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The nature of the turbulent energy transfer rate is studied using direct numerical
simulations of weakly collisional space plasmas. This is done comparing results
obtained from hybrid Vlasov–Maxwell simulations of collisionless plasmas, Hall
magnetohydrodynamics and Landau fluid models reproducing low-frequency kinetic
effects, such as the Landau damping. In this turbulent scenario, estimates of the local
and global scaling properties of different energy channels are obtained using a proxy of
the local energy transfer. This approach provides information on the structure of energy
fluxes, under the assumption that the turbulent cascade transfers most of the energy that
is then dissipated at small scales by various kinetic processes in these kinds of plasmas.
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1. Introduction

Space plasmas are a unique laboratory to study the transfer of energy in highly turbulent
media (Bruno & Carbone 2016). In particular, the solar wind near the Earth has been
continuously probed by space missions (Tu & Marsch 1995). The in situ measurements
of this quasi-collisionless, highly variable and structured plasma show a medium in
a state of fully developed turbulence. Under these conditions, turbulence is primarily
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2 C. L. Vásconez and others

originated at the Sun, and transported at high speed away from the source (Goldstein
et al. 1996). This turbulence is then dissipated through magnetohydrodynamic (MHD)
to kinetic scales, where processes such as plasma wave excitation (Valentini, Perrone &
Veltri 2011), temperature anisotropy (Servidio et al. 2012; Perrone et al. 2014a), plasma
heating (Smith et al. 2001; Perrone et al. 2014b; Wan et al. 2015; Vaivads et al. 2016;
Valentini et al. 2016; Hughes et al. 2017; Arzamasskiy et al. 2019), particle energization
(Gibelli, Shizgal & Yau 2010), entropy cascade (Cerri, Kunz & Califano 2018; Pezzi
et al. 2018; Kawazura, Barnes & Schekochihin 2019) and enstrophy cascade (Servidio
et al. 2017) are activated. Consequently, this energy cascade produces finer structures in
the particle velocity distribution function (Marsch, Ao & Tu 2004; Valentini et al. 2008;
Vásconez et al. 2014), and favours the presence of quasi-perpendicular wave vectors. In
this environment, from a wave perspective, it is expected that kinetic Alfvén waves will be
naturally developed at scales near the ion skin depth. In fact, recent observational analysis
(Kiyani et al. 2012; Salem et al. 2012) and numerical simulations (TenBarge & Howes
2012; Vásconez et al. 2015; Pucci et al. 2016; Valentini et al. 2017) have suggested that
kinetic Alfvén waves can play an important role in the dissipation of turbulent energy.
The MHD approximation describes space plasma phenomenology at large enough scales
(Servidio, Matthaeus & Dmitruk 2008). In this approach, a Kolmogorov-like behaviour is
highly supported by observations of velocity and magnetic fluctuations showing power-law
spectra and intermittency (Carbone et al. 2004; Greco et al. 2009). At the MHD scales, the
solar wind has shown scale-dependent non-Gaussian statistics (Sorriso-Valvo et al. 1999),
with non-Gaussian fluctuations observed as well in the large scales (Marino et al. 2012)
as happens also in anisotropic fluids with waves (Feraco et al. 2018). The intermittent
cross-scale energy transfer has been extensively described through the MHD version of
the von Kármán–Howarth equation for incompressible hydrodynamic turbulence (Frisch
1995). Based on conservation laws of the MHD invariants, such law predicts the linear
scaling of the mixed third-order moment of the MHD variables (Politano & Pouquet
1998). Broadly observed in numerical simulations (Sorriso-Valvo et al. 2002) and in
space plasmas (MacBride, Forman & Smith 2005; Sorriso-Valvo et al. 2007; Marino
et al. 2012; Hadid et al. 2018; Bandyopadhyay et al. 2020), the third-order law has been
recently extended to include the effect of compressibility, anisotropy, Hall currents and
other two-fluid effects (Galtier 2008; Andrés et al. 2016; Hellinger et al. 2018; Ferrand
et al. 2019). At the bottom of the inertial (or Hall) range, the turbulent energy is dissipated
in an efficient way as a result of inhomogeneous energy transfer, mostly occurring at
small-scale vorticity filaments, rotational (or tangential) discontinuities and current sheets,
among other structures (Zimbardo et al. 2010). At scales close to the proton inertial
length and/or to the proton skin depth, pure MHD models are no longer valid (Matthaeus,
Servidio & Dmitruk 2008). Kinetic processes, led by field–particle interactions, have to
be considered. Observations at 1 AU show non-Maxwellian velocity distribution functions
of ions and electrons in the zone where a low collision rate is measured (Leamon et al.
1998). Moreover, analysis of the intermittency at kinetic scales (Kiyani et al. 2012; Wu
et al. 2013; Chen et al. 2014) has given insights into our understanding of the distribution
of energy in the kinetic-scale cascade (Boldyrev & Perez 2012) and how it is dissipated
at electron scales (TenBarge & Howes 2013). This has also been reported in numerical
simulations (Leonardis et al. 2016; Franci et al. 2017; Grošelj et al. 2017). In fact,
Vlasov–Maxwell numerical simulations have confirmed that particle energization is taking
place near the most intense small-scale structures (Servidio et al. 2015). The processes
responsible for such energization are not yet understood. However, mechanisms such as
plasma instabilities (Primavera et al. 2019; Settino et al. 2020), wave–particle interactions
(Sorriso-Valvo et al. 2019; Chen, Klein & Howes 2019), increase of collisions (Pezzi,
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Energy transfer in plasma turbulence 3

