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Abstract

We consider a population distributed between two habitats, in each of which it experiences
a growth rate that switches periodically between two values, 1− ε > 0 or −(1+ ε) < 0. We
study the specific case where the growth rate is positive in one habitat and negative in the other
one for the first half of the period, and conversely for the second half of the period, that we
refer as the (±1) model. In the absence of migration, the population goes to 0 exponentially
fast in each environment. In this paper, we show that, when the period is sufficiently large, a
small dispersal between the two patches is able to produce a very high positive exponential
growth rate for the whole population, a phenomena called inflation. We prove in particular that
the threshold of the dispersal rate at which the inflation appears is exponentially small with
the period. We show that inflation is robust to random perturbation, by considering a model
where the values of the growth rate in each patch are switched at random times: we prove
that inflation occurs for low switching rate and small dispersal. We also consider another
stochastic model, where after each period of time T , the values of the growth rates in each
patch is chosen randomly, independently from the other patch and from the past. Finally, we
provide some extensions to more complicated models, especially epidemiological and density
dependent models.

Keywords: Population dynamic, dispersal, periodic environment, random environment,
switched systems, Piecewise Deterministic Markov Process
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1 Introduction
It is a ubiquitous fact that a population has the ability to migrate between several patches
which have different environmental conditions. A patch is called a source when, in the
absence of migration, the environmental conditions lead to the persistence of the population,
and a sink when, on the contrary, they lead to the extinction of the population. A question of
primary importance is obviously to understand how environmental conditions and migration
interact so that a set of patches is or is not globally favorable to persistence. Mathematical
modeling by dynamical systems is one of the tools used to address this question and the papers
that use it are innumerable, so we give up reporting on them here. We present only those that
we consider important for our purpose, which is to investigate the conditions under which
migration between two patches can increase or decrease the abundance of the metapopulation.
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The simplest case of a continuous time model, two patches with logistic dynamics and
linear migration, has been extensively studied in the case of a fixed environment (i.e. the
parameters of the model do not depend on time) [1, 2, 13, 14, 17]. This very elementary (and
therefore unrealistic) model is now well understood mathematically and it appears that for
certain values of the growth parameters the total population at equilibrium is not a monotonic
function of the migration intensity [1, 2, 14], a phenomenon that we will find again in the case
of variable environments that we study here.

In the case of migration between a source and a sink it is intuitively clear that migration
from the source to the sink can prevent the extinction of the population on the latter. On the
other hand, it seems paradoxical that:

Populations can persist in an environment consisting of sink habitats only.

as announced in the title of the article [27] by Jansen et al. Our article is a contribution to the
clarification of this paradox.

Jansen et al. consider the implicitly spatial discrete-time model:

N(t +1) = [m f S1(t)+m(1− f )S2(t)]N(t). (1)

which represents the fact that each individual give m offspring, that are then dispersed accord-
ing to the fractions f and 1− f on sites 1 and 2, where they survive at rate S1(t) and S2(t),
respectively. Jansen et al. assume that:

◦ S1 is a sequence of independent random variables taking two values Sa < 1/m < Sb with
probabilities p (bad years) and 1− p (good years), the parameters being such that on
the long term the patch 1 is a sink.

◦ S2 is constant and strictly smaller than 1/m, so that the second patch is also a sink

Intuitively persistence is possible with a little dispersion on patch 2 which means building up
reserves for bad years. This is indeed what Jansen et al. show by calculation: for values of m
that are neither too large nor too small, the meta-population is persistent.

Migration can therefore have an "inflationary" effect, an expression coined by Holt in
[24]. That ”inflationary” effect noticed by Holt was of another nature. In [24] the author also
considers a model of the form (1) and assumes that S1 is deterministic but density dependent
S1 = S1(N(t)) (the notations have been changed) as, for example, in the logistic or Ricker
models. Based on the classical results of May and Oster (see [36]) on the appearance of
periodic and then chaotic solutions in discrete density-dependent dynamics, Holt remarks that
when the population has a stable equilibrium in the absence of migration, the presence of
migration to a sink only decreases the value of this equilibrium, but, on the other hand, if the
population has periodic solutions, the migration to a sink can significantly increase the mean
of the metapopulation in the long run. Since variations in the population N(t) in the density-
dependent model N(t+1) = S1(N(t), t)N(t) can be interpreted (if denoting R1(t) = S1(N(t)))
as fluctuations in the fitness of the linear model N(t +1) = R(t)N(t), Holt concludes that the
presence of autocorrelation in the variations in the sequence of replacement rates R(t) can be
a cause of inflation.

Gonzalez and Holt in [20] have also highlighted an ”inflationary” effect of the environment
fluctuations in the case of the continuous time model: dN

dt = f (t)N(t)+ I. Here it is assumed
that in the absence of immigration I(t) the population N(t) tends towards extinction and that
its persistence is ensured only in the presence of immigration I. When the growth rate is fixed
and negative, f (t) ≡ −µ the population tends towards a stationary population N∗ = I

µ
. The

objective of the authors is to compare this equilibrium with the mean N = lim
t→+∞

1
T

∫ T

0
N(t)dt

of the population when f (t) is no longer constant and to show that, in a certain sense, N
exceeds N∗ all the more as the fluctuations of f are important. To do this their strategy is to
consider piecewise constant periodic functions for which they can make explicit calculations
that describe the inflation phenomenon; then, as they notice that «square-wave deterministic
variation is of course a rather artificial pattern of temporal variation » they turn to more
realistic models on which they show by simulation the existence of inflation.
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These three studies and others (see [39] for a more detailled discussion of this topic)
where the spatialization is ”implicit” have in common, whether they are discrete or continuous
in time, deterministic or random, to use one dimensional models where the mathematical
properties are easier to determine. The next step is to consider an "explicit" spatialization
with two or more sites. This is what Roy, Holt and Barfield do in [38] where they consider
the probabilistic model on n sites:

Ni(t +1) = Ri(t)Ni(t)+ Ii(t)−Ei(t) (2)

where Ii and Ei represent respectively the immigration and emigration on the site. They
demonstrate the inflation effect through unformal reasonings and numerous simulations. They
can conclude their discussion with:

Given temporal variability and positive temporal autocorrelation in local growth
rates, moderate rates of dispersal can enhance the ability of a sink metapopula-
tion to persist; moreover, given persistence, temporal autocorrelation can inflate
metapopulation abundance.

This pioneering work of Holt and his colleagues has been further refined and mathematically
clarified by Schreiber. In [39], Schreiber considers the model (2) of Roy et al. in the form:

Ni
t+1 =

(
1−∑

k ̸=i
dki

)
f i
t Ni

t +∑
j ̸=i

di j f j
t N j

t =
n

∑
j=1

di j f j
t N j

t (3)

From precise mathematical developments based on a probabilistic version of the Perron-
Frobenius theorem which allows to show that for this type of model the concept of growth
rate of the meta population is well defined he can conclude:

When environmental fluctuations have positive temporal autocorrelations and the
population is partially mixing, the metapopulation growth rate can be positive
despite the arithmetic mean of fitness being less than 1 in every patch. (...)Fur-
thermore, in the presence of these positive autocorrelations, the analysis reveals
that the maximal metapopulation growth rate occurs at intermediate dispersal
rates,(...)

Unlike the case of discrete-time stochastic models that we have just briefly examined, the case
of continuous-time deterministic models has been little studied. With the exception of [25]
which treats one site only, [32] which discusses the case of two sites on an example and [15]
which treats the case where the growths on each site obey diffusion processes, we only know
of a very recent1 article [29] by Katriel: Dispersal-induced growth in a time-periodic environ-
ment which treats the question of inflation on continuous time models. Katriel considers the
following model (the notations are modified to remain consistent with the previous notations):

dNi

dt
= ri(t)Ni +m ∑

j ̸=i
Li j(N j −Ni) (4)

where the functions ri(t) are continuous periodic functions of period T that define the growth
rates on n isolated sites, the L ji = Li j ≥ 0 describe the geometry between the sites (assumed to
be connected) and m measures the strength of the migration. As in the discrete case, extended
versions of the Perron-Frobenius theorem allows to define the metapopulation growth and
relying on a theorem of [35] he shows that for inflation to occur it is necessary that the ri(t)
are desynchronized, that the period T is large enough and that the migration intensity m is
large enough, but not too large. This result is important because it concerns the case of any
number of sites.

In turn, we consider Katriel’s (3) model in the case of only two sites, which is obviously
less general, but for more general, deterministic discontinuous and then random functions
ri(t) and not necessarily symmetric migrations.

1Which was published while our paper was under review.
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We start from a remarkably simple particular case which we call the periodic (±1)-model
(where ri(t) are piecewise constant equals to +1−ε or −1−ε). This model depends on three
parameters ε , which represents the decay rate of each sink, m, which represents the migration
rate and the period T . We explicitly compute the growth rate of the metapopulation, and
give explicit bounds on m and T for inflation to occur. In particular we show that that the
threshold m∗ for the appearance of inflation can be very small, precisely exponentially small
with respect to the period. This last point may have a practical importance. Indeed, in a recent
paper [30], Kortessisa et al. (Holt is the last co-author), about the COVID pandemic, based on
simulations, draw the attention to the possibility of inflation in case of migration between two
patches when the sanitary policies are not synchronous; our result confirms analytically these
simulations and indicates that the migration threshold from which the pandemic develops, can
be very small.

After having analyzed in detail the mathematical properties of the periodic (±1)-model
we extend them to more realistic models, and, most importantly, we show that periodicity
is not essential in the following sense. Our (±1) deterministic model can be understood as
a situation where two different environmental regimes +1 and −1 follow each other for a
fixed duration T . We study what happens when the regimes succeed each other over random
durations or with random growth rates ri, and show on various probabilistic models how the
results obtained for the periodic (±1) model can be extended. These last results cannot be
deduced from [29] which proposes a purely deterministic framework.

Mathematically we make essential use of the following change of variable. If N1(t) and
N2(t) are the abundances at each patch we pose

U =
log(N1)+ log(N2)

2
= log(

√
N1N2)

V =
log(N2)− log(N1)

2
= log(

√
N1/N2)

Thus U is the logarithm of the geometric mean of the abundances and |V | is the logarithm
of their geometric standard deviation2. This change of variable has the merit of translating
the analytical properties of the model(±1) into "visible" and "robust" geometrical properties
observed in the (U,V ) plane.

The paper is organized as follows. Section 2 contrains a detailed mathematical treatment
of the (±1)-model for both deterministic and stochastic environment. Section 3 contains
extensions to more realistic models; the mathematical treatment is less precise and sometimes
just outlined. The section 4 contains an attempt to give an informal explanation of our view
of the inflation phenomenon in the case of continuous time models and its relation to previous
work on discrete time models. An appendix contains technical details regarding mathematical
proofs. A symbol index is provided at the end of the appendix.

2 The (±1)-model

2.1 Some results of G. Katriel
In [29], Katriel considers the model :

dxi

dt
= ri(ωt)xi +m ∑

i̸= j
Li j(x j − xi), i = 1, · · · ,N Li j ≥ 0, m ≥ 0 (5)

where the function ri is 2π - periodic continuous and represents the varying growth rate within
patch i, while, for i ̸= j, Li j = L ji represents the ability of dispersal from patch i to patch j.
We denote Lii =−∑ j ̸=i Li j and assume that the matrix L = (Li j) is irreducible, meaning that
the population can spread in all patches. With vector notations we can write (6) in the form :

dX
dt

=
(
R(ωt)+mL

)
X (6)

2see e.g. https://en.wikipedia.org/wiki/Geometric_standard_deviation
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where R is the diagonal matrix whose diagonal elements are ri(ωt). We summarize here a
part of the results of [29]. We let

◦ ri =
1

2π

∫ 2π

0
ri(θ)dθ ,

◦ rmax(θ) = max
i=1..N

ri(θ), and

◦ χ =
1

2π

∫ 2π

0
rmax(θ)dθ .

◦ The growth rate of a positive function t 7→ x(t) is the limit, if it exists,

Λ[x] = lim
t 7→∞

1
t

ln(x(s)).

When m = 0, all equations of (6) are decoupled,

Λ[xi] = ri,

and depending on whether ri is positive or negative we will say that the patch i is a ”source”
or a ”sink”. As soon as m is strictly positive, since L is irreducible, from Perron-Frobenius
theory, it follows that all the growth rates Λ[xi] are equal. This common rate is the growth rate
of the metapopulation and is noted Λ(m,ω).

Definition 2.1. [?] One says that there is ”Dispersal Induced Growth” (DIG) if, while all ri
are strictly negative, we have Λ(m,ω)> 0.

Comment Note that DIG is the phenomenon which is called inflation in [15, 20, 25, 31,
32, 38, 39] with more or less formalized definitions associated to each context. In the present
paper when we say ”inflation” we refer to the above formalized definition.

The problem is to characterize the set of values of m and ω for which there is DIG (infla-
tion).

We note:

Λ0(m) =
1

2π

∫ 2π

0
λ (R(θ)+mL)dθ (7)

where λ (R(θ)+mL) is the dominant eigenvalue of the matrix (R(θ)+mL).

Theorem 2.2. [?] (see Figure 1).

- If χ < 0, for all m and all ω we have Λ(m,ω)< 0. There is no DIG.

- If χ > 0 the equation Λ0(m) = 0, m > 0 has a unique solution m∗ and there exists
a function ωc continuous on [0,m∗], strictly positive on ]0,m∗[ , such that ωc(0) =
ωc(m∗) = 0 for which :

1. If m < m∗,
ω < ωc =⇒ Λ(m,ω)> 0 there is DIG

ω > ωc =⇒ Λ(m,ω)< 0 there is no DIG

2. If m > m∗,
Λ(m,ω)< 0 there is no DIG

In general it is not possible to compute effectively Λ0(m) except in the case of two sites.
In [29] the following formula for Λ0(m) is given :

Λ0(m) =
1
2

[
r̄1 + r̄2 +

1
2π

∫ 2π

0

√
(r1(θ)− r2(θ)2 +4m2dθ

]
−m

In the present paper we give closed expression of ωc for specific ri that we precise now.
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DIG
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Figure 1: Inflation when χ > 0

2.2 The two-patches model in the (U,V ) variables.
We consider the model :

Σ(r1,r2,m,T )


dx1

dt
= r1(t)x1 +m(x2 − x1)

dx2

dt
= r2(t)x2 +m(x1 − x2)

(8)

where r1(t) and r2(t) are the growth rates at time t ≥ 0 in patch 1 and 2, respectively. The
functions t 7→ r1(t) and t 7→ r2(t) can be deterministic or random. In this paper, we will be
interested in the case where these functions are piecewise constant, and change of values at
periodic (see Section 2.3) or random times (see Section 2.4). Nevertheless, for the rest of this
subsection, the precise form of r1 and r2 do not matter.

Thanks to the fact that we have only two patches we can define

U = ln(
√

x1x2) =
1
2
(ln(x1)+ ln(x2))

V = ln(
√

x1/x2) =
1
2
(ln(x1)− ln(x2))

(9)

This is legitimate since the solutions of (8) remain strictly positive as soon as the initial con-
ditions are. In these new variables the system becomes: 3 :

S(r1,r2,m,T )


dU
dt

=
r1(t)+ r2(t)

2
+m(cosh(2V )−1)

dV
dt

=
r1(t)− r2(t)

2
−msinh(2V )

(10)

One observes that the variable V is decoupled from the variable U . By the way, once the
solution V (t) is known, the solution U(t) is obtained by the simple quadrature

U(t) = U0 +
∫ t

0

r1(θ)+ r2(θ)

2
dθ +m

∫ t

0
(cosh(2V (θ))−1)dθ (11)

We can already make some remarks. When both sites are sinks (r̄1 < 0 and r̄2 < 0), if there is
no migration, as expected, the metapopulation is decreasing. As the quantity (cosh(2V )−1)
is strictly positive as soon as V is different from 0 we see that the more V (θ) will be (on
average) different from 0, the bigger the second integral term will be and so the more U(t)
will have the possibility to become positive. A quick look at the equation of V shows that
the larger |r1(t)− r2(t)| is, the larger it will be ; and the bigger is m the smaller is V . This

3We recall the notations sinh(x) = ex−e−x

2 cosh(x) = ex+e−x

2
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immediately tells us two ingredients favorable to inflation: r1(t) and r2(t) must be different,
m must be strictly positive for the second integral to be taken into account, but not too large
so that the solutions of the second equation of (8) are not too small.

