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Abstract

We consider a population distributed between two habitats, in each of
which it experiences a growth rate that switches periodically between two
values, 1− ε > 0 or −(1+ ε) < 0. We study the specific case where the
growth rate is positive in one habitat and negative in the other one for the
first half of the period, and conversely for the second half of the period, that
we refer as the (±1) model. In the absence of migration, the population
goes to 0 exponentially fast in each environment. In this paper, we show
that, when the period is sufficiently large, a small dispersal between the two
patches is able to produce a very high positive exponential growth rate for
the whole population, a phenomena called inflation. We prove in particular
that the threshold of the dispersal rate at which the inflation appears is expo-
nentially small with the period. We show that inflation is robust to random
perturbation, by considering a model where the values of the growth rate in
each patch are switched at random times: we prove, using theory of Piece-
wise Deterministic Markov Processes (PDMP) that inflation occurs for low
switching rate and small dispersal. Finally, we provide some extensions to
more complicated models, especially epidemiological and density dependent
models.

Keywords: Population dynamic, dispersal, periodic environment, random
environment, switched systems, Piecewise Deterministic Markov Process,
Epidemiology
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1 Introduction
In a paper [21] devoted to the popularization of Floquet theory among ecol-
ogists, Christopher Klausmeier gives a striking example of the interplay of
dispersal and temporal variations in population dynamics. In this example a
small dispersal between two patches, where populations experience similar,
but out of phase, neutral (i.e. with nul average growth rate 0) environment is
able to produce very high exponential growth rate for the whole population.
He says that his example is a complement, in the multiple patches and con-
tinuous time, to the study of the phenomenon introduced by Holt ([10]) and
his colleagues and coined by them as inflation.

In conservation biology the SLOSS debate, (i.e. what is better to main-
tain biodiversity, to have a Single Large Or Several Small habitats) has a
very long standing history (see e.g. [13]). The exemple of a population liv-
ing on two patches connected by dispersal has seen a revival of theoretical
interest in recent years see [1], [2]. In these papers it is shown that even in
the simplest case of the logistic model, the question "does dispersal increases
or not the total carrying capacity ?" has not a definitive answer: it depends
on the parameters of the model ; a complete discussion is given in the case
of constant parameters. In the present paper we extend this discussion to
the case of time varying parameters where we shall see that the Klausmeier
example plays a central role.

In conservation biology one wants to maintain population abundances at
the highest possible level and, in contrast, in epidemiology, one wants to
maintain the population of some infectious agent at the lowest possible state.
But at the theoretical level, this is the same problem. Thus it is not sur-
prising that recently Holt and his colleagues [19] showed that this inflation
phenomenon familiar to some ecologists could have dramatic effects in de-
grading pandemic control policies. Namely they made the conceptual point
that efficient policies could become inefficient if they where implemented
asynchronously on two places connected by migration. On the basis of nu-
merical simulations they showed, with realistic parameters, how a small mi-
gration associated with the phase shift in policies produce high inflation in
the number of cases.

In view of these important applications, the purpose of the present paper
is to elucidate the respective roles of period, phase shift and migration on the
persistance of populations living in multiple patches, in the presence of both
migration and temporal variations in the environment.

An interesting feature of the paper [10] was the use of so called ”square
wave” growth rates r(t) in the differential equation dN

dt = r(t)N + d, that is
to say a piecewise constant periodic function in place of usually considered
continuous periodic functions. This made possible explicit computations,
which, in general, is not the case for periodic linear differential equations.
The consideration of differential equations of the form :

dx
dt

= f (x,u(t))

where u(t) is a piecewise continuous function of time is not recent. It started
in the early seventies, if not before, in the area of control systems and is now
known as geometric control theory (see [17] for a comprehensive account).
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If the number of possible values taken by u(t) is a finite set, such systems can
be viewed as a collection of differential systems where one switches from one
system to another one according to some rules and are called ”switched dy-
namical systems”. The rules might be ”deterministic”, for instance switches
occur periodically, or stochastic. About ten years after the development of the
deterministic case, following a paper of M. Davis, [9] the notion of ”Piece-
wise Deterministic Markov Process” (PDMP) started to be investigated and
the particular case of randomly switched ODEs got much attention in the
last decade (see e.g [4], [3] or [23] for general qualitative results and [5],
[6], [14], [25] for applications in ecology, epidemiology and neuroscience).
In a PDMP, the duration between two switches is a sequence of indepen-
dent random variables exponentially distributed. In continuous time models
of population dynamics, switched systems, either deterministic or stochas-
tic, are suitable to model situations where changes in the environment can
be considered instantaneous regarding the scale of growth rates, or, if it is
not the case, suitable to provide a first conceptual exploration of the issue
considered.

The paper is divided in two parts. In the first one we explore in de-
tails a model, which we call the ”(±1)model”, inspired by the example of
Klausmeier, from both points of view of the deterministic periodic switched
system and its associate PDMP; in this part all the mathematical details and
proofs are provided (details are given in the appendix) in a style readable by
non professional mathematicians. In a second part we provide results for the
case of more complex systems than the ”(±1)model” but, in order to keep
a reasonable size to the paper, we only provide intuitive explanations and
numerical evidences.

While we were in the final phase of writing this article, we took note of G.
Katriel’s recent1 deposit on ArXiv [18]. This article looks at the same prob-
lem as the one we are considering but from a different point of view. While
we focus on switched deterministic systems with a view to their extension
to random models, [18] considers continuously differentiable deterministic
systems and therefore its results cannot be applied directly to our model. Our
article and [18] are complementary since they present two different points of
view on the same question.

2 The (±1)model.

2.1 The Klausmaier model.
In the paper [21] one considers a population living on two patches which
abundances x1 and x2 on each patch obey to the system (notations are ours) :

dx1

dt
= r(t)x1 +m(x2− x1)

dx2

dt
= r(t +ϕ)x2 +m(x1− x2)

(1)

We assume that t 7→ r(t) is a periodic function and m ≥ 0 is a parameter
measuring the strength of migration between the two patches. In [21] one

1Submitted on 4 Apr 2021 (v1), last revised 10 Jul 2021.

