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Investigations into the helically chiral compound Ru(acac)3 shows potential for the experimental 
detection of parity violation (PV) in a molecular system. An experimental set-up for measuring PV 
frequency shifts ∆νPV in vibrational spectra of Ru(acac)3 is currently being built at Laboratoire de 
Physique des Lasers in Paris. Based on our relativistic calculations, the most promising vibrational 
modes are identified with fractional shifts ∆νPV/ν reaching up to two orders of magnitude higher (∼ 
10−13) compared to the projected instrumental sensitivity (∼ 10−15). The related heavier homologoue 
Os(acac)3 exhibits even higher relative PV shifts extending up to ∆νPV/ν ∼ 10−12 strongly motivating 
its future synthesis and characterization.

Introduction. – Parity violation (PV) through electro- 
weak interactions was first predicted in 1956 [1], imme-
diately afterwards observed in nuclear physics [2, 3], and 
later in atomic physics [4–7]. In chiral molecules, the 
exchange of the heavy neutral Z0 gauge boson between 
the electrons and the nuclei is predicted to result in a tiny 
energy difference between the two enantiomers. Due to 
this energy difference, the lower-energy enantiomer would 
be present in slight excess in an equilibrium mixture; this 
imbalance may provide a clue to the origin of biomolecu-
lar homochirality, i.e. why chiral molecules usually occur 
in only one enantiomeric form in nature [8–10].

Over the past decades, various experiments have been 
proposed to observe parity violation in chiral molecules, 
including measurements of PV frequency shifts in NMR 
spectroscopy (e.g. [11–14]), measurements of the time-
dependence of optical activity [15], and direct mea-
surement of the absolute PV energy shift of the elec-
tronic ground state [16]; see also the reviews by Berger 
and Stohner [17], Berger [18], and Schwerdtfeger [19]. 
However, for none of the aforementioned experimental
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schemes, tight experimental upper bounds have been re-
ported yet [17]; this has only been accomplished in mea-
surements of the PV shift of vibrational frequencies, per-
formed at the Laboratoire de Physique des Lasers (LPL) 
in Paris [20–24], using ultra-precise mid-infrared molec-
ular spectroscopy experiments.

Several molecules have been considered as candidates 
for experiments at LPL. The first experiments were 
performed on the C–F stretch vibration in CHFClBr 
lying conveniently in the CO2 laser frequency range 
[20, 21, 25, 26], but led to a non-detection, with an up-
per limit of ∆νPV/ν = 2.5 × 10−13, with ν the vibra-
tional transition frequency and ∆νPV the parity violat-
ing frequency difference between enantiomers. Later, ab 
initio calculations predicted the PV shift for this tran-
sition to be 3 to 4 orders of magnitude smaller [27–30]. 
Another fluorohalomethane that has been under investi-
gation, CHFClI, is predicted to have a larger PV shift, 
but is not stable enough for measurements [22, 31].

Other candidate molecules include SeOClI [32], 
N≡WHClI [33], and N≡UHXY [34] (X, Y = F, Cl, Br, 
I). These systems were predicted to possess vibrational 
transitions with progressively larger PV shifts, as large 
as several tens of Hz (or ∆νPV/ν ∼ 10−13) in N≡UHFI. So 
far, the synthesis of these compounds has not
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FIG. 1. Chemical structures of the ∆- and Λ-M(acac)3 
(M = Ru, Os) with the corresponding transition frequencies 
ν∆ and νΛ.

been reported. More recently, attention has turned to 
chiral oxorhenium complexes [35, 36], but bringing these 
into the gas phase required for high-precision 
spectroscopy remains a challenge given their low stabil-
ity.