Note that there are many ways to transform linear systems in a cascade of non linear
systems like, for instance, polar coordinates, but this one seems the most appropriate to the
study of migration between two patches (see Remark 2 below). Moreover U is the logarithm
of the geometric mean of the abundances on the two patches and the absolute value of V is
the logarithm of their geometric standard deviation which have biological meaning.

Remark 1. Assume that r1 and r2 are bounded by R > 0. Then, from the second equation
in (10), it is easily seen that, as soon as m > 0, V will eventually enter and remain in the
compact interval [−sinh−1(R/m),sinh−1(R/m)]. As a consequence, limt→∞ V (t)/t = 0, and
thus (provided the limits exist)

Λ[x1] := lim
t→∞

ln(x1(t))
t

= lim
t→∞

ln(x2(t))
t

=: Λ[x2]

In other words, the long term growth rate is common in the two patches. Moreover,

lim
t→∞

U(t)
t

=
1
2

(
lim
t→∞

ln(x1(t))
t

+ lim
t→∞

ln(x2(t))
t

)
= Λ[xi]

and so we are interested in the growth or decay of U .

Remark 2. Assume that the following limits exist

ri := lim
t→∞

1
t

∫ t

0
ri(s)ds i = 1,2

Note that these limits indeed exist if ri are periodic or semi-Markov (see Remark 5 in Section
2.4.1). Then, ri is the long term average growth rate on each patch: if m = 0, xi(t) tend to 0 or
infinity depending on whether ri is negative or positive. From Equation (11) and the fact that
cosh(x)≥ 1 for all x ∈ R, we deduce that, for all m ≥ 0,

liminf
U(t)

t
≥ r̄1 + r̄2

2
.

This means that the common growth rate of the two patches is always higher than the mean
of the growth rates within each patch. This is straightforward in the variables U −V , while it
seems difficult to conclude that from the classical "polar" decomposition, S(t) = x1(t)+x2(t)
et y(t) = x1(t)/S(t), which leads to

dS(t)
dt

= S(t)(r1(t)y(t)+ r2(t)(1− y(t))) ,

and thus
1
t

ln(x1(t)+ x2(t)) =
S(0)

t
+

1
t

∫ t

0
r1(s)y(s)+ r2(s)(1− y(s))ds.

In Section 3.3, we prove by adapting conveniently the variables U −V , that a similar result
holds true in the case of a non symmetric dispersal, with a weighted mean of r1 and r2 taking
into account the asymmetry in the dispersal.

2.3 The (±1)model in periodic environment

2.3.1 The model

Our idea is to understand the mathematics of the simplest possible model of the form Σ(r1,r2,m,T )
and complicate it thereafter. Thus, we consider the system

Σ(ε,m,T )


dx1

dt
= (+u(t)− ε)x1 +m(x2 − x1)

dx2

dt
= (−u(t)− ε)x2 +m(x1 − x2)

(12)
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where 0 ≤ ε ≤ 1, 0 ≤ m, 0 ≤ T and the function t 7→ u(t) is periodic of period 2T , with :

t ∈ [0, T [⇒ u(t) = 1, t ∈ [T, 2T [⇒ u(t) =−1

We call the system Σ(ε,m,T ) the periodic (±1)-model. From that definition one sees that
for u(t) = +1 we are integrating the system

Σ+(ε,m)


dx1

dt
= (+1− ε)x1 +m(x2 − x1)

dx2

dt
= (−1− ε)x2 +m(x1 − x2)

(13)

while for u(t) =−1 we are integrating the system

Σ−(ε,m)


dx1

dt
= (−1− ε)x1 +m(x2 − x1)

dx2

dt
= (+1− ε)x2 +m(x1 − x2)

(14)

Thus we are switching, each T units of time, from system Σ+(ε,m) to system Σ−(ε,m) and
vice versa; such systems are called switched systems. Switched systems where intensively
investigated in the context of control theory during the seventies and later (see for instance
[28]) and more recently, in a probabilistic context, under the name of PDMP (Piecewise De-
terministic Markov Processes) [4, 5, 8, 12, 22].

Remark 3. Let us remark that the (±1)-model defined by (12) is a bit more general than it
looks since it includes the case of two identical patches that are simply in ”phase opposition”,
given by the following switched system :

For t ∈ [0,T ),

{
dx1
dt = rx1 +m(x2 − x1)

dx2
dt = −dx2 +m(x1 − x2)

For t ∈ [T,2T ),

{
dx1
dt = −dx1 +m(x2 − x1)

dx2
dt = rx2 +m(x1 − x2)

(15)

This system is of the form Σ(r1,r2,m,T ) given in (8), where r1(t) and r2(t) are the 2T -periodic
functions defined by

r1(t) =
{

r if t ∈ [0,T )
−d if t ∈ [T,2T ) r2(t) = r1(t +T ) =

{
−d if t ∈ [0,T )

r if t ∈ [T,2T )

We assume that d > r > 0. We have

r̄1 = r̄2 =
1

2T

∫ 2T

0
ri(t)dt =

r−d
2

< 0, χ =
1

2T

∫ 2T

0
max(r1(t),r2(t))dt = r > 0,

which means that each patch is a sink, while χ > 0. According to the theorem of Katriel (see
Theorem 2.2) inflation can occur. Let ε = d−r

d+r . We have 1− ε = θr and 1+ ε = θd, where
θ = 2

d+r . Therefore, the change of time t = θs transforms the switched system (15) into the
system

For s ∈
[
0, T

θ

)
,

{
dx1
ds = (1− ε)x1 +θm(x2 − x1)

dx2
ds = −(1+ ε)x2 +θm(x1 − x2)

For s ∈
[T

θ
,2 T

θ

)
,

{
dx1
ds = −(1+ ε)x1 +θm(x2 − x1)

dx2
ds = (1− ε)x2 +θm(x1 − x2)

This is the periodic (±1)-model given by (12) , with T replaced by T/θ and m replaced by
θm, that is Σ(ε,θm,T/θ)

9



V
0V−

m V+
m

Figure 2: The switched system F(m,T ): in red F+
m , in blue F−

m , defined by (18) and (19) respec-
tively

2.3.2 The (±1)model in the variables (U,V )

In the new variables (U,V ) the system becomes

S(ε,m,T )


dU
dt

= mcosh(2V )−m− ε

dV
dt

= u(t)−msinh(2V )

(16)

The non autonomous system

F(m,T )
{

dV
dt

= u(t)−msinh(2V ) (17)

is a one dimensional switched system between the two autonomous equations

F+
m

{
dV
dt

=+1−msinh(2V ) (18)

and

F−
m

{
dV
dt

=−1−msinh(2V ) (19)

We let ϕ
+
t (v) and ϕ

−
t (v) the solutions to (18) and (19) at time t ≥ 0, starting from v at time

0. The two differential equations F+
m and F−

m have respectively the points

V+
m =

1
2

sinh−1(+1/m) V−
m =

1
2

sinh−1(−1/m) (20)

as globally asymptotically stable equilibria (that is, ϕ
+
t (v) converges to V+

m and ϕ
−
t (v) con-

verges to V−
m ). From Figure 2 it is evident that the solutions of F(m,T ) are trapped in the in-

terval [V−
m ,V+

m ]. The following proposition is easy to prove with elementary calculus means.
Since we don’t know reference for it a proof is done in Appendix C :

Proposition 2.3. The switched system F(m,T ) has a unique periodic solution, denoted by
Pm,T (t), globally asymptotically stable, which oscillates between two values P−

m,T , and P+
m,T

contained in the interval [V−
m , V+

m ] ; P−
m,T =−P+

m,T and the function T 7→ P+
m,T is an increasing

function of T which tends to V+
m when T tends to infinity.

Let us denote :

∆(ε,m,T ) =
1

2T

∫ 2T

0
mcosh(2Pm,T (s))−m− εds. (21)

Then,

Proposition 2.4.

lim
t→∞

U(t)
t

= ∆(ε,m,T ). (22)

10



Hence, U(t) tends to ±∞ according to the sign of ∆(ε,m,T ).
Proof From the first equation of (16) one has

U(t) =U(0)+
∫ t

0
ϕ(V (s))ds (23)

with
ϕ(V ) = mcosh(2V )−m− ε (24)

We claim that the following limits exist and are equal

lim
t→∞

U(t)
t

= lim
n→∞

U(n2T )
n2T

.

Therefore, for all n1 ≥ 0,

lim
t→∞

U(t)
t

= lim
n→∞

1
n2T

(
U(0)+

∫ n12T

0
ϕ(V (s))ds+

∫ n2T

n12T
ϕ(V (s))ds

)
.

Since the solution V (s) converges to the periodic solution Pm,T (t) for n1 large enough we can
replace in the second integral V (s) by Pm,T (s) and then

lim
t→∞

U(t)
t

= lim
n→∞

1
n2T

(
U(0)+

∫ n12T

0
ϕ(V (s))ds

)
+

1
n2T

(∫ n2T

n12T
ϕ(Pm,T (s))ds

)
.

The first term tends to 0 as n → ∞ and the second reads

1
n2T

(∫ n2T

n12T
ϕ(Pm,T (s))ds

)
=

(n−n1)2T
n12T +(n−n1)2T

1
2T

∫ 2T

0
ϕ(Pm,T (s))ds,

which limit for n → ∞ is just

1
2T

∫ 2T

0
ϕ(Pm,T (s))ds =

1
2T

∫ 2T

0
mcosh(2Pm,T (s))−m− εds.

It remains to prove the claim. For t ∈ [2nT,2(n+1)T ), we have

U(t)
t

=
2nT

t
U(2nT )

2nT
+

1
t

∫ t

2nT
ϕ(V (s))ds

When t goes to infinity, 2nT
t goes to 1, whereas, since V (s) is bounded, the second term in the

right hand side goes to 0. This entails the claim and concludes the proof. 2
Let us evaluate ∆(ε,m,T ). Since the function V 7→ (mcosh(V )−m− ε) is even and, as

it is easily seen, S+(ε,m) and S−(ε,m) are symmetric with respect to the horizontal axe, we
have

∆(ε,m,T ) =
1
T

∫ T

0
cosh(2Pm,T (s))−m− εds. (25)

Recall (see (16)) that U is solution to

U(t) =U0 +
∫ t

0
(mcosh(V (s))−m− ε)ds. (26)

Elementary computations shows that

Proposition 2.5. The right member of Equation (26) is strictly negative on the interval
]A−

ε,m,A
+
ε,m[ and positive outside with

A−
m,ε =−1

2
cosh−1

(
1+

ε

m

)
A+

m,ε =
1
2

cosh−1
(

1+
ε

m

)
.

Moreover,

1. m > 1−ε

2ε
=⇒ [V−

m ,V+
m ]⊂ [A−

ε,m,A
+
ε,m]

11



V+
m

V−
m

V+
m

V−
m

A+
m,ε

A−
m,ε

A+
m,ε

A−
m,ε

Figure 3: The switched system S(ε,m,T ): in blue u(t) = +1, in red u(t) =−1. ε = 0.1 m = 0.2,
T = 0.5 (left), T = 3, (right).

2. m < 1−ε

2ε
=⇒ [V−

m ,V+
m ]⊃ [A−

ε,m,A
+
ε,m]

From this proposition one can see what is going on. On figure 3 one sees a simulation
in the plane (U,V ) of trajectories in the case n° 2. On the left, the period is short which
results in the amplitude of the oscillations of the periodic solution being small. In this case
the trajectory of the periodic solution remains largely inside the stripe V ∈ [V−

m ,V+
m ] where

dV
dt < 0 which results in the decrease of U . On the contrary, when the period is large (T = 3

in the simulation on the right) v(t) has time to approach and stay close to V−
m or V+

m where
dV
dt > 0 which leads to the growth of U .

In other words, since V = ln(
√

x1/x2) measures the ”asymmetry” between the abundances
on the two patches, we can see that when the period is important, the most loaded site is little
diminished by the migration towards the less loaded patch, and, on the contrary, this last one
sees its population strongly increase, which increases the product x1x2 and then U .

A more precise description of the behavior of ∆(ε,m,T ) is given by the following propo-
sition which details of the proof are given in Appendix D.

Proposition 2.6. Properties of ∆(ε,m,T )

1. For fixed T > 0, for both small and large values of m, ∆(ε,m,T ) < 0 and thus if there
is inflation it must be for some intermediate value of the migration m.

2. For fixed ε > 0 and m < 1−ε2

2ε
, there exists a threshold T ∗(ε,m) such that for T <

T ∗(ε,m), ∆(ε,m,T )< 0 and there is no inflation while for T > T ∗(ε,m) , ∆(ε,m,T )> 0
and there is inflation.

3. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly positive. In other words there
exists a threshold T ∗∗ > 0 such that for T < T ∗∗, for all values of m, ∆(ε,m,T )< 0 and
there is no inflation.

2.3.3 An explicit formula for ∆(ε,m,T )

By an elementary but not immediate computation (see appendix E) one proves the following
explicit formula for ∆(ε,m,T )

Proposition 2.7. Let us denote

b = eT
√

1+m2
C = m2b4 +2m2b2 +4b2 +m2.

12



m

T

Δ

Figure 4: Graph of ∆(0.5,m,T )

Then one has

∆(ε,m,T ) =
1

2T
ln

m2b4 +2b2 +m2 +m(b2 −1)
√

C
2(1+m2)b2 − (m+ ε) (27)

On Figure 4 this formula is used to draw the picture (using the software Maple) of the
graph of ∆(0.5,m,T ) with respect to the variables (m,T ).

Small and large values of m or T . On Figure. 4 one sees that ∆(0.5,0,T ) =−0.5 =−ε ,
which is easily understandable: for m = 0 one has dx1

dt = (u(t)− ε)x1,
dx2
dt = (−u(t)− ε)x1)

taking the mean of the two logarithm U
dt =−ε . For T = 0, one sees that ∆(0.5,m,0) is equal

to −1 = −ε which is explained by the general fact (see e.g. [18, 28]) that if we consider
a switched system at a rate witch tends to infinity (i.e. T → 0 ) then the solutions tend to
solutions of the system which is the mean of the two systems ; in our case the mean of the two
systems is :

dU
dt

= mcosh(2V )−m− ε

dV
dt

=
(u(t)−msinh(2V ))+(−u(t)−msinh(2V ))

2
=−msinh(2V )

(28)

which, after a transient, are just
dU
dt

=−ε

The asymptotic behaviors for small and large values of m or T can also be derived by basic
development on the explicit formula (27), as shown by the next proposition.

Proposition 2.8. For fixed value of m, one has

lim
T→∞

∆(ε,m,T ) =
(√

1+m2 − (m+ ε)
)

lim
T→0

∆(ε,m,T ) =−ε.

For fixed value of T > 0,

lim
m→0

∆(ε,m,T ) = lim
m→+∞

∆(ε,m,T ) =−ε.
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m ln(m)

Δ Δ

T = 5

T = 10

T = 15

T = 5

T = 10

T = 15

Figure 5: Graphs of m 7→ ∆(ε,m,T ) : T = 5,10,15 ; ε = 0.5

This proposition tells us that, if m < 1−ε2

2ε
, then for T sufficiently large, inflation occurs.

In addition, if m is fixed and T is small or if T is fixed and m too small or too large, there is
no inflation.