Valentini & Veltri 2016; Pezzi 2017; Pezzi et al. 2019) and turbulent energy dissipation due
to the relation of spatially localized structures – such as thin current sheets – and magnetic
reconnection sites (Carbone, Veltri & Mangeney 1990; Servidio et al. 2009, 2011; Cerri
& Califano 2017; Franci et al. 2017; Yang et al. 2017; Camporeale et al. 2018), have been
pointed out as good candidates. Then, direct numerical simulations have turned out to be
quite useful for understanding the physics of plasmas under conditions of the near-Earth
solar wind. The interested reader is referred to two recent works that present, and discuss,
the current state of our understanding of plasma heating and kinetic-scale turbulence from
simulations, i.e. Matthaeus et al. (2020) and Cerri, Groselj & Franci (2019).

In this work, we study the properties of the turbulent energy transfer in plasmas in the
direct numerical simulation framework previously investigated in Perrone et al. (2018),
which also followed the ‘Turbulent Dissipation Challenge’ (Parashar et al. 2015; Pezzi
et al. 2017; González et al. 2019; Papini et al. 2019). In their work, Hall MHD (HMHD),
Landau fluid (LF) and hybrid Vlasov–Maxwell (HVM) bidimensional simulations
in turbulent regimes were ran under collisionless plasma conditions, considering an
out-of-plane ambient magnetic field. Magnetic diffusivity was carefully introduced in the
fluid models. The fields obtained from these simulations allow us to explore different
scales linked to their respective range of validity.

This paper is organized as follows. In § 2, we briefly present the three numerical
models, namely HMHD, LF and HVM, which describe – under the same two-dimensional
configuration – a collisionless plasma, in typical conditions of the solar wind plasma, in a
quasi-developed turbulent state. Our analyses of local and global energy transfers of this
state are presented in §§ 3 and 4, respectively. We summarize and conclude in § 5.

2. Numerical models

The dynamical behaviour of a plasma strongly depends on its frequencies. Here, we
provide a very brief description of the three models used in the present work, which can
properly focus on different ranges of frequency. At the lowest frequencies, where ions and
electrons are locked together, and the plasma behaves like an electrically conducting fluid,
a MHD model is good enough to describe the system. In this study, we use a HMHD
simulation, which retains dispersive effects that become relevant at scales comparable to
the proton skin depth. However, when collisions can be neglected, pressure anisotropy can
develop in the plasma. In this case, and at somewhat higher frequency than the previous
regime, a two-fluid description is needed, since electrons and ions can move relatively
to each other. Therefore, we use a LF model which is able to take into account both
pressure anisotropy and low-frequency kinetic effects, such as Landau damping. At higher
frequencies, a kinetic model is required. We consider the HVM approach which describes
the evolution of the proton distribution function, while electrons are treated as a fluid.
All three models include the electron inertial effects with a proton-to-electron mass ratio
mp/me = 100.