4



m = 102 ≈ + ∞m = 0 m = 3

t t t

x1 x2 x1 x2
x1 x2

Figure 1: r(t) = sin(2πt)

m = 0.1m = 0.001 m = 0.01

t t t

x1 x2 x1 x2 x1 x2

Figure 2: r(t) = sin(0.2πt)

considers the specific case r(t) = sin(2πt) and ϕ = 1
2 and, by the way, the

system :
dx1

dt
= sin(2πt)x1 +m(x2− x1)

dx2

dt
= −sin(2πt)x2 +m(x1− x2)

(2)

Simulations of this system, from the initial conditions x1(0) = 1, x2(0) = 1,
are shown on fig. 1. The case m = 0 in easily understood : the two sys-
tems are uncoupled and each one has periodic solutions. In the case m≈+∞

(perfect mixing ) it is easily proved that the solutions converge to x1(t) = 1,
x2(t) = 1 (see Appendix A). In both cases the solutions are bounded by
2. Surprisingly a moderate migration makes x1(t) and x2(t) unbounded.
Perhaps, more surprising, this effect is far more spectacular if, instead of
r(t) = sin(2πt) which is of period 1, we simulate the case r(t) = sin(0.2πt)
which is of period 10 and ϕ = 5 as is shown on fig. 2. This connection be-
tween period and dispersal is what we want to understand. In view of our
interest in stochastic PDMP, we shall not address this question in the case
of continuous r(t) but piecewise constant ones, which has the advantage of
permitting explicit calculations.
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2.2 The (±1)model in periodic environment.
Our idea is to understand the mathematics of the simplest possible model
presenting the phenomenon of inflation on two patches and to complicate it
thereafter. We consider the system :

Σ(ε,m,T )


dx1

dt
= (+u(t)− ε)x1 +m(x2− x1)

dx2

dt
= (−u(t)− ε)x2 +m(x1− x2)

(3)

where 0≤ ε ≤ 1, 0≤m, 0≤ T and the function t 7→ u(t) is periodic of period
2T , with :

t ∈ [0, T [⇒ u(t) = 1 t ∈ [T, 2T [⇒ u(t) =−1

We denote by (x1(t,(x10 ,x20)) , x2(t,(x10 ,x20))) the solutions of (3) with ini-
tial condition (x10 ,x20). For u(t) = +1 we are integrating the system :

Σ+(ε,m)


dx1

dt
= (+1− ε)x1 +m(x2− x1)

dx2

dt
= (−1− ε)x2 +m(x1− x2)

(4)

while for u(t) =−1 we are integrating the system :

Σ−(ε,m)


dx1

dt
= (−1− ε)x1 +m(x2− x1)

dx2

dt
= (+1− ε)x2 +m(x1− x2)

(5)

Thus we are switching, each T units of time, from system Σ+(ε,m) to system
Σ−(ε,m) and vice versa ; such system is called a switched systems.

From now and all along the section 2, the function u(t) is periodic of
period 2T , taking alternatively the values +1 and −1.

2.2.1 First observations

In the absence of migration (m = 0) system Σ+(ε,0) reduces to :

Σ
+(ε,0)


dx1

dt
= (+1− ε)x1

dx2

dt
= (−1− ε)x2

(6)

which is a trivial system of two decoupled equations ; the same is true for
Σ−(ε,0) and one deduces immediately that the solutions are in this case :

x1(2T,(x10 ,x20)) = eT (−1−ε)eT (+1−ε)x10 = e−2T ε x10

x2(2T,(x10 ,x20)) = eT (+1−ε)eT (−1−ε)x20 = e−2T ε x20

For ε > 0 both x1(n2T,(x10 ,x20)) and x2(n2T,(x10 ,x20)) tend to 0 when n
tends to infinity. For ε = 0, trajectories t 7→ (

(
x1(t,(x10 ,x20)),x2(t,(x10 ,x20))

)
are portions of the same hyperbola traversed alternately from top to bottom
then from bottom to top ; for small ε , trajectories are small deformations of
hyperbolas ”zig-zagging” as shown on the simulations of Figure 3.
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x1x2 = 8

(x10
= 1 x20

= 8)

a1

a2

a3

a4

TT
(x10

= 0.2 x20
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m = 0 m = 0.2
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a4

α1α2 α1 α2

Figure 3: Trajectories of Σ(ε,m,T ): ε = 0.1 ;T = 2; m = 0 (left); m = 0.2 (right)

x1 x1 x1

x2 x2 x2

m = 3 m = 5 m = 10

Figure 4: Trajectories of Σ(ε,m,T ) ε = 0.1 T = 2
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Comments on Figure 3 The system Σ(ε,m,T ) is considered with ε =
0.1 and T = 2.

• On the left one considers the case m = 0. The initial condition is the
point of coordinates (1,8) which is on the hyperbola {x1,x2 : x1x2 =
8}. The hyperbolas {x1,x2 : x1x2 = k; k = 1,2, · · ·} are drawn in green.
First one integrates the system Σ+1(ε,m,T ) up to time t = T = 2 which
gives the red trajectory up to point α1. Then one switches to system
Σ−1(ε,m,T ) which gives the blue trajectory which ends after T units
of time at the point a1. One sees that at each step the product x1x2
is smaller and, thus, the ”zig-zag” tends to 0. This could easily be
proved rigorously by differentiating the product x1(t)x2(t) along the
trajectories of Σ(ε,0,T ) but we shall not do it since this fact will be a
corollary of the results in the next subsections.

• On the right one sees the case m = 0.2 ; the initial condition is the point
(0.2,5) which is located on the hyperbola {x1,x2 : x1x2 = 1}. One sees
that now the ”zig-zag” tends to infinity. The system is unstable.

Comments on fig. 4 The system Σ(ε,m,T ) is considered with ε = 0.1
and T = 2.

• One sees that for m = 3 the system is still unstable...

• ... but for m = 5 is stable and ”more stable” for m = 10.

• For large m, i.e. m → +∞, we approach the perfect mixing where
x1 ≈ x2 ≈ x and hence, on each patch, the solutions of the system tend
(see appendix A for details) to the solutions of :

dx
dt

=−εx

Let us say, to conclude this paragraph that, given ε > 0 and T > 0 for
small and large values of migration the system is stable, while for intermedi-
ate values it is unstable : this is inflation.

2.2.2 The (±1)model in the variables (U,V ).

We make a change of variables which transforms our system of two linear,
but coupled, differential equations, in a system of non linear but cascade
system.

