ; assuming to be in such case:

– on the vertex between the upper and the diagonal sides we have

NA0 (1− iM , iM ) = {r(λ, 1) : λ ∈ [0, 1], r ≥ 0};
〈f(1− iM , iM , b), (λ, 1)〉 =

(
b(1− iM )(1− λ)− γ

)
iM ≤ 0, ∀b ≤ β, ∀λ ∈ [0, 1].

– along the diagonal side of ∂A0 we have

NA0
(s, 1− s) = {r(1, 1) : r ≥ 0}, ∀s ∈

(
1− iM ,

γ

β

)
;

〈f(s, 1− s, b), (1, 1)〉 = −γ(1− s) ≤ 0, ∀s.

– on the vertex between the diagonal and the vertical sides we have

NA0

(
γ

β
, 1− γ

β

)
= {r(1, λ) : λ ∈ [0, 1], r ≥ 0};〈

f(
γ

β
, 1− γ

β
, b), (1, λ)

〉
=
(
1− γ

β

)(
b
γ

β
(1− λ)− γ

)
≤ 0, ∀b ≤ β, ∀λ ∈ [0, 1].

The remaining cases are almost trivial since the s component is non-increasing on A0 and
when the initial i = 0 the system is stationary. The case in which γ

β ≤ 1− iM and the set
A0 is a rectangle is very similar.

2. The argument is quite similar to the previous one but one employs b = β∗ for every s ≤ γ
β∗

.
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3. We present the argument for B, the argument for A being quite similar. The right-
hand set in the definition of B1 is included in B. To see this, one notes that, given(
γ
β∗
, i0

)
∈ B0, and an admissible control b, the function t 7→ s

γ
β∗ ,i0,b(−t) is non-decreasing,

hence s
γ
β∗ ,i0,b(−t) ≥ γ

β∗
for every t ≥ 0. It follows that, in the same interval, the

function t 7→ i
γ
β∗ ,i0,b(−t) is non-increasing and, thus, i

γ
β∗ ,i0,b(−t) ≤ iM for all t ≥

0, hence satisfying the state-constraint. As a consequence, starting at some position(
s
γ
β∗ ,i0,b(−t0), i

γ
β∗ ,i0,b(−t0)

)
∈ B1, one reverses the time in b up till t0 (thus reaching B0),

then uses β∗.
Conversely, let (s, i) ∈ B \ B0. We only need to consider the case when i > 0. In this
case, s > γ

β∗
and, as long as ss,i,b(t) > γ

β∗
, the map t 7→ is,i,b(t) is increasing (for every

b ∈ L0 (R+; [β∗, β])), hence is,i,b(t) ≥ i, for all t as before and ss,i,b(t) ≤ se−β∗it. It follows
that there exists (a unique) t1 > 0 such that ss,i,b (t1) = γ

β∗
. Since (s, i) ∈ B, one has

(for the viable control b), is,i,b (t1) ≤ iM . It follows that
(
ss,i,b (t1) , is,i,b (t1)

)
∈ B0

and, hence, by reversing the time, and setting b−(t) := b (t1 − t), one gets (s, i) =(
ss
s,i,b(t1),is,i,b(t1),b−(−t1), is

s,i,b(t1),is,i,b(t1),b−(−t1)
)

, thus concluding our argument.

4. We only prove the assertion for B (the remaining relations being quite similar). We take
(s0, i0) ∈ B and a viable control b. If t1 = t0 the conclusion is trivial. Let us then consider
the case in which i1 < i0. Any trajectory (say with control b′) starting from (s0, i1) has a
non-increasing s and, thus, satisfies{(

ss0,i1,b
′
(t), is0,i1,b

′
(t)
)

: t ≥ 0
}
⊂ R := [0, s0]× [0, 1] .

The associated trajectory Reach(s0, i0) :=
{(
ss0,i0,b(t), is0,i0,b(t)

)
: t ≥ 0

}
⊂ R is asymp-

totically (as t→ ∞ ) directed towards i = 0 and, thus, separates the line i = iM and the
point (s0, i1) (in the rectangle R). We consider the hitting time

0 < t0 := inf
{
t > 0 :

(
ss0,i1,b

′
(t), ss0,i1,b

′
(t)
)
∈ Reach(s0, i0)

}
.

If t0 = ∞, then b′ is obviously a viable control for (s0, i1). Otherwise, for some t >

0,
(
ss0,i1,b

′
(t0), ss0,i1,b

′
(t0)

)
=
(
ss0,i0,b(t), ss0,i0,b(t)

)
. We modify b′ by setting b̃′(r) :=

b′(r)1[0,t0](r) + b(r − t0 + t)1r>t0 to get a viable control for (s0, i1).
Our second assertion follows by setting

ΦA0(s) := sup
{
i : (s, i) ∈ T, is,i,b(t) ≤ iM , ∀t ≥ 0, ∀b ∈ L0 (R; [β∗, β])

}
,

ΦA(s) := sup
{
i : (s, i) ∈ T, is,i,β(t) ≤ iM , ∀t ≥ 0

}
,

ΦB(s) := sup
{
i : (s, i) ∈ T,∃ b ∈ L0 (R; [β∗, β]) s.t. is,i,b(t) ≤ iM , ∀t ≥ 0

}
.