The HMHD and LF codes use a two-dimensional Fourier pseudo-spectral method to
compute the spatial derivatives, while the time advance is performed with a third-order
Runge–Kutta scheme. In these fluid codes, aliasing errors in the evaluation of nonlinear
terms are treated by a 2/3 truncation in the spectral space. In the HVM code, time advance
is based on the time-splitting scheme (Cheng & Knorr 1976), combined with the current
advance method (Matthews 1994). In the Vlasov equation, advection in space and velocity
is solved through an explicit upwind scheme (Van Leer 1977). The HVM code uses fast
Fourier transform operations only when computing the fields, and truncation is not needed
since possible dealiasing errors are damped by the intrinsic dissipation of the numerical
scheme.
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4 C. L. Vásconez and others

The vector fields will evolve in a double periodic domain D = [L, L], in the (x, y)
plane. L = 2π × 25dp is the length of each direction x and y. This domain is discretized
with Nx = Ny = 1024 grid points. Additionally, the HVM simulation is run in a
three-dimensional velocity domain −5vth,p ≤ v ≤ 5vth,p, discretized with 513 points, and
where vth,p = √

Tp/mp is the thermal velocity of the protons. At t = 0, the equilibrium was
set by a homogeneous plasma embedded in a uniform background magnetic field, B0 =
(0, 0, B0), oriented in the z direction. We set the proton plasma beta as β = 2vth,p/vA = 1,
where vA = B0/

√
4πn0mp is the Alfvén speed. The initial perturbation of this equilibrium

is performed by velocity (and magnetic) field fluctuations with random phases in the
interval 2 ≤ m ≤ 6, for the wavenumbers k = 2πm/L. Although the amplitudes of the
magnetic perturbations are b/B0 ≈ 0.3, neither density fluctuations nor parallel variances
are imposed. In fluid models, a magnetic diffusivity term with a coefficient η = 2 × 10−2

has been added.

2.1. Hall magnetohydrodynamics
The set of HMHD equations, in a non-dimensional form, reads

∂n
∂t

+ ∇ · (nu) = 0, (2.1)

∂u
∂t

+ (u · ∇)u = − β

2n
∇P + 1

n
[(∇ × B) × B] − η4∇4u, (2.2)

∂B
∂t

= −∇ × E − η4∇4B, (2.3)

(1 − d2
e∇2)E + u × B − 1

n
[(∇ × B) × B] −η(∇ × B) = 0, (2.4)

P = nγ , (2.5)

where n is the plasma density, u is the hydrodynamic velocity, E and B are the electric and
magnetic fields, respectively, P is the isotropic total pressure, η = 2 × 10−2 is the magnetic
diffusivity and γ = 5/3 is the adiabatic index. This non-dimensional set of equations is
obtained normalizing n to n0mp, u to the Alfvén speed vA, t to the inverse proton cyclotron
frequency Ω−1

cp and the length units to the proton skin depth dp = vA/Ωcp. In Ohm’s
law, the electron inertia is retained in the form used in Valentini et al. (2007), with a
non-dimensional electron skin depth d2

e = me/mi taken equal to 1/100. For regularization
purposes, and to reproduce the same-time behaviour for the maximum value of the
integrated parallel current density 〈 j2

z 〉, bi-Laplacian hyperviscosity and hyperdiffusivity,
with coefficients equal to ν4 = η4 = 5 × 10−4, have been added to the right-hand side
of velocity and magnetic field equations. Note that hyperviscosity and hyperdiffusivity
strongly mitigate the effect of the electron inertia, and therefore the d2

e term is negligible
in the present run.

2.2. Landau fluid
The LF system of dynamical equations solves for the evolution of the magnetic field,
density, velocity, parallel and perpendicular pressures and heat fluxes in a way consistent
with the low-frequency limit of the linear kinetic theory, up to a scale of the order of the ion
gyroradius. The electric field is computed using a generalized Ohm’s law, which includes
the Hall term, together with electron inertia with the same simplified form and the same
artificial mass ratio as in the HMHD case, and the same magnetic diffusivity. The electron
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Energy transfer in plasma turbulence 5

pressure gradient, which is formally present in Ohm’s law and in the momentum equation,
is here neglected to closely match the conditions of the Vlasov simulations, in which
electrons are cold. The ion velocity equation reads

∂u
∂t

+ (u · ∇)u = − β

2n
∇ · P + 1

n
[(∇ × B) × B] , (2.6)

while the density and the magnetic fields obey (2.1) and (2.3) of HMHD. The ion pressure
tensor is conveniently written as P = p⊥n + p‖τ + Π, with τ = b̂ ⊗ b̂, n = I − τ and
b̂ = B/|B| is the unit vector along the local magnetic field. The parallel and perpendicular
ion pressures obey

∂tp‖ + ∇ · (u p‖) + 2p‖ b̂ · ∇u · b̂ + b̂ · (∇ · Q) · b̂

+
(

(Π · ∇u)S : τ − Π :
dτ

dt

)
= 0, (2.7)

∂tp⊥ + ∇ · (u p⊥) + p⊥∇ · u − p⊥ b̂ · ∇u · b̂

+1
2

(
tr ∇ · Q − b̂ · (∇ · Q) · b̂

)