Threshold value of m for large T . On figure 4 one sees that, for large values of T the
dependence with respect to m is very sharp close to 0 ; in order to have a better understanding
of what is going on around 0 we ask to Maple to draw the graph of m 7→ ∆(ε,m,T ) for three
values of T : 5,10,15. The result is shown on figure 5. On the left one sees that the threshold
for the appearance of positive values of ∆ is very small and on the right we see the same
graphs but with a logarithmic scale for m. From the picture we guess the following property,
which is confirmed by the mathematical derivation of appendix F:

Proposition 2.9. When T is large (T → +∞) the threshold value at which m 7→ ∆(ε,m,T )
becomes positive is the exponentially small value :

m∗(ε,T )∼ e−(1−ε)T (29)

Recall that if m = 0, there is no inflation. The above proposition states that the threshold
value of m at which inflation occurs is exponentially small for T large enough. As is appears
from Figure 4, the approximation (29) works extremely well for T larger than 5. This result
is quite striking. For example, for T = 10, the system goes from no inflation for m = 0 to
inflation for m = 10−5 !

Remark 4. This proposition gives an affirmative answer to Conjecture 3 of Katriel’s paper
[29] in the particular case of piecewise constant model which takes advantage of explicit
formulas for the solutions. In a forthcoming paper we shall prove this conjecture in the general
case [34].

2.3.4 Back to the variables x1,x2

One has exp(U(t)) =
√

x1(t)x2(t) and we know that for large values of t one has −V+
m <

V (t)<+V+
m which means 1

r < x2
x1

< r, with r = exp(V+
m ). From this we deduce that :

Σ(ε,m,T ) is stable ⇐⇒ ∆(ε,m,T )< 0 (30)

On the other hand let us consider the ”period mapping” of Σ(ε,m,T ), that is to say the lin-
ear mapping which, to an initial condition (x1(0),x2(0)) at time 0, assigns the solution of
Σ(ε,m,T ) at time 2T and let us denote it by(

x1(2T )
x2(2T )

)
= M(ε,m,T )

(
x1(0)
x2(0)

)
(31)
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The stability of our system Σ(ε,m,T ) is equivalent to the stability of the linear discrete system
of R2

Xn+1 = M(ε,m,T )Xn (32)

For u =−1,1, let us denote by Mu
ε,m the matrix

Mu
ε,m =

 u−m− ε +m

+m −u−m− ε

 (33)

With this notation the matrix M(ε,m,T ) is given by

M(ε,m,T ) = eT M−1
ε,meT M+1

ε,m (34)

The stability of the discrete system Xn+1 = M(ε,m,T )Xn is decided by the spectral radius

σ(ε,m,T ) = max |λi(ε,m,T )| i = 1,2 (35)

where λi(ε,m,T ) are the two real eigenvalues of M(ε,m,T ) (note that since M+1
ε,m and M−1

ε,m
are symmetric, so is M(ε,m,T ) and its eigenvalues are real). Thus

Σ(ε,m,T ) is stable ⇐⇒ σ(ε,m,T )< 1 (36)

In view of (30) and (36) there must be a connection between ∆(ε,m,T ) and σ(ε,m,T ). The
connection is given by the following proposition, which is proved in appendix G.

Proposition 2.10.

∆(ε,m,T ) =
1

2T
ln(σ(ε,m,T )) (37)

2.4 The (±1) model in stochastic environment

2.4.1 Random choice of switching times

In the previous section, the switching from system Σ+(ε,m) to Σ−(ε,m) and vice versa, occurs
after a fixed deterministic time T . Considering that switching from one system to the other
models is a change in the environment, it makes sense to deal with the case where switching
occur after a random time. More precisely, we consider a sequence of iid4 random variables
(Sn)n≥0, with common law µ on [0,∞), and a random function t 7→ u(t) such that,

t ∈ [T2n,T2n+1[⇒ u(t) = 1 t ∈ [T2n+1,T2n+2[⇒ u(t) =−1

where T0 = 0 and for n ≥ 1, Tn = ∑
n
k=1 Sk. From this function u, we build a stochastic process

solution to

Σ(ε,m,µ)


dx1

dt
= (+u(t)− ε)x1 +m(x2 − x1)

dx2

dt
= (−u(t)− ε)x2 +m(x1 − x2)

(38)

In other words, after the n-th switching, we draw a random variable Sn+1 with law µ indepen-
dent from anything else, and we integrate system Σ+(ε,m) when n is even (Σ−(ε,m) when n
is odd) for a time Sn. The periodic system studied in the previous section is the particular case
when the law µ is the Dirac mass at T , i.e., Sn = T almost surely for all n ≥ 1.

We let E(Y ) denote the expectation of a random variable Y and P(A) the probability of
an event A. Since E(S1) represents the mean time spent in each regime, we assume that
E(S1) < +∞. In addition, we assume that P(S = 0) = 0, in order to avoid instantaneous
change of regime.

4” iid ” means Independent, Identically Distributed.
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As in the case of periodic environment, we perform the change of variable V = 1
2 (ln(x1)−

ln(x2)) and U = 1
2 (ln(x1)+ ln(x2)) to get

S(ε,m,µ)


dU
dt

= mcosh(2V )−m− ε

dV
dt

= u(t)−msinh(2V )

(39)

The system S(ε,m,µ) is composed of the one-dimensional system

F (m,µ)
dV
dt

= u(t)−msinh(2V ) (40)

which then gives the solution of U ,

U(t) = U0 +
∫ t

0
(mcosh(2V (s))−m− ε)ds (41)

Remark 5. The process (u(t))t≥0 is a so-called semi-Markov process. It is in general not
a Markov process, but the sequence of post-jump locations make a Markov chain, which
explains the name semi-Markov. In the particular case where µ is an exponential law (and
only in this case), (u(t))t≥0 is a Markov process, as well as the processes (V,U,u) and (V,u).
These two latter processes are called Piecewise Deterministic Markov Processes (see Section
2.4.2 below).

Recall that we say that a sequence of random variables Yn converges in distribution (or in
law) to a variable Y∞ if for all bounded continuous function f , E( f (Yn))→ E( f (Y∞)) when n
goes to infinity. For all n ≥ 0, set V̂n =V (Tn).

Lemma 2.11. There exist random variables V−
∞ =V−

∞ (m,µ) and V+
∞ =V+

∞ (m,µ) such that

1. V+
∞ and V−

∞ lie almost surely in [V−
m ,V+

m ]; where V+
m and V−

m are given by (20);

2. V̂2n and V̂2n+1 converge in distribution to V−
∞ and V+

∞ respectively;

3. Let S be a random variable with law µ , independent from V−
∞ and V+

∞ . Then, with
probability 1, for all bounded measurable function f : R×R+ → R,

lim
n→∞

1
n

n−1

∑
k=0

f (V̂2k,S2k+1) = E[ f (V−
∞ ,S)]; lim

n→∞

1
n

n−1

∑
k=0

f (V̂2k+1,S2k+2) = E[ f (V+
∞ ,S)]

Remark 6. If µ = δT is the Dirac mass at T , V−
∞ (m,δT ) = Pm,T (0) and V+

∞ (m,δT ) = Pm,T (T ),
where Pm,T is the unique periodic solution of the system F(m,T ) (see Equation (17)) granted
by Proposition 2.3.

This lemma proved in Appendix H, tells us that the location of V after an even number of
jumps is asymptotically close, in distribution, to a variable V−

∞ , and to a variable V+
∞ after an

odd number of jumps. This enable us to give the asymptotic growth rate of U , as in Proposition
2.4. Recall that ϕ

+
t (v) and ϕ

−
t (v) are the solutions to F+

m and F−
m at time t ≥ 0, starting from

v at time 0, respectively.

Proposition 2.12. Let S be a random variable with law µ , independent from V+
∞ and V−

∞ . Set

∆(m,µ) =
E
(∫ S

0 m(cosh(2ϕ+
s (V−

∞ ))−1)ds
)
+E

(∫ S
0 m(cosh(2ϕ−

s (V+
∞ ))−1)ds

)
2E(S)

(42)

Then, for all initial condition V (0),U(0), one has, with probability one,

lim
t→∞

U(t)
t

=∆(ε,m,µ) :=∆(m,µ)− ε.
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The proof of Proposition 2.12, given in Appendix I, is similar to the proof of Proposition
2.4, using probabilistic tools and the law of large numbers given by the third point of Lemma
2.11.

Remark 7. If µ = δT is the Dirac mass at T , we have by definition of Pm,T that for all
s ∈ [0,T ], ϕ+

s (V−
∞ ) = Pm,T (s) and ϕ−

s (V+
∞ ) = Pm,T (T + s). Thus,

E
(∫ S

0
m(cosh(2ϕ

+
s (V−

∞ ))−1)ds
)
=
∫ T

0
m(cosh(2Pm,T (s))−1)ds

and

E
(∫ S

0
m(cosh(2ϕ

−
s (V+

∞ ))−1)ds
)
=
∫ T

0
m(cosh(2Pm,T (s+T ))−1)ds

=
∫ 2T

T
m(cosh(2Pm,T (s))−1)ds,

so that

∆(ε,m,δT ) =
1

2T

∫ 2T

0
m(cosh(2Pm,T (s))−1− ε)ds = ∆(ε,m,T ).

Therefore, we retrieve the growth rate computed in the previous section.

Remark 8. Under some additional assumptions on the law µ , it is possible to prove that V (t)
converges in distribution to a variable V∞ as t goes to infinity (see the forthcoming paper [26]
for general conditions and Section 2.4.2 below for a particular case). In that case, we can
express ∆(ε,m,µ) as

∆(ε,m,µ) = E [m(cosh(2V∞)−1)]− ε.

2.4.2 The particular case of PDMP

In this section, we detail the particular case where µ is an exponential law with parameter σ ,
i.e., µ is absolutely continuous with respect to the Lebesgue measure with density defined on
R+ by g(x) = σe−σx. Since E(S1) =

1
σ

, we rather use the parametrization T = 1/σ in the se-
quel. In this situation of an exponential law, as noticed in Remark 5, the process (Vt ,u(t))t≥0
is a Piecewise Deterministic Markov process. In addition, some explicit computations are
made possible in that case.

First, it can be proven easily, using e.g. [5, Theorem 4.6] that V (t) converges in distri-
bution to a random variable V∞, whose law admits a density with respect to the Lebesgue
measure. In addition, this density is explicitly computable, and given by (see e.g [16, Propo-
sition 3.12] for the general formula)

ρm,T (v) =C(m)

(
1

|F+
m (v)|

+
1

|F−
m (v)|

)(
eV+

m − ev

ev + eV−
m

ev − eV−
m

ev + eV+
m

) 1
2T
√

m2+1

; (43)

for all v ∈ [V−
m ,V+

m ], where C(m) is a normalisation constant. Moreover, the following strong
law of large numbers is satisfied. For all bounded measurable function f : [V−

m ,V+
m ] 7→ R

lim
t→∞

1
t

∫ t

0
f (V (s))ds = E( f (V∞)).

This entails, as noticed in Remark 8, that

lim
t→∞

U(t)
t

= m(cosh(2V∞)−1)− ε =∆(ε,m,µ),

which can be rewritten as

∆(ε,m,µ) =
∫
[V−

m ,V+
m ]

m(cosh(2v)−1)ρm,T (v)dv.
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Remark 9. From the explicit expression (43) of ρm,T , it is possible to prove that, for fixed m
and T , there exist constants C−(m,T ),C+(m,T ) such that, as v →V+

m ,

ρm,T (v)∼C+(m,T )(eV+
m − ev)

1
2T
√

1+m2
−1
,

while as v →V−
m ,

ρm,T (v)∼C−(m,T )(ev − eV−
m )

1
2T
√

1+m2
−1
.

In particular, ρm,T is bounded in neighbourhoods of V+
m and V−

m if and only if 1≥ 2T
√

m2 +1.
This condition is consistent with the following heuristic: if T is large, the environment does
not switch often, and the process V follows the vector fields F+

m and F−
m for a long time, and

thus spend a large amount of time close to the equilibria V+
m and V−

m . Hence, for large T , one
expects that the distribution Πm,T give a lot of mass near V+

m and V−
m . On the contrary, if T

is small, the environment switches frequently, and the process V spend most of time in the
middle of the interval [V−

m ,V+
m ], and therefore one expects the distribution Πm,T to vanish at

the extremity of the interval.

2.4.3 When the mean switching time goes to infinity

Let us assume that we have a family of law (µ(T ))T>0 such that, for all T > 0;
∫
[0,∞) tµ(T )(dt)=

T . In other words, the mean time spent in each environment is T . We now prove that,
when m is fixed and T goes to infinity, the asymptotic of ∆(ε,m,µ(T )) is the same as in
the periodic case. In particular, for m small enough, one can choose T large enough so that
∆(ε,m,µ(T )) > 0 and there is inflation. This comes from the fact that, as T goes to infinity,
the time spent in each environment is large enough so that ϕ0

s (v) and ϕ1
s (v) become, uniformly

in v in a compact interval, arbitrarily close from V+
m and V−

m , respectively.

Proposition 2.13. For fixed m > 0,

lim
T→∞

∆(ε,m,µ(T )) =
√

1+m2 −m− ε.

In particular, whenever m < 1−ε2

2ε
, for T large enough, ∆(ε,m,µ(T )) > 0 and there is infla-

tion.

Proof. The proof is similar to the proof of Cesaro’s Lemma. Let S(T ) be a random variable
with law µ(T ). We claim that for all continuous function g : [V−

m ,V+
m ]→ R,

lim
T→∞

sup
v∈[V−

m ,V+
m ]

∣∣E
(∫ S(T )

0 g(ϕ+
r (v))dr

)
E(S(T ))

−g(V+
m )
∣∣= 0,

and similarly with V−
m instead of V+

m when ϕ+ is replaced by ϕ− in the integral. Apply-
ing this result to the function g(v) = m(cosh(2v)− 1) and using formula (42) proves the
proposition since g(V+

m ) = g(V−
m ) =

√
1+m2 − m. We now prove the claim. Since V+

m
is globally attractive for the flow ϕ+, for all ε > 0 there exists M > 0 such that, for all
r ≥ M, supv∈[V−

m ,V+
m ] |ϕr(v)−V+

m | ≤ ε . Since g is uniformly continuous on [V−
m ,V+

m ], this
entails that for M large enough and r ≥ M, supv∈[V−

m ,V+
m ] |g(ϕr(v))− g(V+

m )| ≤ ε . Hence, for
all v ∈ [V−

m ,V+
m ],

∣∣E(∫ S(T )
0 g(ϕ+

r (v))dr)
E(S(T ))

−g(V+
m )
∣∣≤ E(

∫ S(T )∧M
0 |g(ϕ+

r (v))−g(V+
m )|dr)

E(S(T ))

+
E(
∫ S(T )

M |g(ϕ+
r (v))−g(V+

m )|dr1lS(T )>M)

E(S(T ))

≤ 2M∥g∥∞

T
+ ε,

where we have used that E(S(T )) = T . This proves the claim.
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2.4.4 Random choice of (±1).

In this section, we study another type of random process linked to the (±1) model. We
assume that, in each patch, after each T units of time, we select at random, independently
from anything else, whether the growth rate within the patch will be 1−ε or −(1+ε) for the
next T units of time. More formally, we consider the system such that; for all n ≥ 0, for all
t ∈ [nT,(n+1)T ),

Σ(ε, p1, p2,m,T )


dx1

dt
= (zn

1 − ε)x1 + m(x2 − x1)

dx2

dt
= (zn

2 − ε)x2 + m(x1 − x2)
(44)

where (zn
1)n≥0 and (zn

2)n≥0 are independent sequences of i.i.d. random variables with values in
{−1,1} such that for i = 1,2, P(zn

i = 1) = pi ∈ (0,1). Note in particular that the growth rates
of the two patches are totally uncorrelated and that there is no temporal autocorrelation for
the value of the growth rate within a given patch. In the U −V variables, the system becomes,
for t ∈ [nT,(n+1)T ), 

dU
dt

=
zn

1 + zn
2

2
+mcosh(2V )−m− ε

dV
dt

=
zn

1 − zn
2

2
−msinh(2V )

(45)

Note that now, V is switching between three autonomous system : F+
m , F−

m and F0
m, where

F0
m

{
dV
dt

=−msinh(2V ) (46)

We denote by ϕ0 the flow associated to F0
m. For n ≥ 0, we let V̂n =V (nT ). As in the previous

section, we can precise the asymptotic behavior of V̂n.