Currently under investigation and subject of this pa-
per are the propeller-like chiral complexes ruthenium(III) 
acetylacetonate Ru(acac)3 and its heavier homologue os-
mium(III) acetylacetonate Os(acac)3 (Fig. 1). Ruthe-
nium (Z = 44) is a reasonably heavy nucleus, so that 
in accord with the proposed Z5-scaling law [34, 37, 38] 
we expect this system to experience a large absolute PV 
energy shift. Futhermore, this complex is commercially 
available in its racemic form, it can be readily resolved 
into pure ∆ and Λ enantiomers at gram scales [39], and 
has been characterized through its chiroptical activity 
[40]. Another appealing aspect of Ru(acac)3 is its rel-
atively high volatility, which has proven very useful for 
preparation of metallic surfaces for catalytic and opto-
electronic applications through sublimation and chemi-
cal vapour deposition [41, 42]. It is stable and robust 
under evaporation by heating up to 200◦C, and can thus 
be brought into the gas phase. We have recently been 
able to seed it in a molecular beam, allowing us to carry 
out photoelectron spectroscopy and photoelectron circu-
lar dichroism measurements [43]. All in all, these fac-
tors make it an attractive candidate for gas-phase spec-
troscopy experiments. It should in particular survive 
laser ablation and allow the production of intense sources 
of cold and slow gas samples via buffer-gas cooling in 
a cryogenic chamber, a method that we have recently 
demonstrated with organo-metallic species [24, 44, 45]. 
The characterization of Ru(acac)3 in the mid-infrared re-
gion is ongoing and we report preliminary Fourier trans-
form spectroscopic investigations in solid neon at 3 K,

that in combination with the present calculations allow 
us to select the most appropriate transitions for measur-
ing parity violation.

The heavier homologue of Ru(acac)3, Os(acac)3, is not 
commercially available but can be synthesised [46]. Its 
higher atomic number will most likely lead to larger 
vibrational PV shifts [34], making it a promising 
alternative to Ru(acac)3.

In this work, we perform theoretical investigations of 
the magnitude of the PV shifts that can be expected 
in Ru(acac)3 and Os(acac)3 and guide the selection of 
suitable vibrational modes for measurements; this will 
determine the frequency range for the laser system to be 
built and tuned at LPL. Such a priori investigations are 
crucial, as the size of the PV vibrational shift can vary by 
over an order of magnitude, depending on the vibrational 
mode [30].
Theory. – According to the standard model of par-

ticle physics, the dominant P -odd contribution of the 
weak force to the molecular Hamiltonian is due to vector-
nucleonic–axial-vector-electronic coupling. In the low-
energy limit, the following nuclear spin-independent ef-
fective Hamiltonian can be derived from the standard 
model Lagrangian (see e.g. Refs. [18, 47]):

ĤPV =
GF

2
√

2

electrons∑
j

nuclei∑
A

QW(A)γ5
j ρ(rj − rA), (1)

3
0

which is compatible with the usual four-component 
framework for relativistic quantum chemical calculations. 
In this equation, GF = 2.22255 × 10−14Eha with Eh the 
Hartree energy and a0 the Bohr radius, stands for the 
Fermi coupling constant; the weak charge of nucleus A is 
given by QW(A) = [(1−4 sin2 θW)Z−N ], where θW is the 
weak mixing angle, and Z and N are the number of pro-
tons and neutrons, respectively; ρ(r) stands for the nu-
clear density; and the fifth gamma matrix can be written 
as γ5 = −iγ0γ1γ2γ3, with Dirac matrices γ0, γ1, γ2, γ3. 
The subscript j in γj5 indicates it acts on electron j. The 
Hamiltonian in Eq. (1) will yield a contribution to the 
energy that is positive for one enantiomer, and negative 
for the other.

In this work, we calculate the PV difference in the vi-
brational transition frequencies between the two enan-
tiomers as illustrated in Fig. 1.  The molecular geometries 
were optimized at the density functional theory (DFT) 
level, using an effective core potential on the central metal 
atom to account for scalar relativistic effects. The normal 
modes and corresponding frequencies were calculated in a 
harmonic frequency analysis; here we neglect the coupling 
between the vibrational modes.

Subsequently, several normal modes are selected 
for further fully relativistic calculations (see further 
below). For each chosen mode, eleven single-
point relativistic DFT calculations are performed 
for geometries along the normal mode, yielding 
the PV energy contribution VPV(q) (as the ex-
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pectation value of Ĥ PV, Eq. (1)) as a polynomial function 
of the normal coordinate, q. 