+1
2

(
tr (Π · ∇u)S − (Π · ∇u)S : τ + Π :

dτ

dt

)
= 0, (2.8)

thus involving the ion heat flux tensor Q along with the non-gyrotropic ion pressure tensor
Π. Here, and in (2.6), the latter will be neglected in the energy transfer budget since we
are discarding finite Larmor radius effects, even though they may be relevant for energy
transfers at the scale of the present simulations, and the trace term explicitly contributes to
the energy conservation (see e.g. Yang et al. (2017) for full kinetic simulations and Cerri &
Camporeale (2020) for explicit formulation in hybrid kinetic models). The non-gyrotropic
pressure closure used in the present LF model (Passot et al. 2014) is indeed valid only in
a weakly nonlinear regime, while as we numerically checked it may lead to non-physical
behaviour in the present context of a too strong nonlinearity, especially when electrons
are cold. So here we focused on kinetic damping only. This point should also be kept
in mind when interpreting the possible discrepancies between ion-scale features obtained
from HVM simulation and from the fluid simulations (see e.g. § 5).

On the same footing, the ion heat flux tensor Q is taken in its gyrotropic form, which
in (2.7) and (2.8) implies b̂ · (∇ · Q) · b̂ = ∇ · (q‖b̂) − 2q⊥r∇ · b̂ and (tr(∇ · Q) − b̂ ·
(∇ · Q) · b̂)/2 = ∇ · (q⊥b̂) + q⊥∇ · b̂, where the gyrotropic heat flux components obey
(still neglecting higher-order non-gyrotropic contributions)

∂tq‖ + ∇ · (q‖u) + 3q‖b̂ · ∇u · b̂ + 3p‖
(

b̂ · ∇
) (

p‖
ρ

)

+∇ · (r̃‖‖b̂) − 3r̃‖⊥∇ · b̂ = 0, (2.9)

∂tq⊥ + ∇ · (uq⊥) + q⊥∇ · u + p‖
(

b̂ · ∇
) (

p⊥
ρ

)
+ ∇ ·

(
r̃‖⊥b̂

)

+
((

p‖ − p⊥
) p⊥

ρ
− r̃⊥⊥ + r̃‖⊥

) (
∇ · b̂

)
= 0. (2.10)
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6 C. L. Vásconez and others

The gyrotropic fourth-rank cumulants r̃‖‖r, r̃‖⊥r and r̃⊥⊥r needed to close the hierarchy are
given by (5.1), (5.2) and (5.4) of Sulem & Passot (2015), where ion Landau damping is
retained only in a quasilinear form, in the approximation discussed in Passot et al. (2014).

Together with the same hyperviscosity and hyperdiffusivity included in HMHD
equations, additional bi-Laplacian dissipative terms have been supplemented in the
equations for the density and the pressures (with coefficient equal to 2.5 × 10−3) and in
the equations for the ion heat flux (with coefficient 10−4) in order to deal with the high
level of compressibility in the simulation (the Mach number reaching values up to 0.4). In
fact, we note that compressibility of these fluid models will be important when comparing
our results.

2.3. Hybrid Vlasov–Maxwell
The HVM code (Valentini et al. 2007) solves the Vlasov equation for the proton
distribution function f = f (r, v, t), while the electron response is taken into account
through a generalized Ohm’s law for the electric field. The Vlasov equation, in normalized
units,

∂f
∂t

+ v · ∂f
∂r

+ (E + u × B) · ∂f
∂v

= 0, (2.11)

is solved in a 2D-3V phase-space domain (two dimensions in physical space and three
dimensions in velocity space), coupling it with (2.3) and (2.4). Velocities v and u (proton
bulk velocity) are scaled to vA. Quasi-neutrality (n = ne = np), and cold electrons, is
considered. The time step is chosen in order to satisfy the Courant–Friedrichs–Lewy
condition for the numerical stability. The proton distribution function is initialized with
a homogeneous-density Maxwellian function. In this procedure, displacement current is
neglected in the Ampère law, making the assumption of low frequencies.

3. Local energy transfer analysis

The analysis developed in this work is performed in a period of maximal turbulence
activity. As described by Perrone et al. (2018), this state is reached at t∗ = 60Ω−1

cp , for the
same set of simulations considered here. They established t∗ after following 〈 j2

z 〉 in time,
for HMHD, LF and HVM descriptions, where the same β was held in order to ensure a
similar level of density fluctuations. In figure 1, we plot the out-of-plane component of the
current density, jz(x, y), at t = t∗. The structure locations (and intensities) present on this
component are consistent for the three simulations: HMHD (figure 1a), LF (figure 1b) and
HVM (figure 1c).