Lemma 2.14. The followings hold true:

1. The sequence (V̂n)n≥0 is a Markov chain;

2. V̂n converges in distribution to a random variable V̂∞ which lies almost surely in [V−
m ,V+

m ];

3. For k ≥ 0, let hk =
zk
1−zk

2
2 and let h a random variable independent from V̂∞, with the

law of h1. Then, with probability 1, for all bounded measurable function f : [V−
m ,V+

m ]×
{−1,0,1}→ R,

lim
n→∞

1
n

n−1

∑
k=0

f (V̂k,hk) = E( f (V̂∞,h).

Now, similarly to the proof of Proposition 2.12, we can use the previous lemma to show
that there exists an asymptotic growth rate for U .

Proposition 2.15. Let h be a random variable, independent from V̂∞, with the law of z1
1−z1

2
2 .

Set

∆(p1, p2,m,T ) =
E(
∫ T

0 m
(
cosh(2ϕh

r (V̂∞))−1
)

dr)
T

+ p1 + p2 −1

Then,

lim
t→∞

U(t)
t

=∆(p1, p2,m,T,ε) =∆(p1, p2,m,T )− ε.

The proof of Proposition 2.15 is very similar to the proof of Proposition 2.12 and left to the
reader. We illustrate this proposition by the simulations of figure 6 which is are counterpart of
those of figure 3 in the deterministic periodic case. We have considered the system (45) with
p1 = p2 =

1
2 and m = 0.1 and ε = 0.1. On the right one sees a realization of the process with

T = 5 ; one sees:
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T = 5T = 0.2

V+
mV+

m

V−
m V−

m

A+
m,ε A+

m,ε

A−
m,εA−

m,ε

a

b

c
d

e

f

g

Figure 6: System (45). On the left one realization with duration between switches = 0.2 ; on the
right duration = 5. More comments in the text.

◦ From 0 to a : z1 = z2 =+1. The abondance of population is increasing on both patches;
trajectory in blue.

◦ From a to b : z1 = 1, z2 =−1. Site 1 is favorable, site 2 unfavorable.

◦ From b to c : z1 = z2 =+1. The abondance of population is increasing on both patches.

◦ From c to d : z1 = z2 =−1. The abondance of population is decreasing on both patches;
trajectory in green.

◦ From d to e : z1 = 1, z2 =−1. Site 1 is favorabble, site 2 unfavorable.

◦ From e to f : z1 =−1, z2 =+1. Site 1 is unfavorable, site 2 favorable.

◦ From f to g : z1 =−1, z2 =+1. Site 1 is favorable, site 2 unfavorable.

◦ . . .

We see that, with respect to U , green and blue trajectories almost compensate while, since
T is large enough, the red trajectories spent enough time in the strips R× [A+

m,ε ,V
+
m ] and

R× [V−
m ,A−

m,ε , ] where U is increasing. on the left simulation we chose T = 0.2 which gives
little chance to the trajectory to reach the strips where U is increasing.

In the situation of random switching time studied previously, we have shown that, pro-
vided m is small enough and the mean switching time is large enough, there is inflation. The
present case of random choice of (±1) is a bit different. Depending on the parameters p1, p2
and ε , it might happen that inflation never occurs, whatever the values of m and T are. We use
the notations of Katriel to state this result.

Proposition 2.16. Let

χ = χ(p1, p2,ε) = p1(1− p2)+ p2(1− p1)+ p1 + p2 −1− ε

Then

• If χ < 0, then for all (m,T ), ∆(p1, p2,m,T,ε)< 0, and there is no inflation

• If χ > 0, there exists m∗(ε) such that, for all m ∈ (0,m∗(ε)), there exists T ∗(m) such
that, for all T ≥ T ∗(m), ∆(p1, p2,m,T,ε)> 0 and there is inflation.
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The second assertion is a consequence of the fact that, for all m > 0,

lim
T→∞

∆(p1, p2,m,T,ε) = [p1(1− p2)+ p2(1− p1)] (
√

1+m2 −m)+ p1 + p2 −1− ε

= χ − [p1(1− p2)+ p2(1− p1)]m+o(m).

Remark 10. Note that

χ = [p1(1− p2)+ p2(1− p1)+ p1 p2] (1− ε)− [(1− p1)(1− p2)] (1+ ε).

The term p1(1− p2)+ p2(1− p1)+ p1 p2 is the proportion of time where a least one patch is
favourable, while the term (1− p1)(1− p2) is the proportion of time where the two patches
are unfavourable. In particular, χ > 0 if and only if

p1(1− p2)+ p2(1− p1)+ p1 p2

(1− p1)(1− p2)
>

1+ ε

1− ε
,

that is, the ratio of the time in favorable states and the time in unfavorable state is higher than
the ratio of the rates of decrease and of increase.

The proof of the first item of Proposition 2.16 is similar to the proof of the result of Katriel,
with the use of the law of large numbers. It is remarkably simple, as we detail now

Proof. For all t ∈ [nT,n(T +1)), we have

d(x1 + x2)

dt
= (zn

1 − ε)x1 +(zn
2 − ε)x2

≤ (max(zn
1,z

n
2)− ε)(x1 + x2).

This implies that

ln((x1 + x2)((n+1)T ))≤ (max(zn
1,z

n
2)− ε)T + ln((x1 + x2)(nT )),

and thus for all n ≥ 1,

ln((x1 + x2)(nT ))
nT

≤−ε +
1
n

n−1

∑
k=0

max(zk
1,z

k
2).

Since the sequence (max(zk
1,z

k
2))k≥0 is i.i.d., the strong law of large numbers implies that with

probability 1,

lim
n→∞

1
n

n−1

∑
k=0

max(zk
1,z

k
2) = E(max(zk

1,z
k
2))

= p1(1− p2)+ p2(1− p1)+ p1 p2 − (1− p1)(1− p2)

Hence,

lim
n→∞

ln((x1 + x2)(nT ))
nT

≤ χ,

and this entails the first point of the proposition.
The proof of the second point is very similar to the proof of Proposition 2.13, where we

also use that, as t goes to infinity, ϕ0(v)→ 0, uniformly in v ∈ [V−
m ,V+

m ]. Thus, the proof is
omitted.

Remark 11. We could also have considered the case where zn
1 is not necessarily independent

from zn
2. In that case, we give the law p = (p1,1, p1,−1, p−1,1, p−1,−1) of the couple Zn =

(zn
1,z

n
2) : for h,h′ ∈ {−1,+1},

P
(
Zn = (h,h′)

)
= ph,h′ ,
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for some p1,1, p1,−1, p−1,1, p−1,−1 that sum to 1. The formula become

lim
T→∞

∆(p,m,T,ε) = [p+,−+ p−,+] (
√

1+m2 −m)+ p++− p−−− ε

χ(p,ε) = [p+,−+ p−,++ p+,+](1− ε)− p−,−(1+ ε)

and χ > 0 if and only if, either p−,− = 0 or

p+,−+ p−,++ p+,+

p−,−
>

1+ ε

1− ε
. (47)

We notice that when both p1,1 and p−1,−1 are null, i.e. the case where the patches are always
in opposite growth,

lim
T→∞

∆(p,m,T,ε) = (
√

1+m2 −m)− ε,

which is the same limit as in the periodic case with alternating −+ and +−.

2.4.5 Link with the top Lyapunov exponent

Let Xt = (x1(t),x2(t)) the solution to Σ(m,ε,µ). With the notation of Section 2.3.4, one can
rewrite Σ(m,ε,T ) as

dXt

dt
= Mu(t)

ε,m Xt . (48)

Since u(t) is constant on interval [Tn,Tn+1[ of length Sn+1, one has

X(Tn+1) = eSn+1Mu(Tn)
ε,m X(Tn)

Hence, setting X̂n = X(Tn) and ûn = u(Tn), one can write X̂n as the product

X̂n =

(
n−1

∏
i=0

Bi

)
X̂0,

where Bi is the random matrix eSi+1M
ûi
ε,m . Since the sequence (ûn)n≥0 forms a Markov chain

and since the (Sn)n≥1 are i.i.d., one can prove (see [11, Propsition 3.8]) that the classical
Oseledet’s Multiplicative ergodic theorem can be applied. According to this theorem, the
limit5

lim
n→∞

1
n

ln∥X̂n∥

exists, and can take at most two different values λ1 ≥ λ2, called Lyapunov exponent (see e.g
Chapter 1.4 in [40]). Since the matrices Mh

ε,m are irreducible and Metzler , ie have non-
negative off-diagonal coefficients, a random version of Perron - Frobenius Theorem (see [3]),
and Proposition 2.13 in [8]) implies that the top Lyapunov exponent λ1, is such that, for all
X0 ∈ R2

+ \{0}, almost surely,

lim
n→∞

1
n

ln∥X̂n∥= λ1.

Moreover, by Proposition 3.4 in [11], we can define the growth rate Λ(ε,m,µ) of the continuous-
time model and related it to the Lypaunov exponent of the discrete-time model:

Λ(ε,m,µ) := lim
t→∞

1
t

ln∥Xt∥=
1

E(S1)
lim
n→∞

1
n

ln∥X̂n∥=
λ1

E(S1)
.

Obviously, Λ(ε,m,µ) and ∆(ε,m,T ) are linked. Indeed, note that the compact set [V−
m ,V+

m ]
is positively invariant for V = 1

2 (ln(x1)− ln(x2)) and attracts all trajectories. Hence, for all

5Here ∥ · ∥ stands for the euclidian norm on R2, but the limit is independent of the choice of the norm.

22



initial condition (x1(0),x2(0)), there exists a time t0 such that, for all t ≥ t0, V (t) ∈ [V−
m ,V+

m ].
In particular, for t ≥ t0;

e2V−
m ≤ x1(t)

x2(t)
≤ e2V+

m

This yields(
e2V−

m + e−2V+
m
)

x1(t)x2(t)≤ x1(t)2 + x2(t)2 ≤
(

e−2V−
m + e2V+

m
)

x1(t)x2(t)

Taking the logarithm and sending t to infinity proves the following:

Proposition 2.17. One has
∆(ε,m,µ) =Λ(ε,m,µ).

Remark 12. For the system Σ(ε, p1, p2,m,T ) considered in Section 2.4.4, one can prove
similarly that X̂n = X(nT ) is described by a random product of matrices, and that there exists
a top Lyapunov exponent λ1 such that ∆(p1, p2,m,T,ε) = λ1

T .

3 Some extensions to more complex situations

3.1 The case of partial phase shift
In the preceding section we considered the case where the two patches where always in oppo-
site conditions during the whole period 2T . A more realistic situation is when the two patches
are ruled by the same periodic environment r(t) shifted of ϕT with ϕ ∈ (0,1).

Hence, we consider the system Σ(r1,r2,m,T ), given by (8), where r1(t) and r2(t) are the
2T -periodic functions defined by

r1(t) =
{

r if t ∈ [0,T )
−d if t ∈ [T,2T ) r2(t) = r1(t −ϕT ).

As in (15), we assume that d > r > 0 which means that the mean of the growth rate on each
patch is negative (each patch is a sink). We have :

χ =
1

2T

∫ 2T

0
max(r1(s),r2(s))ds = r

1+ϕ

2
−d

1−ϕ

2

where 1+ϕ

2 is the proportion of time where at least one of the patches is increasing, while 1−ϕ

2
is the proportion of time where both patches are decreasing. Hence, χ > 0 if and only if

1+ϕ

1−ϕ
>

d
r
,

as in the stochastic (±1) model, see (47).
Let us consider now the special case where r = 1−ε and d = 1+ε corresponding to (±1)

model. We have χ = ϕ − ε . Therefore χ > 0 if and only if ϕ > ε . For illustration let us plot
the function (m,T ) 7→ ∆(m,T ). As previously we have the two systems :

Σ+−(ε,m,T,ϕ)


dx1

dt
= (+1− ε)x1 +m(x2 − x1)

dx2

dt
= (−1− ε)x2 +m(x1 − x2)

(49)

and :

Σ−+(ε,m,T,ϕ)


dx1

dt
= (−1− ε)x1 +m(x2 − x1)

dx2

dt
= (+1− ε)x2 +m(x1 − x2)

(50)
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Figure 7: Graphs of (m,T ), 7→ 1
T ln(λ1(0.1,m,T,ϕ)) for three values of ϕ

to which we add:

Σ++(ε,m,T,ϕ)


dx1

dt
= (+1− ε)x1 +m(x2 − x1)

dx2

dt
= (+1− ε)x2 +m(x1 − x2)

(51)

and :

Σ−−(ε,m,T,ϕ)


dx1

dt
= (−1− ε)x1 +m(x2 − x1)

dx2

dt
= (−1− ε)x2 +m(x1 − x2)

(52)

We switch from one system to the other according to the following scheme :

t ∈ [0, ϕT [ [ϕT, T [ [T,T (1+ϕ), [ [T (1+ϕ),2T [
Σ +− ++ −+ −−

(53)

Using notations similar to those we used in Subsection 2.3.4, let us define :

M+−
ε,m =

[
1−m− ε +m

+m −1−m− ε

]
M−+

ε,m =

[
−1−m− ε +m

+m 1−m− ε

]

M++
ε,m =

[
1−m− ε +m

+m +1−m− ε

]
M−−

ε,m =

[
−1−m− ε +m

+m −1−m− ε

]
The spectral radius of the matrix :

M(ε,m,T,ϕ) = eT (1−ϕ)M−−
ε,m eϕT M−+

ε,m eT (1−ϕ)M++
ε,m eϕT M+−

ε,m

decides of the stability of the switched system associated to these four systems, T and ϕ . Once
again, we ask to Maple to compute the eigenvalues of M(ε,m,T,ϕ), we select the largest one
λ1(ε,m,T,ϕ) and look for le mapping (m,T ) 7→ 1/T ln(λ1(ε,m,T,ϕ)) for ε = 0.1 and various
values. When the shift ϕT is not equal to T our intuition is that the inflation effect will be
proportional to the shift and will be maximum when ϕ = 1. This is confirmed by Figure 7.

3.2 Migration between different patches
As discussed at the end of Section 2.3.1, the (±1)-model given by (12) encompasses the more
general case of two identical patches that are in phase opposition. Let us show now that the
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mT

m

r1 = 0.9 d1 = 1.1

r2 = 0.9 d2 = 1.1

r2 = − 0.1 d2 = 0.1

r1 = + 0.9 d1 = 1.1

T

m

Figure 8: Graphs of (m,T ), 7→ 1
T ln(λ1(r1,d1,r2,d2,m,T )) for two values of (r1,d1,r2,d2)

patches do not need to be identical and that our approach applies in the more general case of
model (8), where the functions r1(t) and r2(t) are given by

r1(t) =
{

r1 if t ∈ [0,T ]
−d1 if t ∈ [T,2T ] r2(t) =

{
−d2 if t ∈ [0,T ]

r2 if t ∈ [T,2T ] (54)

where r1, r2, d1 and d2 are real parameters. The system Σ(ε,m,T ), defined by (12) corre-
sponds to the case where r1 = r2 = 1− ε and d1 = d2 = 1+ ε . On the other hand, the system
(15) corresponds to the case where r1 = r2 = r and d1 = d2 = d.