Next, the vibrational wavefunctions |n〉 are found by 
solving the vibrational Schrödinger equation numerically 
following the Numerov–Cooley procedure, for the poten-
tial obtained along the normal mode [48–50]. Then, the 
shift of a vibrational level n can be calculated as

EPV
n = 〈n|V PV(q) |n〉 . (2)

From this we find the PV frequency difference for a tran-
sition from level m to n between the left- and right-
handed form of the molecule:

∆νPV
m→n =

2

h
(EPV

n − EPV
m ), (3)

with h Planck’s constant, and where the factor of two
arises from the fact that the energy of one enantiomer is
shifted up by the PV effects, while that of the other is
shifted down by the same amount.

In this work, we define the sign of this frequency dif-
ference via

∆νPV
m→n = ν∆ − νΛ = νPV

∆ − νPV
Λ = 2νPV

∆ , (4)

where ν∆ and νΛ are the m → n transition frequencies
and νPV

∆ and νPV
Λ = −νPV

∆ stand for the frequency shifts
of these transitions in the ∆ and Λ enantiomer, respec-
tively (see Fig. 1).

Computational details. – Most of the calculations were 
performed for a particular set of computational parame-
ters (basis set and DFT functional) which we refer to as 
the reference; to ensure the robustness and consistency 
of the results, these parameters were varied for a few nor-
mal modes and the results compared. More details can 
be found in the Supplementary Material [51].

For the geometry optimizations [52] we chose the Def2-
TZVPP basis set [53, 54] and the B3LYP functional [55], 
with Grimme D3 dispersion [56]. Relativistic effects were 
included by means of the effective-core potential on the 
central metal atom in the calculation: ECP28MDF on 
ruthenium [57] and ECP60MDF on osmium [58]. 
Subsequent relativistic exact two-component (X2C) 
Hamiltonian [63] DFT calculations were performed with 
the DIRAC18 computational program [59]. As the 
reference for these calculations we take the CAM-B3LYP?

functional [29], which is a Coulomb-attenuated B3LYP 
functional [60] with parameters optimized for reproduc-
ing PV shifts obtained at the coupled cluster level of 
theory. We used Dyall’s v3z basis set on the ruthenium/
osmium and oxygen atoms and Dyall’s v2z basis set 
on the carbon and hydrogen atoms [61, 62]. Two-
electron spin-same-orbit interactions are

are introduced in a mean-field fashion by the AMFI 
procedure [64]. The vibrational PV shifts calculated in the 
X2C procedure have been shown before to differ from 
those obtained in the full four-component framework 
by not more than a few percent [33].

The relativistic calculations are still demanding 
computationally; thus we selected a few important modes 
for our investigation, based on the outcome of the 
vibrational analysis. In order to have a large differential 
PV shift, the parity violating energy should vary 
significantly over the range of a vibration [34].

The parity violating energy scales with atomic number 
and thus the metal center of the complex will contribute 
most to the total PV energy difference. For a large change 
in the electronic density at the metal over the course of a 
vibration, we need a large change in elec-tronic wave 
function in its vicinity, which can be achieved by a large 
change in the position of the oxygen atoms sur-rounding 
the metal center. As a measure hereof, we take the sum of 
the moduli of the M–O displacements along the normal 
mode q:

6∑
i=1

√
(∆xM–O,i)2 + (∆yM–O,i)2 + (∆zM–O,i)2 (5)

where (∆xM–O,i, ∆yM–O,i, ∆zM–O,i)
T = ~dM − ~dO,i, i.e.