Figure 2 shows the spectra of B and u for the HMHD (figure 2a,d,g,j),
LF (figure 2b,e,h,k) and HVM (figure 2c, f,i,l) simulations. Magnetic field spectra
(bidimensional |B(kx, ky)|2, and reduced integrated |Bki|2) are presented in figure 2(a–f ),
while the velocity field spectra (bidimensional |u(kx, ky)|2, and reduced integrated |uki|2)
can be seen in figure 2(g–l). The integrated spectra are plotted with respect to ki = kx with
a red-dashed line, and with respect to ki = ky with a black-solid line. Bidimensional spectra
maps of HMHD and LF simulations show the 2/3 truncation, which was not performed in
the HVM simulation.

Considering that, in the small-scale limit, HMHD physics was observed to match
hybrid kinetic model results (Vásconez et al. 2015; Pucci et al. 2016), Hellinger et al.
(2018) presented a generalization of the von Kármán–Howarth equation for incompressible
hydrodynamic turbulence, in the framework of incompressible HMHD equations. This
generalization was revisited by Ferrand et al. (2019), who also considered homogeneous
turbulence, and worked with two-point correlation tensors depending only on the relative
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Energy transfer in plasma turbulence 7

(a) (b) (c)

FIGURE 1. Contour plot of the out-of-plane current density jz(x, y) for HMHD (a), LF (b) and
HVM (c) simulations at t = t∗ (see text).

displacement �, and not on the absolute positions, as δg = g(r + �) − g(r). In this
context, the mean rate of total energy injection ε is expressed as the combination of
the third-order structure functions corresponding to the MHD turbulent cascade flux
(Carbone, Sorriso-Valvo & Marino 2009; Verdini et al. 2015) and to Hall corrections
(Galtier 2008):

−4ε = ∇ · 〈(δu · δu)δu + (δB · δB)δu − 2(δu · δB)δB − dp

2
(δB · δB)δj

+dp(δB · δj)δB〉. (3.1)

In fact, we can identify the single contribution of each component that corresponds to the
Yaglom effect contributions,

Y 1(x, y) = (δu · δu)δu, (3.2)

Y 2(x, y) = (δB · δB)δu, (3.3)

Y 3(x, y) = −2(δu · δB)δB, (3.4)

and to the Hall effect contributions,

H 1(x, y) = dp(δB · δj)δB, (3.5)

H 2(x, y) = −dp

2
(δB · δB)δj. (3.6)

In this way, (3.1) would be written as −4ε = ∇ · 〈Y 1 + Y 2 + Y 3 + H 1 + H 2〉.
Compressive fluctuations (i.e. δB and/or δn) naturally develop as the cascade proceeds
towards smaller scales, becoming important at ion scales and below, even when these
types of fluctuations are not directly injected at large (MHD) scales (which is the case
for the simulations presented here). This effect was explicitly shown for two-dimensional
simulations, for instance, in Cerri et al. (2017). Direct numerical simulations of
compressible MHD turbulence (Andrés et al. 2018) and measurements in a collisionless
space plasma using Magnetospheric Multiscale data in comparison with simulations
of compressible HMHD turbulence (Andrés et al. 2019) indicate that neglecting the
contribution of compressibility to the exact laws results in an underestimation of the
total energy flux and dissipation rate, especially near the ion scale. However, in Andrés
et al. (2018) it was also found that except in cases in which the largest scales already
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(a) (b) (c)

(d )

(g) (h) (i)

( j) (k) (l)

(e) ( f )

FIGURE 2. Magnetic field (a–f ) and velocity field (g–l) spectra. The integrated spectra
are presented with respect to ki, i = x (red-dashed line), y (black-solid line). Standard
phenomenological power laws (k−5/3

i in the MHD range (see e.g. Frisch 1995) and k−8/3
i in

the HMHD range (Meyrand & Galtier 2013)) are reported as reference.

display strong density fluctuations, the compressible Yaglom-like flux gives the dominant
contribution to the energy flux at the MHD scales, and remains close to the incompressible
Yaglom (or Politano–Pouquet) flux, while all other contributions of the compressibility to
the energy flux remain small.