Using notations similar to those we used in Subsection 2.3.4, let us define :

M1
r1,d2,m =

[
r1 −m +m
+m −d2 −m

]
, M2

r2,d1,m =

[
−d1 −m +m
+m r2 −m

]
The spectral radius of the matrix :

M(r1,d1,r2,d2,m,T ) = eT M2
r2 ,d1 ,meT M1

r1 ,d2 ,m

decides of the stability of the switched system. Once again, we ask Maple to compute the
eigenvalues of M(r1,d1,r2,d2,m,T ), we select the largest, denoted λ1(r1,d1,r2,d2,m,T ) and
draw the graph of the function (m,T ) 7→ 1

2T ln(λ1(r1,d1,r2,d2,m,T ) for various values of the
parameters, see Fig. 8.

Comments on figure 8. We look to 1
2T ln(λ1(r1,d1,r2,d2,m,T )) in two different cases.

On the left we consider the case :

r1 = 0.9 d1 = 1.1
r2 = 0.9 d2 = 1.1

(55)

which is the case of the (±1)model for ε = 0.1 which we already considered. We compare
this case to the case :

r1 = 0.9 d1 = 1.1
r2 =−0.1 d2 = 0.1

(56)

In this case the patch 1 is unchanged and the patch 2 represent some place without seasonality.
In this case inflation is smaller but still observable.
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Figure 9: The set {(m,T ) : ∆(0.5,m,T,γ) = 0} for the values of γ: γ = 2 (Black), γ = 1 (Red),
γ = 0.5 (Yellow), γ = 0.2 (Green), γ = 0.1 (Blue).

3.3 The case of non symmetric dispersal
The symmetric rate of dispersal between the two patches is a very special (and unlikely)
situation. A non symmetric dispersal like in the model :

dx1

dt
= r1(t)x1 + m(γx2 − x1)

dx2

dt
= r2(t)x2 + m(x1 − γx2)

(57)

with γ > 0, is certainly more realistic. Using the change of variables

U = ln
(
xγ

1x2
) 1

γ+1 = γ lnx1+lnx2
γ+1 , V = ln

√
x1
x2

= lnx1−lnx2
2 ,

one obtains : 
dU
dt = γr1(t)+r2(t)

γ+1 + 2γm
γ+1 (cosh(2V − lnγ)−1)

dV
dt = r1(t)−r2(t)

2 −m
(√

γ sinh
(

2V − lnγ

2

)
+ γ−1

2

) . (58)

This system reduces to (10) in the symmetric case γ = 1, and its study will follow the same
lines than the study of (10). In particular, since cosh(α)≥ 1, we have

U(t)≥U(0)+
∫ t

0

γr1(s)+ r2(s)
γ +1

ds

Therefore, we have

liminf
U(t)

t
≥ γ r̄1 + r̄2

γ +1

Note that, as in Appendix B, we can use singular perturbation theory [41, 33] to show that

lim
m→∞

∆(r1(·),r2(·),m,T ) =
γ r̄1 + r̄2

γ +1
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Therefore, we have

inf∆(r1(·),r2(·),m,T ) =
γ r̄1 + r̄2

γ +1
.

On the other hand, for the (±1) model associated to the asymmetric dispersal (57), we
simply consider the matrices :

M+−
ε,m,γ =

[
1− ε −m γm

m −1− ε − γm

]
, M−+

ε,m,γ =

[
−1− ε −m γm

m 1− ε − γm

]
The spectral radius of the matrix :

M(ε,m,T,γ) = eT M−+
ε,m,γ eT M+−

ε,m,γ

decides of the stability of the switched system. Once again, we ask Maple to compute the
eigenvalues of M(ε,m,T,γ), we select the largest, denoted λ1(M(ε,m,T,γ)). To have a better
understanding of the role of γ , we depict in Fig. 9 the zero level-set

{(m,T ) : ∆(ε,m,T,γ) = 0}

of the function ∆(ε,m,T,γ) = 1
2T ln(λ1(M(ε,m,T,γ)), for various values of γ .

3.4 A density dependent deterministic model
In [1, 2] a complete description of the asymptotic behavior of the model :

dx1

dt
= r1x1

(
1− x1

K1

)
+β

(
x2

γ2
− x1

γ1

)
dx2

dt
= r2x1

(
1− x2

K2

)
+β

(
x1

γ1
− x2

γ2

) (59)

is given in the space of the six independent parameters {ri,Ki,(i = 1,2),β/γ2,γ1/γ2}, the
focus being on the comparison between the total equilibrium population with the sum K1+K2
of the two carrying capacities. Here we complement this study by considering the question
of persistence when r1 and r2 vary in time for specific values of the parameters. Namely, we
consider the system

D(ε,α,m,T )


dx1

dt
= (+u(t)− ε)x1 −αx2

1 +m(x2 − x1)

dx2

dt
= (−u(t)− ε)x2 −αx2

2 +m(x1 − x2)

(60)

where 0 ≤ ε ≤ 1, α ≥ 0, m ≥ 0, T ≥ 0 and the function t 7→ u(t) is periodic of period 2T , with

t ∈ [0, T [⇒ u(t) = 1 t ∈ [T, 2T [⇒ u(t) =−1

We are interested in the persistence of (60). Recall that the system D(ε,α,m,T ) is uni-
formly persistent (see for instance [10]) if there exist strictly positive constants a < b such that
every solutions (x1(t),x2(t)) of D(ε,α,m,T ) is asymptotically bounded from below by a and
from above by b (i.e. a ≤ xi(t)≤ b for t sufficiently large).

When α = 0 the system D(ε,0,m,T ) is just the (±1)model Σ(ε,m,T ). When α is not 0,
but m = 0, on each patch the dynamic is :

dxi

dt
= (u(t)− ε)xi −αx2

i i = 1,2 (61)

with u(t) = ±1. In both cases one has a logistic equation with a globally stable equilibrium
equal to 1−ε

α
or 0. One sees easily that in the space (R+)2 the square S = [0, 1−ε

α
]× [0, 1−ε

α
]

is an invariant global attractor ; this implies that every trajectories of (60) are bounded from
above.

Regarding boundedness from below we can say intuitively that the system D(ε,α,m,T )
behaves around the origin like its linear approximation, namely the system Σ(ε,m,T ) and thus
is persistant if and only if Σ(ε,m,T ) is unstable. Actually the following proposition can be
proved (see appendix J)
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Figure 10: Simulations of D(0.1,0.1,m,5) showing persistence for intermediate values of m.

Proposition 3.1. If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=Σ(ε,m,T )
is :

• stable, then the solutions of D(ε,α,m,T ) tend to 0 (extinction),

• unstable, then D(ε,α,m,T ) is persistent.

Thus we have, for T large enough, the sequence : small m : extinction − intermediate m :
persistence − large m : extinction/ This is illustrated by the simulations of Figure 10.

3.5 A density dependent stochastic model
In this short section, we show that the Proposition 3.1 is still true under a random signal u.
More precisely, we consider the system

D(ε,α,m,T )


dx1

dt
= (+u(t)− ε)x1 −αx2

1 +m(x2 − x1)

dx2

dt
= (−u(t)− ε)x2 −αx2

2 +m(x1 − x2)

(62)

where u switches from 1 to −1 and conversely at random exponential time, as described in
Section 2.4.2. Like in the periodic case described above, when α = 0, D(ε,α,m,T ) is just the
stochastic (±1)model Σ(ε,m,T ). Using a terminology borrowed to Schreiber and Chesson,
we say that the system D(ε,α,m,T ) is stochastically persistent if for all η > 0, there exists a
compact set Kη ⊂ R2

++ such that, almost surely,

liminf
t→∞

1
t

∫ t

0
1l(x1(s),x2(s))∈Kη

ds ≥ 1−η .

We now give the stochastic counterpart of Proposition 3.1:

Proposition 3.2. We have the following dichotomy:

• If ∆(ε,m,T )≤ 0, then system D(ε,α,m,T ) goes to extinction;

• If ∆(ε,m,T )> 0, then system D(ε,α,m,T ) is stochastically persistent, and the process
(x1,x2,u) admits a unique stationary distribution ν such that ν(R2

++×{±1}) = 1.

3.6 An S.I.R. type epidemic model
In [30] Nicholas Kortessisa, Margaret W. Simon, Michael Barfield, Gregory Glass, Burton H.
Singer and Robert D. Holt consider the classical S.I.R. model for a population living in two
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patches connected by migration. The model is the following system :

dS1

dt
= −β (t)S1I1 +m(S2 −S1)

dI1

dt
= +β (t)S1I1 − (γ(t)+µ)I1 +m(I2 − II)

dS2

dt
= −β (t −ϕ)S2I2 +m(S1 −S2)

dI2

dt
= +β (t −ϕ)S2I2 − (γ(t −ϕ)+µ)I2 +m(I1 − I2)

(63)

where Si(t) represents the number of ”susceptible to be infected” at time t on each patch,
Ii(t) represents the number of ”infected” on each patch. The parameters β (.) and γ(.) are
piecewise constant functions of period 2T varying according to the presence or absence of
social distancing measures ; we examine the messages of this paper in light of our previous
study of inflation phenomenon6.

The first remark of the authors of [30] is to consider that we are essentially interested by
the beginning of the contamination when, as a first approximation, we can consider that S(t)
is almost equal to the initial total population N. Then the approximate model is :

dI1

dt
=

(
β (t)N − (γ(t)+µ)

)
I1 +m(I2 − II)

dI2

dt
=

(
β (t −ϕ)N − (γ(t −ϕ)+µ)

)
I2 +m(I1 − I2)

(64)

They denote respectively by the subscripts n and s the values of parameters in ”normal” peri-
ods and periods when the ”social distancing” is in effect. They adopt, according to the current
literature, the following realistic values .

βnN = 0.1988 γn = 0.098 µn = 0.002

βsN = 0.0288 γs = 0.128 µs = 0.002

βnN − (γn +µn) = 0.0988

βsN − (γs +µs) = - 0.1012

and they discuss the case T = 30. We have done a simulation with these parameters and
m = 0.005 as they did. We obtained the same picture than [30] (see figure 11) which confirms
that we are actually running the same model but our objective is not to reproduce [30] results
but to complete them. For this purpose we consider the effect of migration, in the case of a
small phase shift in the application of social distancing. We assume that ϕ = 4 days.

In the absence of migration the linear model is :

dIi

dt
= 0.0988 Ii (normal)

dIi

dt
=−0.1012 Ii (social distancing) (65)

If we multiply the dynamic of Ii by the factor 10 (which means a change unit for the time) we
have :

dIi

dt
= 0.988 Ii (normal)

dIi

dt
=−1.012 Ii (social distancing) (66)

which we read as the ”(±1)model”:

dxi

dt
= (1− ε)xi (normal)

dxi

dt
=−(1+ ε)xi (social distancing) (67)

with ε = 0.012. To T = 30 and a phase shift of 4 days in the model (63) correspond T = 3
a shift of 0.133 in (67). For these values one sees on the graphs of λ1 that there is no longer

6The authors of [30] publish the same message in P.N.A.S. [31] but using, in our opinion, a less realistic β (.) and
γ(.) like continuous sinusoidal functions. We prefer to refer to the initial paper but our discussion would be the same
with the P.N.A.S. paper.
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Figure 11: Simulation from [30] (left) ; our simulation (right)
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Figure 12: Graphs of (m,T ), 7→ λ1(0.012,m,T ) (left) and m 7→ λ1(0.012,m,3,0.133)
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Figure 13: Cumulative number of cases up to 1500 days as a function of migration.

instability for m > 2 which means m > 0.2 in the original system (63). This must be reflected
on the epidemic. If one looks to the cumulative number of cases for a duration of 1500 days
the simulation of the model gives the figure 13. We can see that no migration at all is the best,
when migration grows from 0 to approximately 0.1 the number of cases is multiplied by 4 but
and after that decreases. Very low migration can increase dramatically the number of cases,
while, if migration is unavoidable, comparatively large one has better effect.

In their paper published in the P.N.A.S. the authors [31] say : "These findings highlight
a need for integrated, holistic policy: Intensify mitigation locally, coordinate tactics among
locations, and reduce movement."

In the light of our work, we see that the latter recommendation, is not necessarily correct,
depending on where you are located with respect to the maximum of Λ(ε,m,T ). This does
not invalidate but reinforces the conclusion of their paper with which we fully agree. "It is
increasingly recognized that monitoring and controlling movement is essential for effective
pandemic control. The impact of such actions is, however, contextual, because their dynam-
ical effects are intertwined with the magnitude of asynchrony in local transmission across
space. More-realistic, spatially structured epidemiological models including movement and
asynchronous transmission − at scales from local to international − are essential to control
this and future pandemics in the coupled metapopulations of humans and their pathogens."

4 Discussion
We first studied the simplest model likely to present the inflation phenomenon for continuous
time models. For that purpose we considered only two patches, a symmetric migration of
rate m between the two patches and piecewise constant environments. On the patch 1, for a
duration T the environment is favorable, the growth rate is 1−ε and it is followed by a period
also of duration T where the environment is unfavorable and the rate of decay is −1−ε ; since
ε is strictly positive , over the period 2T the environment is globally unfavorable, so patch 1
considered alone, is a sink. On patch 2 we consider an identical environment, so this site is
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also a sink, but we suppose that it is out of phase of half a period with patch 1; thus when
the environment is favorable on site 1 it is unfavorable on patch 2 and conversely. On this
minimal model that we noted Σ(ε,m,T ) we showed that the Liapunov exponent ∆(ε,m,T )
which characterizes the growth of Σ(ε,m,T ) has the following properties:

1. For all T , for m small (m → 0) and m large (m → +∞) we have ∆(ε,m,T ) < 0 (no
inflation).(see prop. 2.6)

2. For any m < (1−ε2)/2ε there is a threshold T ∗(ε,m) for the half period T below which
there is no inflation (∆(ε,m,T )< 0) and above which there is inflation (∆(ε,m,T )> 0).

3. We have given an explicit formula (see prop. 2.7 ) for ∆(ε,m,T ) from which we deduce
(see prop. 2.9) that the the threshold value at which m 7→ ∆(ε,m,T ) becomes positive
is an exponentially small value ∼ e−(1−ε)T for large values of T .

The graph of (m,T ) 7→ ∆(ε,m,T ) (see figure 4) summarizes the situation.
Note that the two first points follow from the general result of Katriel ([29]) but the latter

is only proved for growth rates that depend continuously on time and thus cannot (formally)
apply to our situation we don’t know if the methods of [29] apply to switched systems. By
the way our results complement Katriel’s results.

Our results can be obtained (thanks to formal software like Maple) directly from the ex-
plicit (but rather obscure) formula for the dominant eigenvalue of the matrix which defines the
Poincaré application of the periodic system. But we have preferred to establish them from the
examination of the phase portrait of the transformed system in the variables (U,V ), U being
the geometric mean of the abundances (x1,x2) and |V | their geometric standard deviation.

These variables allows to easily extend our understanding of the inflation phenomenon
on the (±1)-model to more general situations. In this spirit we have also shown that the
properties of the (±1) model are still valid for some kinds of continuous time stochastic
models which is important if we want to be more realistic. First we have reconsidered the
(±1)-model assuming that the successive sequences of constant environment are not fixed
an equal to T like in the 2T periodic environment but are succession of independent random
duration Sn following the same law µ . When the law is an exponential law of parameter λ this
defines a so called Piecewise Deterministic Markov Process (see [12]), which is interesting
since we are able to make explicit calculations in that case. We have shown that the same
inflation phenomenon occurs with the expectation of Sn playing the role of the period in
the deterministic periodic case. More precisely, we have shown that there exists a unique
(deterministic) Lyapunov exponent ∆(ε,m,µ) whose sign characterise the behaviour of the
system. In addition, we prove that for all m, provided the expectation of Sn is large enough,
∆(ε,m,µ) is positive and there is inflation. We have also considered a different case of
stochasticity. Now the duration of the constant growth rate (±1) is of a fixed duration T but
the choice of +1 or −1 is random, these choices being correlated or not. For this model we
also characterize the presence of inflation, by the sign of a deterministic Lyapunov exponent
∆(p1, p2,m,T,ε). Moreover, we prove that there exists a threshold χ(p1, p2,ε) such that

1. If χ(p1, p2,ε)< 0, then for all (m,T ), ∆(p1, p2,m,T,ε)< 0 and there is no inflation,

2. if χ(p1, p2,ε) > 0, then for all m < (1− ε2)/2ε there is a threshold T ∗(ε,m), there is
inflation whenever T ≥ T ∗(ε,m).