Since the solutions of Σ(ε,m,T ) remain strictly positive, it is legitimate
to put :

U = ln(x1)+ ln(x2) V = ln(x1)− ln(x2)

In these new variables (U,V ) the system is 2 :

S(ε,m,T )


dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

= 2(u(t)−msinh(V ))

(7)

2We recall the notations sinh(x) = ex−e−x

2 cosh(x) = ex+e−x

2
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V
0V−

m V+
m

Figure 5: The switched system F(m,T ): in red F+
m , in blue F−m , defined by (10)

and (11) respectively

One observes that the variable V is decoupled from the variable U and its
equation does not depend on ε . We denote by F(m,T ) this system :

F(m,T )
dV
dt

= 2(u(t)−msinh(V )) (8)

Once the solution V (t) is known, the solution U(t) is obtained by the simple
quadrature :

U(t) = U0 +
∫ t

0
2(mcosh(V (s)−m− ε)ds (9)

The switched system F(m,T ) The non autonomous system F(m,T ) is
a one dimensional switched system between the two equations :

F+
m

dV
dt

= 2(+1−msinh(V )) (10)

and
F−m

dV
dt

= 2(−1−msinh(V )). (11)

The two differential equations (10) and (11) have respectively the points :

V+
m = sinh−1(+1/m) = ln

(
1/m+

√
1+(1/m)2

)
and

V−m = sinh−1(−1/m) =− ln
(

1/m+
√

1+(1/m)2

)
as globally asymptotically stable equilibria. From Figure 5 it is evident that
the solutions are trapped in the interval [V−m ,V+

m ]. The following proposition
is easy to prove with elementary calculus means. It is done in Appendix B :

Proposition 2.1 The switched system F(m,T ) has a unique periodic solu-
tion, denoted by Pm,T (t), globally asymptotically stable, which oscillates
between two values P−m,T , and P+

m,T contained in the interval [V−m , V+
m ] ;

P−m,T =−P+
m,T and the function T 7→P+

m,T is an increasing function of T which
tends to V+

m when T tends to infinity.
This proposition is illustrated on Figure 6: on the left, one sees the pe-

riodic solution in the case m = 0.01, for T = 2 ; when V is not too large
2(1−msinh(V )) ≈ 2 and 2(−1−msinh(V )) ≈ −2 and during one period
V (t) increases and decreases of approximatively 2T = 4 ; on the right the
half period is T = 10 ; this duration is large enough for the solution to ap-
proach the equilibria V−m and V+

m .
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T = 2 T = 10

V−
m

V+
m

P−
m,T ≈ V−

m

P+
m,T ≈ V+

m

P−
m,T

P+
m,T

Figure 6: The switched system F(m,T ): m = 0.01, T = 2 (left), T = 10, (right)

The switched system S(ε,m,T ) The switched system S(ε,m,T ) con-
sists in a switching each duration T between the two differential systems :

S+(ε,m)


dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

= 2(1−msinh(V ))

S−(ε,m)


dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

= 2(−1−msinh(V ))

(12)
Recall that Pm(t) is the unique periodic solution of F(m,T ) and let

∆(ε,m,T ) =
1

2T

∫ 2T

0
2(mcosh(Pm,T (s))−m− ε)ds (13)

From formula (9) and Proposition 2.1, we can easily prove that the mean
asymptotic velocity of U on a period is ∆(ε,m,T ). More precisely, we show
(see Proposition 2.2) that

lim
t→∞

U(t)
t

= ∆(ε,m,T ). (14)

Hence, U(t) tends to ±∞ according to the sign of ∆(ε,m,T ). The function
V 7→ 2(mcosh(V )−m− ε) is even and it is easily seen that trajectories of
S+(ε,m) and S−(ε,m) are symmetric with respect to the horizontal axe, thus
:

∆(ε,m,T )=
1
T

∫ T

0
2(mcosh(Pm,T (s))−m− ε)ds=

1
T

∫ 2T

T
2(mcosh(Pm,T (s))−m− ε)ds

We concentrate on the system :

S+(ε,m)


dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

= 2(1−msinh(V ))

(15)

It has the solution :

t 7→

(
U(t) = 2

(
mcosh(V+

m )−m− ε
)

V (t) =V+
m

)
(16)
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U U

V V

A+
ε,mA+

ε,m

A−
ε,m A−

ε,m

V+
m V+

m

V−
mV−

m

Figure 7: The switched system S(ε,m,T ): ε = 0.5 m = 0.2, T = 2 (left), T = 10,
(right)

The function g : V 7→ 2(mcosh(V )−m− ε) is decreasing for V ≤ 0. Let

A+
ε,m = cosh¯1

(
1+

ε

m

)
,

then g(V ) is negative if and only if V ∈ (−A+
ε,m,A

+
ε,m). An elementary calcu-

lus shows that for m = 1−ε2

2ε
one has A+

ε,m =V+
m . Thus :

• If m> 1−ε2

2ε
then V+

m <A+
ε,m. Since the periodic solution Pm,T (s) in (13)

oscillate in the interval [V−m ,V+
m ]⊂ (−A+

ε,m,A
+
ε,m) whatever the value of

T , the integrand is strictly negative and by the way ∆(ε,m,T ) is strictly
negative.

• If m < 1−ε2

2ε
then V+

m > A+
ε,m. We must look to the minimum, P−m,T ,

and maximum, P+
m,T values of Pm,T (s). For small values of T they are

close to 0 and included in the interval [−A+
ε,m,A

+
ε,m] and the integrand

being always negative ∆(ε,m,T ) is negative, but, for large values of T ,
P+

m,T is close to V+
m , the solution Pm,T (s) remains for a long time to a

value where the integrand is strictly positive and the balance is in favor
of positiveness : ∆(ε,m,T ) is positive. This is shown on the Figure 7
with simulations for a small and a large value of T .

A more precise description of the behaviour of ∆(ε,m,T ) is given by the
following proposition which details of the proof are given in Appendix C.

Proposition 2.2 Properties of ∆(ε,m,T )

1. For all initial conditions (V (0),U(0)), one has

lim
t→∞

U(t)
t

= ∆(ε,m,T ).

2. For fixed T > 0, for small m, ∆(ε,m,T )< 0 and thus U(t) tends to−∞

3. For fixed T > 0, for large m, ∆(ε,m,T )< 0 and thus U(t) tends to −∞

4. For fixed ε > 0 and m < 1−ε2

2ε
, there exists a threshold T ∗(ε,m) such

that for T < T ∗(ε,m), ∆(ε,m,T ) < 0 and U(t) tends to −∞ while
∆(ε,m,T )> 0 and U(t) tends to +∞ for T > T ∗(ε,m)
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5. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly positive. In
other words there exists a threshold T ∗∗ > 0 such that for T < T ∗∗, for
all values of m, ∆(ε,m,T )< 0 : there is no inflation.