On the other hand, a heuristic proxy has been recently introduced. It focuses on the
local turbulent energy transfer rate towards the smallest resolved scale. This proxy, named
as LET, was constructed in order to extend the Yaglom law to MHD turbulence, and
matches the latter law when small density fluctuations (at the scale �) can be neglected
(Carbone et al. 2009). It is estimated, for two-dimensional incompressible turbulence,
through the combined third-order fluctuations of velocity, magnetic field and current
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density (Sorriso-Valvo et al. 2018), and neglecting unity-order multiplicative factors, as

−2�ε� ≡ (δu · δu)δu� + (δB · δB)δu� − 2(δu · δB)δB� − dp

2
(δB · δB)δj�

+dp(δB · δj)δB�. (3.7)

Consistently with our notation, the latter equation could be rewritten as

− 2�ε� = εY + εH, (3.8)

where εY = εY1 + εY2 + εY3 and εH = εH1 + εH2 . For this, εY1 = (δu · δu)δu� measures
the kinetic energy available to be transported by the longitudinal component of δu,
εY2 = (δB · δB)δu� quantifies the magnetic energy that will be transported by δu�, εY3 =
−2(δu · δB)δB� is related to the velocity–magnetic field correlations coupled to the
longitudinal magnetic field fluctuations, εH1 = −dp(δB · δB)δj�/2 indicates the quantity
of magnetic energy advected by longitudinal current density field fluctuations and εH2 =
dp(δB · δj)δB� is related to the magnetic–current density field correlations coupled to
the longitudinal magnetic field fluctuations. In (3.7), the two latter terms vanish when
dp → 0, which recovers the classic Yaglom law. It should be noted that the unaveraged
third-order quantity described in (3.7) cannot be rigorously derived, and may therefore
display convergence issues. In other words, it does not describe a turbulent cascade, but
just the local contribution of the turbulent fluctuations to the energy transfer. On the
other hand, its use as a proxy is partly supported by the existence of local versions of
the third-order scaling law, whose rigorous derivation is based on the use of scale- and
space-localized filters (Duchon & Robert 2000; Eyink 2003; Camporeale et al. 2018;
Coburn & Sorriso-Valvo 2019).

Since we want to explore the energy flux distribution resulting from the turbulent
nonlinear transfer, we first focus on the scale ∼ dp, i.e. at the bottom of the inertial range,
where the intermittent structures carrying most of the energy have been formed. As we
noted in § 2, Nx = Ny = 1024, then Δx = Δy ≈ 0.15, resulting in � ≈ dp. At this scale, we
will identify the Yaglom Y m(x, y) = (Y mx + Y my)/2 and Hall H n(x, y) = (H nx + H ny)/2
contributions, according to their spatial distribution, where m = 1, 2, 3 and n = 1, 2.
These two-dimensional maps are presented in figure 3 (HMHD), figure 4 (LF) and figure 5
(HVM). They clearly highlight the intermittent nature of the cross-scale energy transfer.
This is evidenced by the presence of strong contributions to the scaling law in small-scale
localized, sparse structures. Most of the energy transfer, and consequently of the energy
dissipation, is taking place at those locations, which was also reported in Yang et al.
(2017) and in Camporeale et al. (2018). This feature may be consistent with the idea that
reconnection of current sheets, and the formation of coherent structures, could provide a
viable mechanism for (likely cross-scale) energy transfer across ion-kinetic scales (Cerri
& Califano 2017; Franci et al. 2017). It is interesting to note that different terms of the
HMHD law may present similar structures at the same locations. However, in several
instances the structures of different contributions are not collocated, suggesting that the
nature of the fluctuations producing the energy transfer may change with position, possibly
enabling different dissipation mechanisms (Sorriso-Valvo et al. 2019). It is also apparent
that most of the more intense structures are positive, suggesting that the energy is being
transferred towards the small scales in a ‘direct’ cascade. However, several negative
structures are also present, where the contribution from the various terms is acting so
as to remove energy from the smaller scales. We do not imply here that the sign of the
local contributions is related to the cascade direction, and the latest statements should be
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 3. The HMHD simulation. Bidimensional maps of Yaglom components Y 1 (equation
(3.2)), Y 2 (equation (3.3)) and Y 3 (equation (3.4)); and Hall components H1 (equation (3.5))
and H2 (equation (3.6)), of the mean rate of total energy injection, estimated at the scale � � dp.