All the above results apply to the (±1) model which, of course, is totally unrealistic. This
is why we have shown how our results extend to, or illuminate, the more general situations
listed in the index of section 3, which ends with the application to the epidemiological model
of [31] that motivated this study.

This mathematical success of the (U,V ) variables also suggests that the geometric mean
and deviation of abundances at each site are a better indicator of the metapopulation status
than are the arithmetic mean and standard deviation.

We have shown that the growth rate of the two patches is always higher than the mean of
the growth rates within each patch, see Remark 2. Therefore, in the (±) model, where the
growth rates within each patch are equal (i.e. r̄1 = r̄2), the growth rate ∆(ε,m,T ) is always
higher than its limit ∆(ε,0,T ), for m = 0, see Fig. 4 and Proposition 2.8. This property is also
satisfied in the examples depicted in Figs. 7 and 8. We can therefore deduce that migration
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always favors growth. This positive effect may be sufficient to change a negative growth
rate when no migration to a positive growth rate (i.e., inflation), but may also not (i.e., not
inflation). But in either case, the growth rate is inflated.However, the property ∆(ε,m,T ) >
∆(ε,0,T ), if m > 0, is specific to the case where r̄1 = r̄2. If these growth rates are different
then the limit of ∆(ε,m,T ) when T tends to 0 is a strictly decreasing function with respect
to m, from max(r̄1, r̄2) to (r̄1 + r̄2)/2, see [29, Lemma 9]. Consequently, when m and T are
sufficiently small, ∆(ε,m,T )< ∆(ε,0,T ) will result, and the migration will not favor growth.
For a more in-depth analysis of this behavior, the reader is referred to [7].

If we try to understand intuitively the mechanisms that cause inflation in the case of con-
tinuous time models we see the following. Let us say that the environment is positive (re-
spectively negative) at time t on some patch if the abundance of the population is increasing
(respectively decreasing). The fluctuations of the environment on the two patches can be
thought as a succession of regimes (++),(+−),(−+),(−−) and the key ingredients for in-
flation are :

- A sufficient (in mean) duration between two changes of regime (i.e. a period large
enough in the deterministic periodic case),

- a proportion of time spent in opposite regimes (+−) or (−+) as large as possible,

- a migration neither too weak nor too strong.

which we understand as follows. In the absence of migration, a (+−) or (−+) regime, will
create rapidly a dissymmetry between the two sites, since the abundance on the source is
increasing and the abundance on the sink is decreasing as long as one remains in this ; if this
duration is long enough the ratio of the two abundances, tends to ∞ or0 ; if we now introduce
a migration it induces a transfert from the positive environment to the negative one ; if it is
too weak it does not allow the patch with negative environment to benefit from the growth on
the other one and, conversely, a migration that is too strong slows down the growth the patch
with positive environment.

This description of the mechanisms at the origin of inflation contrasts with those put for-
ward in the case of discrete-time random models where the emphasis is generally placed on
the need for a temporal correlation of the fitnesses at the two patches ([24, 38, 39], and, in
some cases only, ([39] for instance ) the need for a migration that is neither too large nor too
small. We believe that the origin of this difference lies in the following remark.

What makes the intuition of the inflation phenomenon intricate, in both discrete and con-
tinuous time models, is to consider simultaneously growth and/or decay on each of the patches
and a migration in both directions, but basically things are rather simple if we suppose that
patch 2 is a patch where there is neither growth nor decay, that there is only migration from 1
to 2 and that we reverse the roles of patches 1 and 2 after a time T . It is not exactly the case
we considered since now the migration depends on time, but it helps to understand. We thus
consider the following situation:

1. On patch 1 the population grows in an exponential way dx
dt = αx during a duration T .

2. A part of the population of patch 1 is transferred on patch 2 according to two different
modalities:

(a) Discrete mode : At the end of the growth period T a part d (0 ≤ d ≤ 1) is trans-
ferred from patch 1 on the patch 2.

(b) Continuous mode : Continuously ( dx
dt = −mx ) a part of the population of the

patch 1 is transferred on the patch 2.

3. The patch 2 is a ”neutral” patch where the population remains constant.

Let us suppose that one seeks to maximize the size of the population on patch 2 at the end of
T time units because we know that in the following period this patch will be the source.

In the discrete mode, it is obvious that the most efficient thing to do is to transfer with
d = 1 the totality of the population of patch 1, i.e. eαT x(0) to the patch 2. On the other hand,
in the continuous mode, if it allows to (almost) empty completely the patch 1 (by taking m
infinitely large), does not allow in this case to obtain a good result on the patch 2 because all
the population subtracted at the beginning of the period will not undergo any more growth on
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patch 2 ; conversely, if m is very small, there is a strong growth of the biomass on patch 1
of which only a very small part is transferred to patch 2; thus for the continuous mode, small
and large values of m are inefficient to obtain a large population on patch 2 and intermediate
values are to be considered.

Let us complicate matters a little by imagining now, in the discrete case, two successive
periods T1 and T2 where, to mimic a positive correlation in time, the population of patch n°1
grows exponentially at the rates α1 and then α2, but where the same proportion d of the
population is transferred at times T1 and T1 +T2 from patch 1 to patch 2. In total, the quantity
transferred from 1 to 2 is

deα1T1x(0)+deα2T2(1−d)eα1T1x(0)

and this time, it will be a value of d strictly between 0 and 1 that maximizes it since the
formula is quadratic in d.

It is this fundamental difference between continuous migration (for instance, planktonic
microorganisms drifting between two reefs) and (near) instantaneous dispersal over two dis-
tinct sites (such as seed dispersal at flowering) that makes comparison of the inflation phe-
nomenon in the discrete and continuous cases intricate. We believe that a complete under-
standing of similarities and differences of the continuous and the discrete time models is
beyond the scope of this discussion and requires further investigation.

5 Conclusion
The major limitation of our approach is obviously that it is quite specific to the two-patch
situation. The general mathematical results of Katriel (continuous time) and Schreiber (dis-
crete time) ensure that from a qualitative point of view the phenomenon of inflation (or DIG
(according to Katriel’s terminology) is present on any system of N patches. In the case of
two patches we have shown how the phenomenon can be can be accurately quantified. For
more than two patches we do not know, for the moment, how to proceed but it seems likely
that different assumptions about the topology of the sites (island-continent, stepping-stones,
homogeneous dispersal etc...) will be necessary. In addition, as noted above, a better un-
derstanding of the differences and similarities of discrete and continuous time models needs
to be worked on, both for reasons of mathematical aesthetics but more importantly for their
biological isignificance.

In classical mechanics, the harmonic oscillator, i.e. the linear differential equation of the
second order with a constant coefficient, plays a major organizing role. It is a simple math-
ematical object that can be taught and understood very early (at the end of high school) and
that opens the door to various fields : the theory of nonlinear oscillators and endogenous os-
cillations, the theory of forced oscillations and the phenomenon of resonance (that we could
call inflation) etc. In a stimulating essay, Ecological orbits, how planets move and popula-
tions grow, Lev Ginzburg and M. Colyvan [19] defend the idea that exponential growth is, for
population dynamics, the equivalent of the principle of inertia in classical mechanics: a popu-
lation whose growth rate is not limited grows exponentially, just as a material body subjected
to no force keeps the same speed.

If their vision is correct the (±1) model, in spite of its total unrealism but thanks to its
mathematical simplicity, is a basic brick in the understanding of the mechanisms that gov-
ern the growth of a meta-population on various connected patches, with temporally varying
growth rates.
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Appendix

A From (x1,x2) to (U,V )

Consider :
dx1

dt
= r1(t)x1 +m(x2 − x1)

dx2

dt
= r2(t)x2 +m(x1 − x2)

(68)

which is the same a :
dx1

dt
= (r1(t)+m(x2/x1 −1))x1

dx2

dt
= (r2(t)+m(x1/x2 −1))x2

(69)

Let :
ξ1 = ln(x1)⇔ x1 = eξ1 ξ2 = ln(x2)⇔ x2 = eξ2

Then one has :
dξ1

dt
=

1
x1

dx1

dt
= r1(t)+m(eξ2−ξ1 −1)

dξ2

dt
=

1
x2

dx2

dt
= r2(t)+m(eξ1−ξ2 −1)

(70)

Let :

U =
ξ1 +ξ2

2
V =

ξ1 −ξ2

2
Then, adding and substracting the above equations one gets :

dU
dt

=
r1(t)+ r2(t)

2
+m(cosh(2V )−1)

dV
dt

=
r1(t)− r2(t)

2
−msinh(2V )

(71)

B The system Σ(ε,m,T ) for large m

Consider the system :

dx1

dt
= (+u(t)− ε)x1 +m(x2 − x1)

dx2

dt
= (−u(t)− ε)x2 +m(x1 − x2)

and put :
S = x1 + x2 D = x1 − x2

One has :

dS
dt

= (+u(t)− ε)x1 +m(x2 − x1)+(−u(t)− ε)x2 +m(x1 − x2) = u(t)D− εS

dD
dt

= u(t)−2(m+ ε)D =−2(m+ ε)

(
D− u(t)

2(m+ ε)

)
From Tychonov theorem ([41, 33]), when 2(m+ ε)→ ∞ the solution to this system (called a
slow-fast system), after a short transient, tends to :

S(t) = S(0)e−εt D(t) = 0

Thus, in the variables (x1,x2) one has :

x1(t)≈ x2(t)≈
x1(0)+ x2(0)

2
e−εt

This is also called by physicists, the method of the quasi stationary state.
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C The switched system F(m,T ) has a single globally stable
periodic orbit
We consider the one dimensional switched system :

F(m,T ) dV
dt

=
1+u(t)

2
F+

m (V )+
1−u(t)

2
F−

m (V ) (72)

with :
F+

m (V ) = +1−msinh(2V ) F−
m (V ) =−1−msinh(2V )

and :
V+

m =
1
2

sinh−1(+1/m) V−
m =

1
2

sinh−1(−1/m)

Since F+
m (V ) is continuous, differentiable and such that (V −V+

m )F+
m (V ) < 0 except for

V = V+
m , from the elementary theory of differential equations we know that, if we denote by

ϕ
+
t (v) the unique solution of :

dV
dt

= F+
m (V ) V (0) = v

then ϕ
+
t (v) is defined for every positive t and the mapping v 7→ ϕ

+
t (v) is continuous and

differentiable.

Lemma C.1. Let T > 0. The mapping V 7→ ϕ
+
T (v) is a continuous mapping, strictly increas-

ing, from [V−
m ,V+

m ] into [V−
m ,V+

m ] ; moreover its derivative is strictly smaller than 1.
Proof Assume that v 7→ ϕ

+
T (v) is not strictly increasing. Then it exists v1 < v2 such that

ϕ
+
t (v2) ≤ ϕ

+
t (v1) ; and, by the way, some t ≤ T for which ϕ

+
t (v1) = ϕ

+
t (v2) and, thus, two

solutions starting from different initial conditions meet at some point. This contradicts the
uniqueness of solutions. The derivative of V 7→ ϕ

+
T (v) at the point vo is obtained by inte-

grating the linearized equation along the trajectory t 7→ ϕ
+
t (vo) up to time T , that is to say

:
dδϕ

+
t

dt
= DF+

m (ϕ+
t (v0))δϕ

+
t δϕ

+
0 = 1

where DF+
m (V ) is the derivative of F+

m (V ) at point V .

δϕ
+
T = exp

(∫ T

0
DF+

m ( ϕ
+
t (vo))dt

)
dt

One has :∫ T

0
DF+

m (ϕ+
t (v0))dt =

∫
ϕ
+
t (v0)

vo

DF+
m (V )

F+
m (V )

dV = ln(F+
m (ϕ+

t (v0))− ln(F+
m (v0))

Since the function F+
m (V ) is decreasing and V ϕ

+
t (v0) > vo the integral is negative and thus

δϕ
+
T < 1.

2

For the same reasons we have the following lemma C.2 : recall that We denote by ϕ
−
t (v)

the unique solution of :
dV
dt

= F−
m (V ) V (0) = v

then V ϕ
−
t (v) is defined for every positive t and the mapping v 7→ ϕ

−
t (v) is continuous and

differentiable.

Lemma C.2. Let T > 0. The mapping V 7→ ϕ
−
T (v) is a continuous mapping, strictly increas-

ing, from [V−
m ,V+

m ] into [V−
m ,V+

m ] ; moreover its derivative is strictly smaller than 1.

Now consider ”period-map”, that is the composite mapping v 7→ Φ(V ) = ϕ
−
T ◦ϕ

+
T (v) from

[V−
m ,V+

m ] into [V−
m ,V+

m ] (see figure 14, left); from the preceding lemmas it turns out that
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V+
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m

V+(T, V ) V−(T, V )

Φ(V )

B+

B−

Figure 14: The switched system F(m,T ): m = 0.01 ; T = 3. The segment [A−,A+] is the image
of [V−

m ,V+
m ] by the mapping V 7→V+(T,V ), and [B−,B+] is the image of [A−

m ,A
+
m ] by the mapping

V 7→V−(T,V )

it is strictly increasing, with Φ′(V ) < 1 such that V−
m < Φ(V−

m ) and Φ(V+
m ) < V+

m . From
elementary calculus the discrete dynamical system defined by :

V (n+1,Vo) = Φ(V (n,Vo)), V (0,Vo) =Vo

has a unique equilibrium Ve , i.e. the unique solution of Φ(V ) =V , this equilibrium is globally
asymptotically stable (see figure 14, right). Since Φ(V (n,Vo) =V (n2T,Vo), where V (n2T,Vo)
is the solution of the switched system (72) we have proved :

Proposition C.3. The switched system F(m,T ) has a unique periodic solution, denoted
Pm,T (t), globally asymptotically stable which oscillates between two values P−

m,T , and P+
m,T

contained in the interval [V−
m , V+

m ] ; P−
m,T = −P+

m,T and the function T 7→ P+
m,T is an increas-

ing function of T which tends to V+
m when T tends to infinity.

The solutions of (72) are explicitly computable as we show now.
On [0,T ] one has :

dV
dt

= 1−msinh(2V )) V (0) =V0 (73)

thus dt = dV
1−msinh(2V )) and by the way :

t =
∫ V (t)

Vo

dV
1−msinh(2V )

(74)

Since the function that we have to integrate is a rational fraction with respect to eV we can
integrate it explicitly (by hand or with the help of some formal software) and the result is :∫ dV

1−msinh(2V ))
=

1
A

tanh−1
(

tanh(V )+m
A

)
where

A =
√

1+m2

from which we have V as a function of t.
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Figure 15: The switched system F(m,T ): m = 0.01 ; T = 3. Solutions converge to a unique
periodic orbit.