Let us prove that
B = {(s, i) ∈ T : i ≤ ΦB(s)} ,

the other cases being similar and easier.

Let us prove first the inclusion ⊆. Let (s0, i0) ∈ B. Then, there exists b such that
is0,i0,b(t) ≤ iM for any t ≥ 0. Then

i0 ∈
{
i : (s0, i) ∈ T, ∃ b ∈ L0 (R; [β∗, β]) s.t. is0,i,b(t) ≤ iM ∀t ≥ 0,

}
and therefore

i0 ≤ sup
{
i : (s0, i) ∈ T, ∃ b ∈ L0 (R; [β∗, β]) s.t. is0,i,b(t) ≤ iM ∀t ≥ 0,

}
= ΦB(s0),

that is (s0, i0) ∈ {(s, i) ∈ T : i ≤ ΦB(s)}, which proves the claimed inclusion.
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Let us prove the opposite inclusion ⊇. Let (s0, i0) ∈ {(s, i) ∈ T : i ≤ ΦB(s)}, that is

i0 ≤ ΦB(s0) = sup
{
i : (s0, i) ∈ T, ∃ b ∈ L0 (R; [β∗, β]) s.t. is0,i,b(t) ≤ iM ∀t ≥ 0,

}
.

(8.2)
If the strict inequality holds, then there exists i1 > i0 and b ∈ L0 (R; [β∗, β]) such that
(s0, i1) ∈ T, is0,i,b(t) ≤ iM , ∀ t ≥ 0. Then, using the first part of this item, we have the
existence of some admissible b′ such that is0,i0,b

′
(t) ≤ iM , i.e. (s0, i0) ∈ B and the proof is

concluded in this case.

If, otherwise, in (8.2) the equality holds, then we have that for any ε > 0 there exists
iε > i0 − ε and bε ∈ L0 (R; [β∗, β]) such that (s0, iε) ∈ T, is0,iε,bε(t) ≤ iM , ∀ t ≥ 0. Then
we have (for some modified controls b′ε,

is0,i0−ε,b
′
ε(t) ≤ iM (8.3)

By extracting from (b′ε) a weakly-* converging sequence and sending ε → 0, by using
continuous dependence on the data and the uniqueness of the solution of the initial value
problem for the system of state equations, we can deduce that is0,i0,b(t) ≤ iM .

5. If φ is regular enough, then the explicit computation of contingent cones and normal cones
to K := {(s, i) : i ≤ φ(s)} yields

NK(s, φ(s)) = {r(∂s, ∂i) (i− φ(s)) : r ≥ 0} = {r (−φ′(s), 1) : r ≥ 0}.

The viability condition 1. of Theorem 8.4 for B yields, for frontier points (s, i) = (s, φ(s)),

∃ b ∈ [β∗, β] s.t. φ′(s)bsφ(s) + (bs− γ)φ(s) ≤ 0, (8.4)

which implies

φ′(s) ≤ −1 +
γ

β∗s
.

It follows that a necessary condition for φ to be constant is s ≤ γ
β∗

. On the other hand,
the maximal admissible constant is φ = iM . It is immediately seen that, for this constant,
the condition is also sufficient, that is s0 ≤ γ

β∗
, i0 ≤ iM implies (s0, i0) ∈ B. Indeed, since

s is nonincreasing, with β∗ control we have i′ = (sβ∗−γ)i ≤ 0. Then we have proven that
ΦB (s) = iM , ∀s ≤ γ

β∗
and decreases afterwards. Since T is invariant, it follows that the

intersection with T is viable. For s ≥ γ
β∗

, the (maximal) solution (realizing the equality

in the previous inequality) is given by

ΦB(s) = iM − s+
γ

β∗
+

γ

β∗
log

(
β∗s

γ

)
.

Since ΦB is non-negative and i = 0 is stationary, the conclusion follows. The argument
for A is similar but one reasons for b = β. For A0 one asks that (8.4) be satisfied for all
b ∈ [β∗, β], thus arriving on the same set as for A.

6. One writes

d

dt
(i− ΦB(s)) = bsi− γi+

(
−1 +

γ

β∗s

)
bsi = γi

(
b

β∗
− 1

)
≥ 0,

whenever b is admissible, and as long as s > γ
β∗

. As a consequence, starting from (s0, i0) ∈
∂B with s0 >

γ
β∗

, one either exits this region (thus violating viability) or at most stays on
the boundary and, in this case, the viable control is β∗ as described in the statement.

The theorem is completely proved.
�
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