(a) (b) (c)

(d) (e) ( f )

FIGURE 4. The LF simulation. Bidimensional maps of Yaglom components Y 1 (equation
(3.2)), Y 2 (equation (3.3)) and Y 3 (equation (3.4)); and Hall components H1 (equation (3.5))
and H2 (equation (3.6)), of the mean rate of total energy injection, estimated at the scale � � dp.

taken as a qualitative indication. Note that the overall energy flux will result from the
average over the whole domain, and is mostly positive, as expected and as we discuss in
the next section. Comparing the different simulations reveals that the various terms have
similar behaviour. In particular, the Y 3 term seems to be dominating in the simulations.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 5. The HVM simulation. Two-dimensional maps of Yaglom components Y 1 (equation
(3.2)), Y 2 (equation (3.3)) and Y 3 (equation (3.4)); and Hall components H1 (equation (3.5))
and H2 (equation (3.6)), of the mean rate of total energy injection, estimated at the scale � � dp.

(a) (b) (c)

FIGURE 6. The x (a) and y (b) components of the term Y + H (c), computed from the HVM
simulation, estimated at the scale � � dp.

Interestingly, in the HMHD simulation the Hall terms appear weaker than in the two other
simulations. This observation will be discussed later.

Finally, the maps of Y + H are separated by components in figure 6 for the HVM
simulation (similar behaviour was found in HMHD and LF simulations – not shown here).
While the general behaviour is similar, some differences between the two components of
the energy transfer exist, possibly an effect of the finite size of the ensemble.

4. Global energy transfer analysis

We continue our analysis computing the local turbulent energy transfer rate −2ε� across
the scales �. Figure 7 presents the averaged (3.7) over the whole domain, corresponding
to the HMHD (figure 7a), LF (figure 7b) and HVM (figure 7c) simulations. We separate
the Yaglom (black-solid line) and Hall (red-solid line) contributions in order to highlight
their relative amplitude across the scales �. The sum of both contributions, giving the
Hall–Yaglom law, is plotted with asterisks. As already observed in the previous section,
in the HMHD and LF simulations, the Hall contribution εH(�) is always less than the
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(a) (b) (c)

FIGURE 7. Cascade rate −2ε� law as a function of the scale �, conducted in the HMHD (a),
LF (b) and HVM (c) simulations. The contributing terms εY (black-solid line) and εH (red-solid
line) are presented together with their direct sum (asterisks). The dashed line represents the linear
scaling.

Yaglom one. However, both contributions become closer for scales � � dp. In the case of
the HVM simulation, that occurs in the range � � dp, εH(�) > εY(�). Then, at � ≈ dp, εY(�)

becomes more relevant and remains so for larger scales. This behaviour is consistent with
the settings of our simulations, where the mean field is out-of-plane, and there is strong
whistler/magnetosonic activity. Linear theory studied by Camporeale & Burgess (2017)
supports this interpretation, which is also compatible with earlier results from hybrid and
full kinetic two-dimensional simulations reported by Cerri et al. (2016) and by Grošelj
et al. (2017). If we recall that the Hall term εH manifests itself through compressible
activity, the cascade rates are expected to be affected in the fluid simulations; while in
the HVM simulation, this compressible activity is suppressed through in-plane Landau
damping and ion-cyclotron resonances, which re-inject in the system incompressible
Alfvénic-like fluctuations. In this two-dimensional setting, the LF model, in which
Landau dissipation is introduced at a quasilinear level, partially quenches compressible
fluctuations, but not as efficiently as the HVM one. In addition, we can confirm that in
the interval 2dp � � � 10dp (roughly corresponding to the MHD turbulence range), the
scaling of −2ε� is compatible with a linear scaling law (black-dashed line) for our three
cases of study, as previously reported by Sorriso-Valvo et al. (2018).

Moreover, in figure 8 we can see how Yaglom −εYm and Hall −εHn terms are supporting
the latter global behaviour. We use open diamonds to picture the positive terms, while
negative quantities are plotted with red-filled diamonds. Figure 8(a,d,g,j,m) shows the
HMHD simulation results, figure 8(b,e,h,k,n) corresponds to the LF simulation, while
the results from the HVM simulation are presented in figure 8(c, f,i,l,o). If we focus
on the amplitude and sign of these quantities, we cannot note substantial differences
between the individual Hall contributions among the simulations. However, the sign of
−εY2 (associated with the magnetic energy transported by the velocity field) is passing
from negative to positive at ∼ 2dp in the HVM simulation. This is not seen in the HMHD
and LF counterparts.