The periodic solution oscillate between −P+
m,T and +P+

m,T solutions of the equation :

T =
∫ P+

m,T

−P+
m,T

dV
1−msinh(2V ))

(75)

and thus P+
m,T is a solution of the equation :

tanh−1

(
tanh(P+

m,T )+m

A

)
− tanh−1

(
tanh(−P+

m,T )+m

A

)
= TA

Thus, if we put x = tanh(P+
m,T ), we are searching for the solutions of the equation

tanh−1
(

x+m
A

)
+ tanh−1

(
x−m

A

)
= TA

From the formula tanh−1(a)+ tanh−1(b) = tanh−1 ( a+b
1+ab

)
, one obtains the equation

TA = tanh−1
( x+m

A + x−m
A

1+ x+m
A

x−m
A

)
TA = tanh−1

(
2Ax

A2 −m2 + x2

)
and :

x2 tanh(TA)−2Ax+ tanh(TA)(A2 −m2) = 0

but since A =
√

1+m2 one has

x2 tanh(TA)−2Ax+ tanh(TA) = 0

Put :
B = tanh(TA)

This equation admits two solutions :

x =
A−

√
A2 −B2

B
, x =

A+
√

A2 −B2

B
,
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The second solution is not acceptable since it is grater than 1.We have :

tanh(P+
m,T ) =

A−
√

A2 −B2

B
, with B = tanh(TA) (76)

Thus we have proved the :

Proposition C.4. The maximum P+
m,T (respectively the minimum P−

m,T = −P+
m,T ) of the peri-

odic solution of (72) is given by :

P+
m,T = tanh−1

(
A−

√
A2 −B2

B

)
with A =

√
1+m2 and B = tanh(TA)

(77)

D Qualitative properties of ∆(ε,m,T )

Recall that :

∆(ε,m,T ) =
1

2T

∫ 2T

0
ϕ(Pm,T (s))ds with ϕ(V ) = mcosh(2V )−m− ε

We prove :

Proposition D.1. Qualitative properties of ∆(ε,m,T )

1. For small m, ∆(ε,m,T )< 0

2. For large m, ∆(ε,m,T )> 0

3. For fixed ε > 0 and m < 1−ε2

2ε
there exists a threshold T ∗(ε,m) such that for T <

T ∗(ε,m), ∆(ε,m,T )< 0 and ∆(ε,m,T )> 0 for T > T ∗(ε,m)

4. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly positive. In other words there
exists a threshold T ∗∗ > 0 such that for T < T ∗∗, for all values of m, ∆(ε,m,T ) < 0 :
there is no inflation.

Proof of 1) Since in the interval [V−
m ,V+

m ], where the periodic solution lives, one has | dV
dt |< 1

we know that P+
m,T < T . Since lim

m→0
A+

ε,m = lim
m→0

cosh−1
(

1+
ε

m

)
= +∞, for small enough m,

the periodic solution Pm,T (t) lives in the interval ]A−
ε,m, A+

ε,m[ where the function ϕ is strictly
negative an hence so is ∆(m,T ).

Proof of 2) Given ε > 0 the relative positions of V+
m = sinh−1( 1

m ) and A+
ε,m = cosh−1 (1+ ε

m

)
depends on m. One easily compute that

A+
ε,m <V+

m ⇐⇒ m <
1− ε2

2ε
(78)

hence, if m > 1−ε2

2ε
one has [V−

m ,V+
m ]⊂ [A−

ε,m, A+
ε,m] and ϕ(Pm(t)) is always negative.

Proof of 3) One has :∫ 2T

0
ϕ(Pm,T (s))ds = 2

∫ P+
m,T

−P+
m,T

mcosh(2V )−m−1
1−msinh(2V )

dV

The conclusion follows from the fact that T 7→ P+
m,T is an increasing function of T such that :

lim
T→0

P+
m,T = 0 and lim

T→∞
P+

m,T =V+
m =

1
2

sinh−1
(

1
m

)
and :

lim
V→V+

m

∫ +V

V

mcosh(2V )−m−1
1−msinh(2V )

dV =+∞
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Proof of 4) Let ε > 0 given, consider mo =
1−ε2

2ε
and set To = A+

ε,mo = V+
mo . Let T < To. For

m > mo we already know that ∆(ε,m,T ) < 0. If m < mo one has A+
ε,m > To > T and, by the

way, ϕ(Pm,T (t)) is always negative. Thus for T < sinh−1
(

2ε

1−ε2

)
, whatever the value of m,

one has ∆(ε,m,T )< 0 which proves 4).

E Explicit formula for ∆(ε,m,T )

We consider the periodic solution Pm,T (t) to F(m,T ). We are interested by the sign of :

∆(ε,m,T ) =
1
T

∫ P+
m,T

P−
m,T

mcosh(2V )−m− ε

1−msinh(2V )
dV (79)

From the formula (79) and proposition C.4 we can deduce an explicit formula for ∆(ε,m,T ).
First, if we use formula (75) in the definition of ∆(ε,m,T ) we get :

∆(ε,m,T ) =
1
T

∫ P+
m,T

−P+
m,T

mcosh(2V )dV
1−msinh(2V )

− (m+ ε) (80)

Since d
dV sinh(V ) = cosh(V ), one can explicitly compute the integral to get :∫ mcosh(2V )dV

1−msinh(2V )
=− ln(1−msinh(2V ))

2
(81)

and, by the way :

∆(ε,m,T ) =
1

2T
ln

1+msinh(2P+
m,T )

1−msinh(2P+
m,T )

− (m+ ε) (82)

Using the formula sinh(a) = 2tanh(a/2)
1−tanh2(a/2)

, from (76) one gets :

sinh(2P+
m,T ) =

2tanh(P+
m,T )

1− tanh2(P+
m,T )

Now, replacing P+
m,T by its value given by prop C.4 :

tanh(P+
m,T ) =

(
A−

√
A2 −B2

B

)

sinh(2P+
m,T ) =

B(A−
√

A2 −B2)

B2 −A2 +A
√

A2 −B2

If we replace in (82) we have :

∆(ε,m,T ) =
1

2T
ln

B2 −A2 +A
√

A2 −B2 +mB(A−
√

A2 −B2)

B2 −A2 +A
√

A2 −B2 −mB(A−
√

A2 −B2)
− (m+ ε)

and, after a multiplication by the conjugate quantity of the denominator one have the more
simple expression :

∆(ε,m,T ) =
1

2T
ln

A2 −B2 +m2B2 +2mB
√

A2 −B2

A2 −B2 −m2B2 − (m+ ε)

Using A2 = 1+m2 and B = tanh(TA) = e2TA−1
e2TA+1 , one gets :

∆(ε,m,T ) =
1

2T
ln

m2b4 +2b2 +m2 +m(b2 −1)
√

C
2(1+m2)b2 − (m+ ε) (83)

with b = eT
√

1+m2 and C = m2b4 +2m2b2 +4b2 +m2.
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F Asymptotics of ∆(ε,m,T ) for large T

We are looking for solutions of m 7→∆(ε,m,T )= 0 which are exponentially small with respect
to T , that is to say for x solutions of :

∆(ε,exT ,T ) = 0 x < 0 (84)

We use Landau notation o for any quantity that tends to o when t tends to ∞. From (83),
∆(ε,m,T ) = 0 is equivalent to :

m2b4 +2b2 +m2 +m(b2 −1)
√

C
2(1+m2)b2 = e2(m+ε)T (85)

with
b = eT

√
1+m2

, C = m2b4 +2m2b2 +4b2 +m2, m = exT (86)

From (86) one have :

mb = eT xeT
√

1+e2T x
= eT (1+x+ 1

2 e2T x(1+o)) (87)

since for x < 0 we have T e2T x = o we deduce mb = eT (1+x+o) which tends to ∞ as long as
x >−1. from which we deduce that as long as x >−1 :

m2b4 +2b2 +m2 = m2b4(1+o(1)) m(b2 −1)
√

C = m2b4(1+o(1)) (88)

which introduced in (85) gives :

m2b2(1+o(1)) = e2T (1+x)(1+o(1)) = e2T (ε+o(1)) (89)

from which we deduce :

2T (1+ x)(1+o(1)) = 2T (ε +o(1)) =⇒ x =−(1− ε)+o(1) (90)

which is the evaluation of proposition 2.9.

G Connection between ∆(ε,m,T ) and σ(ε,m,T ).

Let (x1(t),x2(t)) be any solution of Σ(ε,m,T ) ; let U(t) = ln(
√

x1(t)x2(t)) and V (t) =
ln(
√

x1(t)/x2(t)).Then V (t) is a solution of F(m,T ) and since the periodic solution of F(m,T )
is globally asymptotically stable V (t) converges to Pm,T (t), thus :

lim
n→+∞

U((n+1)2T )−U(n2T ) = · · ·

lim
n→+∞

∫ (n+1)2T

n2T
2(mcosh(V (s))−m− ε)ds = · · ·∫ 2T

0
mcosh(Pm,T (s))−m− εds = 2T ∆(ε,m,T )

(91)

and hence :

∆(ε,m,T ) =
1

2T
lim

n→+∞
ln

(√
x1((n+1)2T )x2((n+1)2T )

x1(n2T )x2(n2T )

)
(92)

Now, choose (x1(0),x2(0)) = Z1 where Z1 is the positive eigenvector of M(ε,m,T ) associated
with λ1 (note that M(ε,m,T ) has positive entries). Then, for all n ≥ 0, x1((n+ 1)2T ) ≈
λ1x1(n2T ) and x2((n+1)2T ) =≈ λ1x2(n2T ), thus√

x1((n+1)2T )x2((n+1)2T )
x1(n2T )x2(n2T )

≈ λ
2
1
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and thus ∆(ε,m,T ) = 1
2T ln(λ1), which we wanted to prove.

We can also prove this equality directly from the explicit formulas of ∆ and λ1. The value
of λ1 given by Maple is :

λ1 =
e−2(m+ε)T

2A2b2

(
m2b4 +2b2 +m2 +

√
C1

)
with

C1 = b8m4 +4b6m2 −2b4m4 −8b4m2 +4b2m2 +m4

1
2T

ln(λ1) = ln
m2b4 +2b2 +m2 +

√
C1

2A2b2 − (m+ ε)

which is the value of ∆ given by the proposition (2.7) since one has :

C1 = m2(b2 −1)2(m2b4 +2m2b2 +4b2 +m2)

.

H Limit in distribution of V̂n in the stochastic (±1) model
We prove Lemma 2.11. The first point follows from the same observation as in the determin-
istic case, that the solution of F (m,µ) are trapped in the interval [V−

m ,V+
m ]. Now, note that,

for all n ≥ 0;
V̂2n+2 = ϕ

−
S2n+2

◦ϕ
+
S2n

(V̂2n)

Therefore, since (Sn)n≥0 is a sequence of i.i.d. variables, the sequence (V̂2n)n≥0 is a Markov
chain. Let us denote V̂ v

2n for the position of the chain after n steps, whenever V̂0 = v. Since
(see C) δϕ

+
t ≤ e−2mt and δϕ

−
t ≤ e−2mt , one has, for all v,v′ ∈ [V−

m ,V+
m ],

|V̂ v
2 −V̂ v′

2 | ≤ e−2m(S2+S1)|v− v′|.

Thus, using that P(S1 = 0) = 0, and therefore, E(e−2m(S2+S1)) < 1, the Markov chain V̂2n is
contracting for the Wasserstein distance on the complete space [V−

m ,V+
m ]. As such, it admits

a unique stationary distribution ν∞, which is the law of a variable V−
∞ , and V̂2n converges

geometrically fast in distribution to V−
∞ . This proves the second point of Lemma 2.11. As for

the third point, this is a consequence of Birkhoff’s ergodic theorem.

I Existence of the growth rate in the random switching time
case
By (41), the asymptotic behaviour of U(t)

t is given by those of

1
t

∫ t

0
m (cosh(2V (s))−1)ds− ε := H(t)− ε.

Let t ≥ 0, there exists n = Nt ∈ N (random) such that T2n ≤ t < T2n+2. This means that a time
t, at least 2n and at most 2n+1 jumps have occurred. Therefore, we can write

H(t) =
1
t

2Nt−1

∑
k=0

∫ Tk+1

Tk

m (cosh(2V (s))−1)ds+R(t)

=
1
t

Nt−1

∑
k=0

(∫ T2k+1

T2k

m (cosh(2V (s))−1)ds+
∫ T2k+2

T2k+1

m (cosh(2V (s))−1)ds
)
+R(t),

where R(t) is a rest term given by

R(t) =
1
t

∫ t

T2Nt

m (cosh(2V (s))−1)ds.
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Note that R(t) ≤ C S2n+1
t , for some constant C, and thus R(t) → 0 as t → ∞. We now use

Lemma 2.11 to give the asymptotic behaviour of the term in the sum. First, note that on a
interval [T2k,T2k+1), in (40), we are integrating system Σ+(ε,m), with initial condition VT2k
and thus, for s ∈ [T2k,T2k+1), one has V (s) = ϕ

+
s−T2k

(V̂2k). Similarly, if s ∈ [T2k+1,T2k+2), one
has V (s) = ϕ

−
s−T2k+1

(V̂2k+1), so that the first term in H(t) can be rewritten as

1
t

Nt−1

∑
k=0

(∫ S2k+1

0
m
(
cosh(2ϕ

+
s (V̂2k+1))−1

)
ds+

∫ S2k+2

0
m
(
cosh(2ϕ

−
s (V̂2k+1))−1

)
ds
)
(93)

Next, for (v,s) ∈ R×R+, set

f+(v,s) =
∫ s

0
m
(
cosh(2ϕ

+
r (v))−1

)
dr

and
f−(v,s) =

∫ s

0
m
(
cosh(2ϕ

−
r (v))−1

)
dr

Thus,

H(t) =
1
t

Nt−1

∑
k=0

f+(V̂2k,S2k+1)+
1
t

Nt−1

∑
k=0

f−(V̂2k+1,S2k+2)+R(t)

Now, we have

1
t

Nt−1

∑
k=0

f+(V̂2k,S2k+1) =
Nt −1

t
1

Nt −1

Nt−1

∑
k=0

f+(V̂2k,S2k+1)

Now, classical renewal theorem7 implies that, with probability one,

lim
t→∞

Nt −1
t

=
1

2E(S)
,

and in particular, Nt → ∞ as t → ∞. Hence, the third assertion of Lemma 2.11 implies that

lim
t→∞

1
Nt −1

Nt−1

∑
k=0

f+(V̂2k,S2k+1) = E[ f+(V−
∞ ,S)],

and as a consequence,

lim
t→∞

1
t

Nt−1

∑
k=0

f+(V̂2k,S2k+1) = E[ f+(V−
∞ ,S)].

The same reasoning can be done for the term with f− and yields the expected result.

J Density dependent model

The deterministic case
Proposition J.1. If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=Σ(ε,m,T )
is stable, then the solutions of D(ε,α,m,T ) tend to 0.
Proof. We denote by (x1(t,x10 ,x20),x2(t,x10 ,x20)) the solutions of D(ε,α,m,T ) and by
(ξ1(t,ξ10 ,ξ20),ξ2(t,ξ10 ,ξ20)) the solutions of Σ(ε,m,T ). Let (x10 ,x20) be any initial con-
dition for D and choose (ξ10 ,ξ20) such that:

xi0 < ξi0 i = 1,2

7see e.g. https://en.wikipedia.org/wiki/Renewal_theory
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then, for every t one has :

xi(t,x10 ,x20)< ξi(t,ξ10 ,ξ20) i = 1,2

Assume this is not the case ; let t∗ be the first time for which one has x∗i = xi(t,x10 ,x20) =
ξi(t,ξ10 ,ξ20) for at least one of the two indices ; assume for the shake of definitiveness that
this index is 1 ; one has:

dx1(t∗)
dt

= (±1− ε −m)x∗1 −αx∗
2

1 +mx2(t∗)< (±1− ε −m)x∗1 +mξ2(t∗) =
dξ1(t∗)

dt

The inequality dx1(t∗)
dt < dξ1(t∗)

dt contradicts the fact that t∗ is the first time for which x1(t,x10 ,x20)=
ξ1(t,ξ10 ,ξ20). Since Σ(ε,m,T ) is stable ξi(t,ξ10 ,ξ20) (i= 1,2) tends to 0 and also xi(t,x10 ,x20) (i=
1,2).
2

Proposition J.2. If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=Σ(ε,m,T )
is unstable, then the system D(ε,α,m,T ) is uniformly persistant.
In order to prove proposition J.2 we need two lemmas. Let :

U =
1
2

ln(x1x2) V =
1
2

ln(x1/x2)

In the (U,V ) variables the system D is :

D(ε,α,m,T )


dU
dt

= cosh(V )−m− ε −αeU cosh(2V )

dV
dt

= u(t)−msinh(V )−αeU sinh(2V )

(94)

which is the system S(ε,m,T ) perturbed by the term :

αeU
(

cosh(2V )
sinh(2V )

)
(95)

It is easily seen that the solutions of the system D enters in finite time the strip R× [V−
m ,V+

m ]
and thus persistence of D is equivalent to the fact that for any solution liminft→+∞ U(t)>−∞.