Remark 1 Consider the first integral in (13). Between, 0 and T , V (t) =
Pm,T (t) is strictly increasing from P−m,T to P+

m,T and we can take it as the
integration variable ; since dV = 2(1−msinh(V ))dt one has :

∆(ε,m,T ) =
∫ P+

m,T

P−m,T

2(m(cosh(V )−1)− ε)

2T (1−msinh(V ))
dV

This formula can be understood in the following manner : the function ρm :
V 7→ 1

2T (1−msinh(V )) is the density of a probability measure (see Equation (56)
in Appendix **) µm on [V−m ,V+

m ] and :

∆(ε,m,T )=
∫ P+

m,T

P−m,T

2(m(cosh(V )−1)− ε)ρm(V )dV =
∫ P+

m,T

P−m,T

2(m(cosh(V )−1)− ε)dµm(V )

To the unique periodic solution of the switched system F(m,T ) one associate
a measure on the space of the variable V and the sign of ∆(ε,m,T ) is de-
cided by the integration of the function (mcosh(V )−m− ε) with respect to
this measure. It will be the same in the stochastic case where the random
process V converge in law to a random variable Vm,T with law Πm,T , and
the behaviour of U will be given by the sign of the integral of the function
(mcosh(V )−m− ε) with respect to Πm,T

2.2.3 An explicit formula for ∆(ε,m,T )

From elementary calculus one can prove (see appendix D) the following ex-
plicit formula for ∆(ε,m,T ) :

Proposition 2.3 Let us denote :

b = eT
√

1+m2
C = m2b4 +2m2b2 +4b2 +m2

Then one has :

∆(ε,m,T ) =
1
T

ln
m2b4 +2b2 +m2 +m(b2−1)

√
C

2(1+m2)b2 −2(m+ ε) (17)

This formula is used to draw the picture (using the software Maple) of the
graph of ∆(ε,m,T ) with respect to the variables (m,T ).

On Figure 8 is plotted the graph of (m,T ) 7→ ∆(0.5,m,T )

Small and large values of m or T . One sees that ∆(0.5,0,T ) = −1 =

−2ε , which is easily understandable : for m = 0 one has dx1
dt = (u(t)−

ε)x1,
dx2
dt = (−u(t)− ε)x1) taking the logarithm and adding the two gives

U
dt =−2ε . For T = 0, one sees that ∆(0.5,m,0) is equal to −1 =−2ε which
is explained by the general fact (see e.g. [12]) that if we consider a switched
system at a rate witch tends to infinity (i.e. T → 0 ) then the solutions tend

12



m

T

Figure 8: Graph of ∆(0.5,m,T )

to solutions of the system which is the mean of the two systems ; in our case
the mean of the two systems is :

dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

=
2(u(t)−msinh(V ))+2(−u(t)−msinh(V ))

2
=−2msinh(V )

(18)

which, after a transient, are just
dU
dt

=−2ε .
The asymptotic behaviors for small and large values of m or T can also

be derived by basic development on the explicit formula (17):

Proposition 2.4 For fixed value of m, one has

lim
T→∞

∆(ε,m,T ) = 2
(√

1+m2− (m+ ε)
)

while
lim
T→0

∆(ε,m,T ) =−2ε.

For fixed value of T > 0,

lim
m→0

∆(ε,m,T ) = lim
m→+∞

∆(ε,m,T ) =−2ε.

13



ε = 0.5 ε = 0.25

Δ Δ

ρ = ln(m) ρ = ln(m)

T = 80 T = 40 T = 20

T = 80 T = 20T = 40

Figure 9: Graphs of ∆(ε,eρT ,T ) : T = 80, 40, 20, 10, 5

Threshold value of m for large T . On figure 8 one sees that, for large
values of T the dependence with respect to m is very sharp close to 0 ; in
order to have a better understanding of what is going on around 0 we ask
to Maple to draw the graph of ρ 7→ ∆(ε,eρT ,T ) for negative values of ρ

and T = 80, 40, 20, 10, 5. The result is shown on figure 9 with ε = 0.5
and ε = 0.25 ; from the picture we guess the following property, which is
confirmed by the derivation of appendix E:

Proposition 2.5 When T is large (T → +∞) the threshold value at which
m 7→ ∆(ε,m,T ) becomes positive is the exponentially small value :

m∗(ε,T )∼ e−(1−ε)T

Remark 2 This proposition gives an affirmative answer to Conjecture 3 of
Katriel’s paper [18] in the particular case of piecewise constant model which
takes advantage of explicit formulas for the solutions. In a forthcoming paper
we shall prove this conjecture in the general case.

2.2.4 Back to the variables x1,x2

One has exp(U(t)) = x1(t)x2(t) and we know that for large values of t one
has −V+

m <V (t)<+V+
m which means 1

r < x2
x1

< r, with r = exp(V+
m ). From

this we deduce that :

Σ(ε,m,T ) is stable⇐⇒ ∆(ε,m,T )< 0 (19)

On the other hand let us consider the ”period mapping” of Σ(ε,m,T ), that is
to say the linear mapping which, to an initial condition (x1(0),x2(0) at time
0, assigns the solution of ∆(ε,m,T )< 0 at time 2T and let us denote it by :(

x1(2T )
x2(2T )

)
= M(ε,m,T )

(
x1(0)
x2(0)

)
(20)

14



The stability of our system Σ(ε,m,T ) is equivalent to the stability of the
linear discrete system of R2 :

Xn+1 = M(ε,m,T )Xn (21)

For u =−1,1, let us denote by Mu
ε,m the matrix :

Mu
ε,m =

 u−m− ε +m

+m −u−m− ε

 (22)

With this notation the matrix M(ε,m,T ) is given by :

M(ε,m,T ) = eT M−1
ε,meT M+1

ε,m (23)

The stability of the discrete system Xn+1 = M(ε,m,T )Xn is decided by the
spectral radius :

σ(ε,m,T ) = max |λi(ε,m,T )| i = 1,2

where λi(ε,m,T ) are the two real eigenvalues of M(ε,m,T ) (note that since
M+1

ε,m and M−1
ε,m are symmetric, so is M(ε,m,T ) and its eigenvalues are real).

Thus :
Σ(ε,m,T ) is stable⇐⇒ σ(ε,m,T )< 1 (24)

In view of (19) and (24) there must be a connection between ∆(ε,m,T ) and
σ(ε,m,T ). The connection is given by the proposition :

Proposition 2.6

∆(ε,m,T ) =
1
T

ln(σ(ε,m,T )) (25)

2.3 The (±1)model in stochastic environment
Since a strictly periodic environment is certainly non realistic it is important
to explore the robustness of the inflation effet to the introduction of some
kind of randomness in the switching times. We consider again the system
(3) but we do not suppose that t 7→ u(t) is a 2T -periodic function but any
measurable function, which we denote by t 7→ u(t), with values in the set
{−1,+1}. Such a function is called an environment.

2.3.1 The Piecewise Deterministic Markov Processes (PDMP)

In this section, we consider the case where the switching between the states
1 and −1 occur at random time, exponentially distributed. More precisely,
we study the system :

ΣΣΣ(ε,m,T )


dx1

dt
= (+uuu(t)− ε)x1 +m(x2− x1)

dx2

dt
= (−uuu(t)− ε)x2 +m(x1− x2)

(26)

where (u(t))t≥0 is a continuous time Markov chain on the space {−1,+1}
with switching rate σ := 1/T . In other words, uuu(t) is a continuous time
process such that :

15



1. At time 0, uuu is in some state h ∈ {±1}.
2. It remains equal to h for a random time τ1 exponentially distributed

with parameter σ , viz.

P(τ1 > t) = e−σt .