the differences of the metal and ith oxygen displacement
coordinates associated with normal mode q (with the cor-
responding displacement vectors being normalized).
Results: Ru(acac)3. – As we could not find any

high-resolution vibrational spectroscopic investigation in
the literature, we synthesized grams of pure Λ and ∆
enantiomers of Ru(acac)3 (following a recipe detailed
in the Supplementary Material [51]) and recorded our
own Fourier transform infrared spectrum of Λ-Ru(acac)3

trapped in solid neon at 3 K. Such low-temperature
matrix-isolation measurements are not muddled by rota-
tions, which are mostly inhibited, and exhibit narrower
bands than the more traditional room-temperature stud-
ies in the liquid or solid phase. Importantly, the obtained
vibrational band centres are typically shifted by only a
few wavenumbers (0.3% of the transition frequency at
most) with respect to the gas-phase conditions of the par-
ity violation measurements (see details in the Supplemen-
tary Material [51]), a level of uncertainty that the current
theory can simply not provide. The distributed feed-
back quantum cascade lasers (QCLs) that will be used
in the PV measurements typically cover a few wavenum-
bers. Thus, this precursor spectroscopic characterisation
is crucial for deciding which laser system to build. Of
course, the theory-experiment comparison is also impor-
tant for identifying the most suitable vibrational modes
for measurements.

Fig. 2 compares the calculated frequencies resulting
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FIG. 2. Comparison between the calculated vibrational spec-
trum (red lines) of Ru(acac)3 from the geometry optimisation
and the infrared Fourier transform spectrum recorded in solid
neon at 3 K (above 2800 cm−1 intensities and absorbance have
been multiplied by a factor of 5). The calculated harmonic
frequencies greater (resp. smaller) than 1700 cm−1 have been
scaled with a scaling factor of 0.964 (resp. 0.98) for com-
parison with the measured spectrum. The baseline of the
experimental spectrum is vertically shifted for clarity.

FIG. 3. Calculated relative PV frequency shifts (∆νPV/ν)
of several vibrational transitions in Ru(acac)3 and Os(acac)3

as a function of the indicator (sum of moduli of Ru–O
or Os–O displacements, see text). The red dots represent
Ru(acac)3, with the larger dots highlighted in blue corre-
sponding to the selected normal modes shown in Tab. I, the
green diamonds represent the corresponding normal modes
of Os(acac)3 shown in Tab. II and the orange dotted hori-
zontal line is the expected sensitivity attainable by ultra-high
resolution vibrational spectroscopy bordering the grey zone
inaccessible to measurements.

from the geometry optimisation shown in the form of a
stick spectrum with the matrix-isolation measurement.
Overall, the calculated vibrational spectrum is in good
agreement with our matrix-isolation spectrum. Details
on the spectroscopy, and in particular the assignment of
the observed bands to the corresponding internal modes,
can be found in the Supplementary Material [51].

The calculated PV shifts are plotted against the indi-
cator of the M–O displacement in Fig. 3 for Ru(acac)3.
A clear correlation between the magnitude of the dis-
placement and the size of the calculated PV shift can be
observed. This correlation can assist in selecting viable
normal modes for calculation in similar compounds.

In addition to the magnitude of the PV frequency

shifts, a number of experimental considerations are to be
taken into account when selecting the vibrational modes
for measurements. The intensity of the selected mode
should be high enough to make the measurement feasible
and its frequency should lie in a range accessible to cur-
rent laser technologies. The group at LPL in Paris that
is currently working on Ru(acac)3 has CO2 lasers [65]
and quantum cascade lasers (QCLs) [24, 66–68] of record
frequency stabilities and accuracies necessary for mea-
suring the tiniest PV frequency differences. CO2 lasers,
until recently the only available stable sources for pre-
cise mid-infrared spectroscopy, span the 9–11 µm range.
Continuous-wave (cw) QCLs are commercially available
in the 4–13 µm range and more sporadically up to 17 µm.
The LPL group has several cw QCLs between 10 and
11 µm (910–980 cm−1 range) and one of the few exist-
ing QCLs emitting at 17.2 µm made by R. Teissier and
co-workers [69].