Denote by :

(U(t,U0,V0, t0,S),F(t,U0,V0, t0),S) (resp.(U(t,U0,V0, t0,D),F(t,U0,V0, t0),D))

the solution of S (resp. D) with initial condition (U0,V0) at time t0 and simply by (U(t,D),V (t,D))
(resp. (U(t,S),V (t,S)) the solution of D (resp. S) when the reference to the initial condition
is not needed.

Lemma J.3. Assume that S(ε,m,T ) is unstable. Let a > 0. Then there is θ > 0 such that :

∀V0 ∈ [V−
m ,V+

m ],∀U0, ∀ t0 : U(t0 +θ ,U0,V0, t0,S)≥U0 +a

Proof: Fix some a > 0. Since S is unstable, for each U0,V0, t0 such a θ exists ; it follows
from the compactness of [V−

m ,V+
m ], the periodicity of S and the property U(t,U0,V0, t0) =

U0 +U(t,0,V0, t0) that a universal θ does exist. 2

Lemma J.4. For any δ > 0 there exists U such that :{
maxt≤t∗ U(t + t0,U0,V0, t0,D)≤U

}
=⇒ ···

· · · |U(t∗+ t0,U0,V0, t0,D)−U(t∗+ t0,U0,V0, t0,S)| ≤ t∗δ
(96)

Proof. Since the perturbation (95) tends to 0 when U tends to −∞ uniformly with respect to
V ∈ [V−

m ,V+
m ] this is easily deduced from Gronwall inequality.
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U

U(t1, D) + a

U(t1, D)

U(t2, D) = U(t1, D) −
θ
π

t1 t2
τ τ + θ

t

U

Figure 16: Illustration of the proof of proposition J.2

Proof of the proposition J.2 Fix some a > 0 and let θ be given by lemma J.3 and U given by
lemma J.4 such that δ = a

2θ
. The proof goes by contradiction. Assume that:

liminf
t→+∞

U(t,D) =−∞

then there exist (see Figure. 16 ) t1 and t2 such that :

U >U(t1,D)+a >U(t1,D)>U(t1,D)− θ

π
=U(t2,D) (97)

where
−π = min

U≤U ,V∈[V−
m ,V+

m ]
mcosh(2V )−m− ε −αeU cosh(V )<−ε

Since U(t,D) is continuous, from the intermediate value theorem there is some τ > t1 such
that :

t ∈ [τ, t2]⇒U(t,D)≤U(t1) (98)

and since π is the minimum of the velocity of U(t,D) it takes a duration t2 − τ greater than
θ = π

θ

π
to cover the distance from U(τ,D) to U(t2).

• From lemma J.3 :

U(τ +θ ,U(t1,D),V (τ,D),τ,S)>U(t1,D)+a

(red curve of Figure 16).

• From lemma J.4:

|U(τ +θ ,U(t1,D),V (τ,D)),τ,S)−U(τ +θ ,U(t1,D),V (τ,D),τ,D)|< a
2

These points imply U(τ + θ ,U(t1,D),V (τ,D),τ,D) ≥ U(t1) +
a
2

which is a contradiction
with (98).2
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The stochastic case
We now prove Proposition 3.2 thanks to results in [8]. Note that the vector fields in the right
hand side of D(ε,α,m,σ−,σ+) satisfy conditions E1, E2, E3, E4 and E5 in [8, Section 4] and
admit a positively invariant compact set K containing 0. Thus, Proposition 2.17, [8, Theorem
4.3] (for the case Λ(ε,m,T )< 0) and [8, Theorem 4.12] (for the case Λ(ε,m,T )> 0) and [?,
Theorem 3.8] (for the case Λ(ε,m,T ) = 0) conclude the proof of proposition 3.2.

K Notations and glossary
We give in this appendix the list of notations used in the paper

xi (i = 1,2) Abundance of population in patch i (i = 1,2)
U , V U = ln

√
x1,x2, V = ln

√
x1/x2, see (9)

ri(t) (i = 1,2) Local growth of population in patch i (i = 1,2)
r̄i (i = 1,2) Local average growth of population in patch i (i = 1,2)
χ χ = 1

2T
∫ 2T

0 max(r1(t),r2(t))dt
Σ(r1,r2,m,T ) Model of growth in two patches, see (8)
S(r1,r2,m,T ) System Σ(r1,r2,m,T ) in variables (U,V ), see (10)
Σ(ε,m,T ) Deterministic (±1)-model, see (12)
Σ+(m,T ) (+1) system , see (13)
Σ−(m,T ) (−1) system, see (14)
S(ε,m,T ) System Σ(ε,m,T ) in variables (U,V ), see (16)
F(m,T ) Equation of V in S(ε,m,T ), see (17)
F+

m and F−
m Equation F(ε,m,T ) in environment (+1) and (−1), see (18) and (19)

V+
m and V−

m Equilibria of F+
m and F−

m , respectively, see (20)
Pm,T Periodic solution of F(ε,m,T ), see Proposition 2.3
∆(ε,m,T ) Asymptotic growth of U , see (21) and Proposition 2.4
Mu

ε,m, u =±1 Matrices of the linear systems Σ+(m,T ) and Σ−(m,T ), see (33)
M(ε,m,T ) Period mapping of Σ(ε,m,T ), see (34)
σ(ε,m,T ) Spectral radius of M(ε,m,T ), see (35)
Σ(ε,m,µ) Stochastic (±1)-model (random switching times), see (38)
S(ε,m,µ) System Σ(ε,m,µ) in variables (U,V ), see (39)
F (m,µ) Equation of V in S(ε,m,µ), see (40)
∆(ε,m,µ) Asymptotic growth rate of U , see (42) and Proposition 2.12
PDMP Piecewise Deterministic Markov Processes, see Section 2.4.2
Σ(ε, p1, p2,m,T ) Stochastic (±1)-model (random choices of ±1), see (44)
∆(p1, p2,m,T ) Asymptotic growth rate of U , see Proposition 2.15
λ1 Top Lyapunov exponent, see Section 2.4.5
Σ±±(ε,m,T,ϕ) Periodic (±1) model with phase shift, see (49), (50), (51) and (52)
D(ε,α,m,T ) Density dependent deterministic (±1)-model, see (60).
D(ε,α,m,T ) Density dependent stochastic (±1)-model, see (62).

References
[1] Arditi, R., Lobry, C., & Sari, T. Is dispersal always beneficial to carrying capacity?

New insights from the multi-patch logistic equation. Theoretical population biology, 106,
45-59.(2015)

[2] Arditi, R., Lobry, C., & Sari, T. Asymmetric dispersal in the multi-patch logistic equation
Theoretical population biology, 120, 11-15. (2018)

[3] Arnold, L., Gundlach, V. M., & Demetrius, L. Evolutionary formalism for products of
positive random matrices. The Annals of Applied Probability, 4(3), 859-901 (1994)

[4] Bakhtin, Y. and Hurth, T. Invariant densities for dynamical systems with random switch-
ing, Nonlinearity, 25(10), 2937–2952, (2012)

46



[5] Benaïm, M. and Le Borgne, S. and Malrieu, F. and Zitt, P.- A. Qualitative properties of
certain piecewise deterministic Markov processes JOURNAL = Ann. Inst. Henri Poincaré
Probab. Stat. Annales de l’Institut Henri Poincaré, ProbabilitÈs et Statistiques, (2015)

[6] Benaïm, M., & Lobry, C. Lotka–Volterra with randomly fluctuating environments or
“How switching between beneficial environments can make survival harder”. The Annals
of Applied Probability, 26(6), 3754-3785. (2016)

[7] Benaim, M. and Lobry, C. and Sari, T. and Strickler, E. When can a population spreading
across sink habitats persist?, Preprint, 2023

[8] Benaïm, M. and Strickler, E. Random Switching between Vector Fields Having a Common
Zero Ann. Appl. Probab., 29(1), 326-375 (2019)

[9] Brunovsky, P. and Lobry, C. Contrôlabilité Bang Bang, contrôlabilité différentiable, et
perturbation des systèmes non linéaires Annali di Matematica Pura ed Applicata, vol 105,
pp. 93-119, (1975)

[10] Butler, G., Freedman, and Waltman P. Uniformly persistent systems. Proceedings of the
American Mathematical Society p. 425-430 (1986)

[11] Colonius, F. and Mazanti, G. Decay rates for stabilization of linear continuous-time
systems with random switching, Mathematical Control and Related Fields, 9(1) 39-58
(2019),

[12] Davis, M. H. Piecewise deterministic Markov processes: a general class of non diffusion
stochastic models. Journal of the Royal Statistical Society: Series B (Methodological),
46(3), 353-376.(1984)

[13] DeAngelis, D.L., Travis, C.C. and Post, W.M., Persistence and stability of seed-
dispersed species in a patchy environment. Theoretical Population Biology 16, 107–125
(1979). doi:10.1016/0040-5809(79)90008-X

[14] DeAngelis, D.L., and Zhang, B. Effects of dispersal in a non- uniform environment on
population dynamics and competition: a patch model approach. Discrete and Continuous
Dynamical Systems Series B 19, (2014) 3087–3104. doi:10.3934/dcdsb.2014.19.3087

[15] Evans, S, N, Ralph, Peter L., Schreiber, Sebastian J., and al. Stochastic population
growth in spatially heterogeneous environments. Journal of mathematical biology, (2013),
vol. 66, no 3, p. 423-476.

[16] Faggionato A. and Gabrielli D. and Crivellari, M Ribezzi Non-equilibrium thermo-
dynamics of piecewise deterministic Markov processes J. Stat. Phys., 137(2), 259 - 304
(2009)

[17] Freedman, H.I., and Waltman, D., Mathematical models of population interactions with
dispersal. I. Stability of two habitats with and without a predator. SIAM Journal of Applied
Mathematics 32, 631–648 (1977). doi:10.1137/0132052

[18] Freidlin, and Wentzell, Random perturbations. In : Random perturbations of dynamical
systems. Springer, New York, NY, 1998. p. 15-43.

[19] Ginzburg lev and Mark Colyvan. Ecological orbits. Oxford University Press. (2004)

[20] Gonzalez A, Holt RD The inflationary effects of environmental fluctuations in source-
sink systems. Proc Natl Acad Sci U S A 99:14872–14877 5 (2002)

[21] Hanski, I. Metapopulation ecology. Oxford University Press. (1999)

[22] Hening, Alexandru and Strickler, Edouard On a predator-prey system with random
switching that never converges to its equilibrium SIAM Journal on Mathematical Analysis
51(5), 3625–3640 (2019)

[23] Holt, Robert D, Population dynamics in two-patch environments: some anomalous
consequences of an optimal habitat distribution, Theoretical Population Biology, 28, 181-
208 (1985)

[24] Holt, Robert D, On the evolutionary stability of sink populations. Evolutionary Ecology
11.6 (1997): 723-731.

47



[25] Holt, Robert D., Michael Barfield, and Andrew Gonzalez. Impacts of environmental
variability in open populations and communities: “inflation” in sink environments." The-
oretical population biology 64.3 (2003): 315-330.

[26] Hurth, Tobias and Strickler, Edouard Randomly Switched ODES with nonexponential
switching times. Preprint, 2022

[27] Jansen V.A.A and J. Yoshimura Populations can persist in an environment consisting of
sink habitats only . Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 3696–3698 (1998)

[28] Jurdjevic, V. Geometric control theory Cambridge university press. (1997)

[29] Katriel, Guy. Dispersal-induced growth in a time-periodic environment. Journal of
Mathematical Biology (2022) 85:24

[30] Nicholas Kortessisa, Margaret W. Simon, Michael Barfield, Gregory Glass, Burton H.
Singer, Robert D. Holt. Regional COVID19 spread despite expected declines: how mitiga-
tion is hindered by spatio-temporal variation in local control measures. medRxiv preprint
doi: https://doi.org/10.1101/2020.07.17.20155762.

[31] Nicholas Kortessisa, Margaret W. Simon, Michael Barfield, Gregory Glass, Burton H.
Singer, Robert D. Holt. The interplay of movement and spatiotemporal variation in trans-
mission degrades pandemic control. Proceedings of the National Academy of Sciences
117.48 (2020): 30104-30106.

[32] Klausmeier, C. A. Floquet theory: a useful tool for understanding nonequilibrium
dynamics. Theoretical Ecology, 1(3), 153-161.

[33] Lobry C., T. Sari and S. Touhami On Tykhonov’s theorem for convergence of solutions
of slow and fast systems Electronic Journal of Differential Equations, Vol., No. 19, pp.
1–22.(1998)

[34] Lobry C. Entry-exit in the halo of a slow semi-stable curve. arXiv preprint
arXiv:2203.10357 (2022).

[35] Liu S, Lou Y, and Song P A new monotonicity for principal eigenvalues with applica-
tions to time-periodic patch models SIAM J Appl Math 82:576–601. (2022)

[36] May, Robert M., and George F. Oster Bifurcations and dynamic complexity in simple
ecological models. The American Naturalist 110.974 (1976): 573-599.

[37] Pakdaman, K. and Thieullen, M. and Wainrib, G Intrinsic variability of latency to
first-spike. Biol. Cybernet., 103(1), 43 - 56 (2010)

[38] Roy, Manojit, Robert D. Holt, and Michael Barfield. Temporal autocorrelation can
enhance the persistence and abundance of metapopulations comprised of coupled sinks.
The American Naturalist 166.2 (2005): 246-261.

[39] Schreiber, Sebastian J. Interactive effects of temporal correlations, spatial heterogeneity
and dispersal on population persistence. Proceedings of the Royal Society B: Biological
Sciences 277.1689 (2010): 1907-1914

[40] Strickler, E. Persistance de Processus de Markov Déterministes par Morceaux. Thèse
de doctorat. Université de Neuchâtel. (2019)

[41] Tykhonov A.N, Systems of differential equations containing small parameters multiply-
ing the derivatives Mat. Sborn. 31:575-586, 1952.

48


	Keywords:
	Introduction
	The (1)-model
	Some results of G. Katriel
	The two-patches model in the (U,V) variables.
	The (1)model in periodic environment
	The model
	The (1)model in the variables (U,V)
	An explicit formula for (,m,T)
	Small and large values of m or T.
	Threshold value of m for large T.

	Back to the variables x1,x2

	The (1) model in stochastic environment
	Random choice of switching times
	The particular case of PDMP
	When the mean switching time goes to infinity
	Random choice of (1).
	Link with the top Lyapunov exponent


	Some extensions to more complex situations
	The case of partial phase shift
	Migration between different patches
	The case of non symmetric dispersal
	A density dependent deterministic model
	A density dependent stochastic model
	An S.I.R. type epidemic model

	Discussion
	Conclusion
	From (x1,x2) to (U,V)
	The system (,m,T)  for large m 
	The switched system F(m,T) has a single globally stable periodic orbit
	Qualitative properties of (,m,T)
	Explicit formula for (,m,T)
	Asymptotics of (,m,T) for large T 
	Connection between (,m,T) and (,m,T).
	Limit in distribution of n in the stochastic (1) model
	Existence of the growth rate in the random switching time case
	Density dependent model
	Notations and glossary