3. At time τ1, the value of uuu is switched from h to −h, and uuu keeps this
value for a time τ2, exponentially distributed with parameter σ and
independent of τ1

4. and so on.

In particular, the mean time spent by u in an environment h before to switch
is 1

σ
= T . As in the case of periodic environment, we perform the change of

variable V = ln(x1)− ln(x2) and U = ln(x1)+ ln(x2) to get

S(ε,m,T )


dU
dt

= 2(mcosh(V )−m− ε)

dV
dt

=
1+u(t)

2
F+

m (V )+
1−u(t)

2
F−m (V ),

(27)
where F+

m (V ) = 2(1−msinh(V )) and F+
m (V ) = 2(−1−msinh(V )). The

system S(ε,m,T ) is composed of the one-dimensional system

FFF(m,T ) dV
dt

=
1+u(t)

2
F+

m (V )+
1−u(t)

2
F−m (V ) (28)

which then gives the solution of U :

U(t) = U0 +
∫ t

0
2(mcosh(V (s))−m− ε)ds (29)

The processes (Vt)t≥0 = (V (t),u(t))t≥0 and V (t),U(t),u(t))t≥0 are Piece-
wise Deterministic Markov Processes (PDMP).

Remark 3 Even though we are only interested in V and U, it is mathemati-
cally more convenient to consider the processes (V,u) and (V,U,u)since they
are Markov, whereas the processes V and (V,U) are not Markov.

The following property can be seen as a stochastic counterpart of Propo-
sition 2.1. It is a consequence of classical results on PDMP and is proved in
Appendix F.

Proposition 2.7 There exists a unique probability measure Πm,T on [V−m ,V+
m ]

such that, for all measurable set A, all bounded measurable function f : R→
R, all (V (0),uuu(0)), one has

lim
t→∞

P(V (t) ∈ A)→Πm,T (A)

and, almost surely,

lim
t→∞

1
t

∫ t

0
f (V (s))ds =

∫
f (v)Πm,T (v).

Moreover, Πm,T (dv) = ρm,T (v)dv, for some measurable function ρm,T , ex-
plicitly computable and positive on (V−m ,V+

m ).
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V+
m

V

U

V−
m

a1

a2

a3

a4

a5

a6

a7

I+

I−

Figure 10: A trajectory of the process (Vt ,Ut) : ε = 0.5 m = 0.2 σ = 0.4

Remark 4 From the explicit expression (73) of ρm,T given in Appendix F, it
is possible to prove that, for fixed m and T , there exists constants C−(m,T ),C+(m,T )
such that, as v→V+

m ,

ρm,T (v)∼C+(m,T )(eV+
m − ev)

1
2T
√

1+m2
−1
,

while as v→V−m ,

ρm,T (v)∼C−(m,T )(ev− eV−m )
1

2T
√

1+m2
−1
.

In particular, ρm,T is bounded in neighbourhoods of V+
m and V−m if and only if

1≥ 2T
√

m2 +1. This condition is consistent with the following heuristic: if
T is large, the environment does not switch often, and the process V follows
the vector fields F+

m and F−m for a long time, and thus spend a large amount of
time close to the equilibria V+

m and V−m . Hence, for large T , one expects that
the distribution Πm,T give a lot of mass near V+

m and V−m . On the contrary,
if T is small, the environment switches frequently, and the process V spend
most of time in the middle of the interval [V−m ,V+

m ], and therefore one expects
the distribution Πm,T to vanish at the extremity of the interval.

From Proposition 2.7 and Equation (29); we have that, almost surely,

lim
t→∞

U(t)
t

=
∫ V+

m

V−m
2(mcosh(v)−m− ε)ρm,T (v)dv := ∆∆∆(ε,m,T ).

The following result is proved in Appendix G and is to be compared with
Proposition 2.2 in the periodic case.

Proposition 2.8 We have the following limits:

1. For all m > 0,
lim
T→0

∆∆∆(ε,m,T ) =−2ε < 0.
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2. For all m > 0,

lim
T→∞

∆∆∆(ε,m,T ) = 2
(√

m2 +1−m− ε

)
.

In particular,

lim
T→∞

∆∆∆(ε,m,T )> 0 ⇔ m <
1− ε2

2ε
.

3. For all T > 0,

lim
m→0

∆∆∆(ε,m,T ) = lim
m→∞

∆∆∆(ε,m,T ) =−2ε.

From this, we deduce that for m < 1−ε2

2ε
, there exists T∗(m) ≤ T ∗(m)

such that T ≤ T∗ implies that ∆∆∆(ε,m,T ) < 0 while T ≥ T ∗ implies that
∆∆∆(ε,m,T )> 0. Numerical simulations suggest that the map T 7→ ∆∆∆(ε,m,T )
is strictly increasing, which would mean that T∗(m) = T ∗(m).

We note that inflation occurs for intermediate values of m (nor too small,
neither too large), thus is not a phenomena of mixing or non-mixing. This
remind the work of Lawley, Mattingly and Reed [23], where an intermediate
switching rate between two stable matrices can lead the system to inflation,
while small and large rates lead to a stable system.

Comments on Figures 10 and 11 . We illustrate proposition 2.8 with
these two figures. First we consider the process (Vt ,Ut) when ε = 0.5, m =
0.2 and σ = 0.4. We start from (0,0), draw in red the trajectories correspond-
ing to F+

m , in blue those corresponding to F−m . On Figure 10 we have drawn
the lines V = V+

m and V = V−m . The domain [V−m ,V+
m ]×R is invariant. We

have draw the lines : I+ ∪ I− = {V : mcosh(V )−m− ε = 0} and we know
that inside the strip [I−, I+]×R one has dU

dt < 0 and outside dU
dt > 0.

◦ From (0,0) to a1 the trajectory is inside [I−, I+]×R, it goes to the left.

◦ From a1 to a2 the trajectory is still inside [I−, I+]×R, it goes to the
left.

◦ From a2 to a3 the trajectory crosses I+ and stays some time outside of
the strip [I−, I+]×R where it is asymptotic to V+

m .

◦ From a3 to a4 the trajectory the major part of the time is spent in the
strip : the motion is on the left.

◦ From a4 to a5 the time elapsed is rather long end te time elapsed out of
the strip is long which means a significant move to the right.

◦ etc.

One sees that the long durations between two commutations favor the growth
and conversely the short durations the decrease. For the choice that we have
made σ = 0.4 it is difficult to imagine the value of ∆∆∆(0.5,0.2,2.5) : see
Figure 11 (above) where we can see 8 realizations of the process with these
parameters.