Based on the above criteria (both in terms of a large
predicted PV shift and the desired wavelength range) we
display a number of promising normal modes in Tab.
I. All these modes have a relative PV frequency shift
∆νPV/ν of 10−15 or above, which is the sensitivity aimed
for in the LPL experiment. For comparison, the PV shift
of CHFClBr, a molecule on which much of the experi-
mental work has been conducted so far, has a predicted
∆νPV/ν ≈ −8× 10−17 [27, 28].

Particularly interesting for the experiment are thus
normal modes 52 and 53 as they are in the laser win-
dow currently available at LPL, are reasonably infrared
active, and have a predicted PV shift on the 10−15 level.
The C–O stretch vibrational modes 100 and 102 look
even more promising, given their remarkably high inten-
sity, their twice higher predicted relative PV shift, and
the commercial availability of QCLs in the corresponding
spectral window. Finally, normal modes 17, 19, 20 and
29 should not be overlooked, not only because of their
record 10−14 relative predicted shift, but also because
of their lower frequencies, which may prevent the onset
of intramolecular vibrational energy redistribution that
could obscure the spectra at higher frequencies. How-
ever, proper radiation sources are still unavailable in this
spectral window.

Results: Os(acac)3. – We compared our calculated
frequencies for Os(acac)3 with the vibrational spectrum
recorded by Dallmann and Preetz [46], and found a good
agreement. Details on this comparison can be found in
the Supplementary Material [51].

For Os(acac)3, calculations were performed for the nor-
mal modes that correspond to those of Ru(acac)3 dis-
played in Tab. I. In order to identify the correspond-
ing vibrational modes of the two molecules, we take
their overlap φ, calculated as the normalized dot prod-
uct of normal coordinates. For the corresponding nor-
mal modes, φ should approach 1. In this comparison, we
found it sufficient to take into account only the displace-
ments of the central metal and the surrounding oxygens
(which are the most relevant for the PV shift). The over-
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normal ν IR int. ∆νPV ∣∣∣∣∆νPV

ν

∣∣∣∣mode [cm−1] [km/mol] [mHz]
17 182 0.009 –449 7.2×10−14

19 201 1.718 –298 4.6×10−14

20 223 0.065 279 3.8×10−14

29 327 7.884 325 3.4×10−14

52 953 9.564 –30 1.0×10−15

53 954 1.793 –33 1.1×10−15

100 1586 453.5 –83 1.7×10−15

102 1612 44.22 –111 2.3×10−15

TABLE I. Summary of the Ru(acac)3 theoretical results:
promising normal modes with either particularly large pre-
dicted vibrational shifts on the 10−14 level (modes 17-29), or
a large shift in combination with a frequency in the range
of current laser systems (modes 52 and 53), or very large
infrared intensity (IR int.) (modes 100 and 102). The vi-
brational frequencies (ν) shown are the harmonic frequencies
obtained from the frequency analysis.

lap φ is normalized by dividing by the geometric mean
of the respective displacement vector moduli as:

φ =

∑M ,O
i

~di,Ru(acac)3 · ~di,Os(acac)3√∑Ru,O
i |~di,Ru(acac)3 |2

∑Os,O
i |~di,Os(acac)3 |2

(6)

Here, ~di,X denotes the displacement vector of atom i in
complex X, and M the metal center of the complex in
question.

The results of the PV calculations for Os(acac)3 are
presented in Tab. II and in Fig. 3. For all of the normal
modes, the signs of the PV shifts are the same for the Ru
and the Os complexes. This shows that the two molecules
behave in a similar way, and emphasizes the similarity of
the vibrational modes between the complexes and the ro-
bustness of the PV shift under slight geometric changes.
A striking observation is that the relative PV shifts
|∆νPV/ν| in Os(acac)3 are more than an order of magni-
tude larger than those in Ru(acac)3, reaching 10−12 lev-
els. A closer look at the ratio of absolute shifts (which is
similar to the ratio of relative shifts as the transition fre-
quencies do not vary drastically between Ru(acac)3 and
Os(acac)3) reveals, for some of the transitions, a signif-
icant enhancement beyond the Z5 scaling, which would
amount to ∆νPV

Os(acac)3
/∆νPV

Ru(acac)3
≈ 15.4. This is not

entirely unexpected, as the Z5 dependence was derived
for the absolute PV energy shifts [37] rather than for
vibrational transitions; furthermore, similar beyond-the-
Z5 scaling was observed in chiral uranium compounds by
Wormit et al. [34].