Finally, we use our results to compare the amplitude of each of the Yaglom and Hall
terms across the scales. In figure 9, we present these comparisons for the Yaglom terms:
εY1/εY3 (figure 9a) and εY2/εY3 (figure 9b). Comparison of Hall terms εH1/εH2 is shown in
figure 9(c). Figure 9(d) shows εY/εH . Black-solid line represents the HMHD simulation,
blue-dash-dotted line represents the LF results and red-dashed line is for the HVM
simulation. From a global point of view, we note that the comparisons computed from
the LF and HVM simulations are quite similar, especially for scales � � 10dp. After this
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l )

(m) (n) (o)

FIGURE 8. Terms −εY1 (a–c), −εY2 (d–f ), −εY3 (g–i), −εH1 (j–l) and −εH2 (m–o). The
components are computed from the HMHD (a,d,g,j,m), LF (b,e,h,k,n) and HVM (c, f,i,l,o)
simulations. Open diamonds correspond to the positive sign, while red-filled diamonds show
negative values. Linear scaling is plotted with a black-dashed line.
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(a) (b)

(c) (d )

FIGURE 9. (a,b) Comparison of the Yaglom terms εY1 and εY2 , with respect to εY3 . (c)
Comparison between the Hall terms (εH1 and εH2 ). (d) Comparison between εY and εH , where
the horizontal grey-dashed line marks the barrier of εY/εH = 1. Black-solid line corresponds to
the HMHD simulation, blue-dash-dotted line corresponds to the LF simulation and the HVM
simulation is represented by the red-dashed line.

range, the sign of εY3 fluctuates with respect to that of εY1 and εY2 . On the other hand,
the sign of εH1 , as compared with εH2 , remains negative for all of the scales. Once again,
the LF and HVM simulations seem quite similar when comparing the Hall terms. The
comparison εY/εH shows that the HVM simulation is useful for study the transition from
fluid to kinetic scales (∼ dp) as we can see when comparing this ratio.

5. Discussion and conclusions

In this paper we study the properties of energy transfer contributions in collisionless
turbulent plasmas. For this scope, the heuristic proxy LET was computed for three
numerical simulations (HMHD, LF and HVM) of a quasi-steady state of turbulence.
Moreover, this study would also be aligned to the ‘Turbulent Dissipation Challenge’
(Parashar et al. 2015), as we test the LET proxy on three different numerical models (which
use different numerical schemes) under the same initial conditions, with similar physical
and numerical parameters. We have in mind that each of these models have their own
characteristic scale. In the HVM model, this scale corresponds to the proton skin depth.
In the fluid models, this scale corresponds to the dissipative scale, where the energy is
dissipated by viscous and resistive effects.

In figures 3–5, we presented bidimensional maps for each of the simulations, and for the
scale � ≈ dp. In particular, in figure 6 we show the location and intensity of the structures
where most of the energy is contributing to the cross-scale transfer.
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Then, figure 7 tests the −2ε� cascade-rate definition ((3.7)). Here, when only the global
contribution of εY + εH is plotted (asterisks), no strong differences are seen between our set
of simulations. However, when εY (black-solid line) and εH (red-solid line) are separated,
we note that in the HVM simulation εH > εY for scales � � dp, not observed for the other
simulations. This difference is likely due to the slightly larger values and fluctuations of
the current observed in the HVM case (see, for example, figure 1 in Perrone et al. (2018)).
We further point out that a net contribution in the energy budget might be due to the
pressure anisotropy, which is not taken into account in the fluid Yaglom theory as briefly
discussed in § 3.

We observe that εY2 ∼ (δB · δu)δu� have opposite sign – for the majority of the scales
– in the HVM simulation, with respect to the fluid simulations (figure 6). Also for this
parameter, a change of monotonicity may be noticed in the interval 2dp � � � 10dp
(roughly corresponding to the MHD turbulence range) only in the HVM simulation. The
reason for this behaviour is not fully understood.

Finally, the comparisons made in figure 9 show similarity between our set of simulations
for scales � � 2dp. After this range, the contribution of εY3 decreases with respect to εY1

(figure 9a) and εY2 (figure 9b). A similar behaviour, related to the direction of the energy
cascade, is seen when comparing the Hall terms (figure 9c), where the amplitude of εH2

decreases more about one decade with respect to εH1 when � � 10dp.
Our overall conclusion is that the three simulations are similar, but not exactly identical,

with respect to the local and global turbulent energy transfer. This implies that a
cross-scale interconnection exists between fluid and kinetic dynamics, so that not only
does the turbulent cascade drive the small-scale kinetic processes, but the latter also
controls the cascade, acting as a form of dynamical dissipation. Further studies are needed
to describe in more detail such interconnection. Work in progress includes the extension
of energy transfer analysis in three-dimensional simulations and a multifractal study of the
turbulence (Primavera & Florio 2019).
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