But, on the same Figure 11 (below) there is no ambiguity : as predicted
by Proposition 2.8, for high rate of switching (σ = 5 left), ∆∆∆ is negative and
for low rate of switching (σ = 0.2 right), ∆∆∆ is positive.
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Figure 11: Above : Eight realizations of (Zt) with : ε = 0.5, m = 0.2 and σ = 0.4.
Below : Large and small rate of switching have opposite effect on the growth of
U(t) : left σ = 5, right σ = 0.2

2.3.2 Link with the top Lyapunov exponent

Let Xt = (x1(t),x2(t)) the solution to ΣΣΣ(m,ε,T ). With the notation of Section
2.2.4, one can rewrite ΣΣΣ(m,ε,T ) as

dXt

dt
= Mu(t)

ε,m Xt . (30)

The stability of the above equation is given by the sign of the following limit

lim
t→∞

1
t

ln‖Xt‖.

Here ‖ ·‖ stands for the euclidian norm on R2. The classical Oseledet’s Mul-
tiplicative ergodic theorem implies that the above limit exists, and can take
at most two different values, called Lyapunov exponent (see e.g Chapter 1.4
in [26]). Since the matrices Mh

ε,m are irreducible and Metzler , ie have non-
negative off-diagonal coefficients, a random version of Perron - Frobenius
Theorem (see e.g. Proposition 2.13 in [6]) implies that the top Lyapunov ex-
ponent, denoted here ΛΛΛ(ε,m,T ), is such that, for all X0 ∈ R2

+ \ {0}, almost
surely,

lim
t→∞

1
t

ln‖Xt‖= ΛΛΛ(ε,m,T ).

Obviously, ΛΛΛ(ε,m,T ) and ∆∆∆(ε,m,T ) are linked. Indeed, note that the com-
pact set [V−m ,V+

m ] is positively invariant for V = ln(x1)− ln(x2) and attracts
all trajectories. Hence, for all initial condition (x1(0),x2(0)), there exists a
time t0 such that, for all t ≥ t0, V (t) ∈ [V−m ,V+

m ]. In particular, for t ≥ t0;

eV−m ≤ x1(t)
x2(t)

≤ eV+
m
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This yields(
eV−m + e−V+

m
)

x1(t)x2(t)≤ x1(t)2 + x2(t)2 ≤
(

e−V−m + eV+
m
)

x1(t)x2(t)

Taking the logarithm and sending t to infinity proves the following:

Proposition 2.9 One has

∆∆∆(ε,m,T ) = 2ΛΛΛ(ε,m,T ).

2.3.3 A general stochastic (±1)model

The choice of the exponential distribution in the previous section is made in
order to get a Markov process and to get explicit expression for the invari-
ant probability measure Πm,T . However, in some situation, it would be more
natural to consider that the sojourn time of the environment in each state has
general distribution on R+. That is, let µ− and µ+ be two probability mea-
sures on R+, and let (T+

k )k≥1 and (T−k )k≥1 be two independent sequences of
independent random variables, distributed as µ− and µ+, respectively. Then,
the k-th sojourn times of u in state −1 and +1, respectively, are T−k and
T+

k . This defines a continuous time stochastic process u which realizations
are piecewise constant mappings t 7→ uuut from R+ on {−1,+1}. Given an
initial condition and a realization uuut we can integrate (3) and obtain the solu-
tion that we call Vt . This we call the stochastic (±1)model. The deterministic
(±1)model that we studied so far can be considered as the particular stochas-
tic model obtained with µ− = µ+ = δT .

For mathematical convenience we build a Markov process from (Vt ,uuut)
by adding the variable τττ t equals to the time elapsed since the last jump of uuu.
We then get a strong Markov process Z = (V,uuu,τττ) on [V−m ,V+

m ]×{1,+1}×
R+. We shall make the following assumption on µ− and µ+ :

Hypothese 2.10 :

1. µ− and µ+ admit densities f− and f+ with respect to the Lebesgue
measure on R+;

2. There exists t−> 0 and t+ > 0 and η > 0 such that inf|t−t−|≤η f−(t)> 0
and inf|t−t+|≤η f+(t)> 0;

3. There exists C,β > 0 such that for h ∈ {±1},
∫ +∞

t fh(t)dt ≤Ce−β t .

Thanks to results in a forthcoming paper [15], we can prove some kind
of analogue of the existence of the stable periodic solution of the system
F(m,T ) (Proposition 2.1) :

Proposition 2.11 There exists a unique probability measure Π on [V−m ,V+
m ]

such that, for all measurable set A, all bounded measurable function f : R→
R, all (V (0),uuu(0)), one has

lim
t→∞

P(V (t) ∈ A)→Π(A)

and, almost surely,

lim
t→∞

1
t

∫ t

0
f (V (s))ds =

∫
f (v)Π(v).
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The proof of this result is out of the scope of the present paper.
Since U(t) is just obtained by integrating V (·) we deduce :

Proposition 2.12

lim
t→∞

U(t)
t

=
∫
(V−m ,V+

m )
2(mcosh(v)−m− ε)Π(dv) := ∆∆∆(ε,m,µ+,µ−).

The question of inflation is thus reduced to the ”computation” of Π from
the ”data” µ− and µ+ which might be difficult, if not impossible. The pre-
vious section has provided an example where Π is explicitly computable.
For the general case, let us show that if µ− and µ+ are close to δT , then
∆∆∆(ε,m,µ+,µ−) is close to ∆(ε,m,T ).

Definition 2.13 We say that (µ−,µ+) is a (η ,T ) - Stochastic Approxima-
tively Periodic Environment (SAPE) if µ−([T−η ,T +η ]) = µ+([T−η ,T +
η ]) = 1.

Example 1 If µ− and µ+ are uniform laws on [T −η ,T +η ], then (µ−,µ+)
is a (η ,T ) - SAPE.

In other words, if (µ−,µ+) is a (η ,T ) - SAPE, the sojourn time of u in each
environment±1 is between T−η and T +η . The intuition is thus that, when
η goes to 0, the signal u becomes closer and closer from a periodic signal,
and trajectories of the random process should converge to the trajectories
of the corresponding periodic system. This intuition is made precise in the
following Lemma, proven in Appendix H.

Lemma 2.14 Let T > 0, and a sequence (µn
−,µ

n
+)n≥0 of (ηn,T ) - SAPE, for

some sequence (ηn)≥0. Let (V n
t )t≥0 the trajectory associated to the envi-

ronment (µn
−,µ

n
+) and (Vt)t≥0 the solution of system F(m,T ). Assume that

limηn = 0. Then, for all S > 0, there exist n0 and a constant C(S,m,T ) such
that, for all n≥ n0,

sup
t∈[0,S]

|V n
t −Vt | ≤C(S,m,T )ηn.

The demonstration of Lemma 2.14 enables us to prove (see Appendix H) the
following announced result:

Proposition 2.15 Let T > 0, and a sequence (µn
−,µ

n
+)n≥0 of (ηn,T ) - SAPE,

for some sequence (ηn)≥0. Then, if limηn = 0, we have

lim
n→∞

∆∆∆(ε,m,µn
+,µ

n
−) = ∆(ε,m,T ).