Here, it has very favourable consequences for the ex-
periment; the two transitions in Tab. II that lie in
the laser window currently available at LPL (modes 52
and 53) experience an enhancement of a factor of 48
and 40, respectively, when changing from Ru(acac)3 to
Os(acac)3, significantly larger than the Z5 scaling used
for a rough estimate would predict. This enhancement

pushes the |∆νPV/ν| of these modes into the ∼ 10−12

regime, making it much easier to detect at the level of
sensitivity already demonstrated at LPL [22, 70]. This
finding provides us with a strong motivation to synthesize
this compound and bring it into the gas phase.

Conclusions. – In this work, we have calculated the
PV vibrational frequency shifts for a selection of nor-
mal modes in Ru(acac)3, a robust, readily available and
promising candidate for the first detection of parity vio-
lation in molecules. We have demonstrated that the re-
sults are computationally robust and have derived a sim-
ple scheme for identifying the most promising vibrational
modes based on the displacement of the atoms within
the transition. A number of transitions with exception-
ally large PV shifts of hundreds of mHz (corresponding
to relative frequency shifts on the order of 10−14) were
identified. Other transitions that lie in the spectral range
of laser systems currently achievable at LPL, where the
experiment is being built, are predicted to have fractional
PV shifts on the order of 10−15. This is around the sen-
sitivity that is aimed for by the group at LPL, and one
to two orders of magnitude larger than that of CHF-
ClBr, the molecule on which previous PV measurements
were conducted. Preliminary spectrocopic investigations
of some of the promising vibrational modes conducted in
solid neon at 3 K show good agreement with our calcu-
lations.

Furthermore, the scaling of the vibrational PV shifts
with atomic number Z was investigated by comparison
with Os(acac)3, where osmium is the heavier homologue
of ruthenium. Here, we find enhancements of the PV
shifts that exceed the prediction following from the naive
Z5 scaling; this is in accordance with earlier findings [34].
This is especially auspicious for the experiment: the in-
vestigated modes that fall in the accessible laser windows
are enhanced to the 10−12 fractional shift regime, mak-
ing detection feasible. Os(acac)3 can be synthesised [46],
and the next experimental steps are to investigate its sta-
bility upon heating for bringing it into the gas phase for
the high-resolution spectroscopic studies, and its enan-
tiomeric resolution. Moreover, 99Ru, 101Ru, 187Os and
189Os nuclei are NMR active and thus the Ru(acac)3 and
Os(acac)3 complexes potentially open up a possibility for
gas phase NMR measurements.
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mode(Os)
ν IR int. ∆νPV ∣∣∣∣∆νPV

ν

∣∣∣∣ mode(Ru) φ
∆νPV(Os)

∆νPV(Ru)[cm−1] [km/mol] [Hz]
16 191 0.091 –9.72 1.5×10−12 17 0.996 21.7
19 211 2.356 –9.59 1.4×10−12 19 0.961 32.2
20 224 0.013 4.30 5.9×10−13 20 0.948 15.4
29 308 2.392 3.09 3.4×10−13 29 0.838 9.5
52 952 0.464 –1.47 5.0×10−14 52 0.830 48.4
53 954 1.272 –1.32 4.5×10−14 53 0.831 40.1

100 1563 245.6 –1.04 2.2×10−14 100 0.955 12.7
102 1589 102.2 –0.31 6.3×10−15 102 0.985 3.6

TABLE II. The PV shift of vibrational normal modes in Os(acac)3 and a comparison to Ru(acac)3. Normal modes in the two
compounds were matched to each other according to their overlap φ as defined in Eq. 6. IR int. stands for infrared intensity.
The vibrational frequencies (ν) shown are the harmonic frequencies obtained from the frequency analysis.
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