This proposition is illustrated by the two simulations of figure 12.

Remark 5 It is possible to weaken the definition of SAPE by only requir-
ing that the mean sojourn times M− =

∫
t dµ−(t) and M+ =

∫
t dµ+(t) and

the associated variances Var−, Var+ satisfy M−,M+ ∈ [T −η ,T +η ] and
Var−,Var+ ≤ η . With such a definition, we would obtain a stochastic ver-
sion of Lemma 2.14, which would be sufficient to prove Proposition 2.15.
This is however out of the scope of this paper.
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U U

V V

Figure 12: Stochastic Approximatively Periodic Environment : µ− and µ+ uniform
on [T −η ,T +η ]. In red solution corresponding to the T- periodic environment,
in green solution corresponding to the stochastic environment ; ε = 0.5 m = 0.2;
T = 6 η = 0.6 (left); T = 4 η = 0.4 (right).

3 Some extensions to more complex situations.

3.1 Migration between different patches
Our approach extends to the more general model

dx1

dt
= α1(t)x1 + m(x2− x1)

dx2

dt
= α2(t)x2 + m(x1− x2)

(31)

where αi are periodic functions of period 2T . The change of variables

U = ln(x1)+ ln(x2), V = ln(x1)− ln(x2)

transforms (31) in
dU
dt

= α1(t)+α2(t) + 2m(cosh(V )−1)

dV
dt

= α1(t)−α2(t) − 2msinh(V )
(32)

One observes that the variable V is decoupled from the variable U . Once the
solution V (t) of the second equation in (32) is known, the solution U(t) is
obtained by the simple quadrature :

U(t) = u(0)+
∫ t

0
(α1(s)+α2(s)+2m(cosh(V (s))−1))ds

One can prove that the equation in V has a 2T -periodic solution P(t), which
is globally stable. Therefore, the asymptotic behaviour of (31) is reduced to
the study of :

∆(m,T ) =
1

2T

∫ 2T

0
(α1(t)+α2(t)+2m(cosh(V (t))−1))dt (33)
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r2 = 0.9 d2 = 1.1

r2 = − 0.1 d2 = 0.1

r1 = + 0.9 d1 = 1.1

T

m

Figure 13: Graphs of (m,T ), 7→ 1
T ln(λ1(r1,d1,r2,d2,m,T )) for two values of

(r1,d1,r2,d2)

U U U

V V V

m = 0.05 m = 0.2 m = 1.2

Figure 14: Trajectories of (32) r1 = 0.9, d1 = 1.1, r2 =−0.1, d2 = 0.1, T = 5
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Remark 6 The model (31) with αi(t) continuous is the model considered by
Katriel in [18]. He considers the same changes of variables as us but our
methods used to study the system in the (U,V ) variables are different from
those of [18].

Comments on figure 13. Consider the case where

α1(t) =
{

r1 if t ∈ [0,T ]
−d1 if t ∈ [T,2T ] , α2(t) =

{
−d2 if t ∈ [0,T ]

r2 if t ∈ [T,2T ]
(34)

where r1, r2, d1 and d2 are real parameters. The system Σ(ε,m,T ), defined
by (3) corresponds to the case where r1 = r2 = 1− ε and d1 = d2 = 1+ ε .
We look to ln(λ1(r1,d1,r1,d2,m,T )) in two different cases. On the left we
consider the case :

r1 = 0.9 d1 = 1.1
r2 = 0.9 d2 = 1.1

(35)

which is the case of the (±1)model for ε = 0.1 which we already considered.
We compare this case to the case :

r1 = 0.9 d1 = 1.1
r2 =−0.1 d2 = 0.1

(36)

In this case the patch n◦ 1 is unchanged and the patch n◦ 2 represent some
place without seasonality. In this case the global productivity is smaller but
the inflation phenomenon is still observable.

3.2 The case of non symmetric dispersal
The symmetric rate of dispersal between the two patches is a very special
(and unlikely) situation. A non symmetric dispersal like in the model :

dx1

dt
= α1(t)x1 + m(βx2− (1−β )x1)

dx2

dt
= α2(t)x2 + m((1−β )x1−βx2)

(37)

with 0 < β ≤ 0.5 is certainly more realistic. Using now

U = ln(x1)+ ln(x2) V = ln(x1)− ln(x2)− ln(
√

β (1−β )

one obtains :
dU
dt

= α1(t)+α2(t)+m(
√

β (1−β )−1) + 2m
√

β (1−β )(cosh(V )−1)

dV
dt

= α1(t)−α2(t)−m(1−2β ) − 2m
√

β (1−β )sinh(V )

(38)
which is very similar to (32) and the treatment of this case will follow the
same lines. In particular we find that, once β > 0 is fixed the asymptotics for
∆(m,T ) are the same.
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3.3 The case of partial phase shift
In the preceding section we considered the case where the two patches where
always in opposite conditions during the whole period 2T . A more realistic
situation is when the two patches are ruled by the same periodic environment
r(t) shifted of ϕT with ϕ ∈ (0,1). In that case our (±1)model could be
extended in the following direction. We consider the four dynamical systems
: As previously we have the two systems :

Σ+−(ε,m,T,ϕ)


dx1

dt
= (+1− ε)x1 +m(x2− x1)

dx2

dt
= (−1− ε)x2 +m(x1− x2)

(39)
and :

Σ−+(ε,m,T,ϕ)


dx1

dt
= (−1− ε)x1 +m(x2− x1)

dx2

dt
= (+1− ε)x2 +m(x1− x2)

(40)
to which we add :

Σ++(ε,m,T,ϕ)


dx1

dt
= (+1− ε)x1 +m(x2− x1)

dx2

dt
= (+1− ε)x2 +m(x1− x2)

(41)
and :

Σ−−(ε,m,T,ϕ)


dx1

dt
= (−1− ε)x1 +m(x2− x1)

dx2

dt
= (−1− ε)x2 +m(x1− x2)

(42)
We switch from one system to the other according to the following scheme :

t ∈ [0, ϕT [ [ϕT, T [ [T,T (1+ϕ), [ [T (1+ϕ),2T [
Σ +− ++ −+ −−

(43)

Using the similar notations than those that we used in subsection 2.2.4, define
:

M+−
ε,m =

[
1−m− ε +m

+m −1−m− ε

]
M−+ε,m =

[
−1−m− ε +m

+m 1−m− ε

]

M++
ε,m =

[
1−m− ε +m

+m +1−m− ε

]
M−−ε,m =

[
−1−m− ε +m

+m −1−m− ε

]
The spectral radius of the matrix :

M(ε,m,T,ϕ) = eT (1−ϕ)M−−ε,m eϕT M−+ε,m eT (1−ϕ)M++
ε,m eϕT M+−

ε,m
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Figure 15: Graphs of (m,T ), 7→ 1
T ln(λ1(0.1,m,T,ϕ)) for three values of ϕ

decides of the stability of the switched system associated to these four sys-
tems, T and ϕ . Once again, we ask to Maple to compute the eigenvalues of
M(ε,m,T,ϕ), we select the largest one λ1(ε,m,T,ϕ) and look for le map-
ping (m,T ) 7→ 1/T ln(λ1(ε,m,T,ϕ)) for ε = 0.1 and various values. When
the shift ϕT is not equal to T our intuition is that the inflation effect will be
proportional to the shift and will be maximum when ϕ = 1. This is confirmed
by Figure 15.

3.4 Density dependent models
In [1, 2] a complete description of the asymptotic behavior of the model :

dx1

dt
= r1x1

(
1− x1

K1

)
+β

(
x2

γ2
− x1

γ1

)
dx2

dt
= r2x1

(
1− x2

K2

)
+β

(
x1

γ1
− x2

γ2

) (44)

is given in the space of the six independent parameters {ri,Ki,(i= 1,2),β/γ2,γ1/γ2},
the focus being on the comparison between the total equilibrium population
with the sum K1 +K2 of the two carrying capacities. Here we complement
this study by considering the question of persistance when r1 and r2 vary in
time for specific values of the parameters. Namely, we consider the system :

D(ε,α,m,T )


dx1

dt
= (+u(t)− ε)x1−αx2

1 +m(x2− x1)

dx2

dt
= (−u(t)− ε)x2−αx2

2 +m(x1− x2)

(45)

where 0≤ ε ≤ 1, α ≥ 0, m≥ 0, T ≥ 0 and the function t 7→ u(t) is periodic
of period 2T , with :

t ∈ [0, T [⇒ u(t) = 1 t ∈ [T, 2T [⇒ u(t) =−1

We are interested in the persistence of (45). Recall that the system D(ε,α,m,T )
is uniformly persistent (see for instance [8]) if there exist strictly positive con-
stants a < b such that every solutions (x1(t),x2(t)) of D(ε,α,m,T ) is asymp-
totically bounded from below by a and from above by b (i.e. a ≤ xi(t) ≤ b
for t sufficiently large).
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Figure 16: Simulations of D(0.1,0.1,m,5) showing persistance for intermediate
values of m.

When α = 0 the system D(ε,0,m,T ) is just the (±1)model Σ(ε,m,T ).
When α is not 0, but m = 0, on each patch the dynamic is :

dxi

dt
= (u(t)− ε)xi−αx2

i i = 1,2 (46)

with u(t) = ±1. In both cases one has a logistic equation with a globally
stable equilibrium equal to 1−ε

α
or 0. One sees easily that in the space (R+)2

the square S = [0, 1−ε

α
]× [0, 1−ε

α
] is an invariant global attractor ; this implies

that every trajectories of (45) are bounded from above.
Regarding boundedness from below we can say intuitively that the sys-

tem D(ε,α,m,T ) behaves around the origin like its linear approximation,
namely the system Σ(ε,m,T ) and thus is persistant if and only if Σ(ε,m,T )
is unstable. Actually the following proposition can be proved (see appendix
I)

Proposition 3.1 If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=
Σ(ε,m,T ) is :

• stable, then the solutions of D(ε,α,m,T ) tend to 0 (extinction),

• unstable, then D(ε,α,m,T ) is persistent.

Thus we have, for T large enough, the sequence : small m : extinction −
intermediate m : persistance − large m : extinction/ This is illustrated by the
simulations of Figure 16.

3.4.1 A density dependent stochastic model

In this short section, we show that the Proposition 3.1 is still true under a
random signal u. More precisely, we consider the system

DDD(ε,α,m,T )


dx1

dt
= (+u(t)− ε)x1−αx2

1 +m(x2− x1)

dx2

dt
= (−u(t)− ε)x2−αx2

2 +m(x1− x2)

(47)

27



where u switches from 1 to −1 and conversely at random exponential
time, as described in Section 2.3. Like in the periodic case described above,
when α = 0, DDD(ε,α,m,T ) is just the stochastic (±1)model ΣΣΣ(ε,m,T ). Us-
ing a terminology borrowed to Schreiber and Chesson, we say that the system
D(ε,α,m,T ) is stochastically persistent if for all η > 0, there exists a com-
pact set Kη ⊂ R2

++ such that, almost surely,

liminf
t→∞

1
t

∫ t

0
1l(x1(s),x2(s))∈Kη

ds≥ 1−η .

We now give the stochastic counterpart of Proposition 3.1:

Proposition 3.2 We have the following dichotomy:

• If ∆∆∆(ε,m,T )≤ 0, then system D(ε,α,m,T ) goes to extinction;

• If ∆∆∆(ε,m,T )> 0, then system D(ε,α,m,T ) is stochastically persistent,
and the process (x1,x2,u) admits a unique stationary distribution ν

such that ν(R2
++×{±1}) = 1.

3.5 The epidemic model of Holt and al.
In [19] Holt and his colleagues consider the classical S.I.R. model for a pop-
ulation living in two patches connected by migration. The model is the fol-
lowing system :

dS1

dt
= −β (t)S1I1 +m(S2−S1)

dI1

dt
= +β (t)S1I1− (γ(t)+µ)I1 +m(I2− II)

dS2

dt
= −β (t−ϕ)S2I2 +m(S1−S2)

dI2

dt
= +β (t−ϕ)S2I2− (γ(t−ϕ)+µ)I2 +m(I1− I2)

(48)

where Si(t) represents the number of ”susceptible to be infected” at time
t on each patch, Ii(t) represents the number of ”infected” on each patch.
The parameters β (.) and γ(.) are piecewise constant function of period 2T
varying according to the presence or absence of social distancing measures
; we examine the messages of this paper in light of our previous study of
inflation phenomenon3.

The first remark of the authors of [19] is to consider that we are essen-
tially interested by the beginning of the contamination when, as a first ap-
proximation, we can consider that S(t) is almost equal to the initial total
population N. Then the approximate model is :

dI1

dt
=

(
β (t)N− (γ(t)+µ)

)
I1 +m(I2− II)

dI2

dt
=

(
β (t−ϕ)N− (γ(t−ϕ)+µ)

)
I2 +m(I1− I2)

(49)

3The authors of [19] publish the same message in P.N.A.S. [20] but using less realistic β (.) and
γ(.) like continuous sinusoidal functions. We prefer to refer to the initial paper.
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Figure 17: Simulation from [19] (left) ; our simulation (right)

They denote respectively by the subscripts n and s the values of parameters in
”normal” periods and periods when the ”social distancing” is in effect. They
adopt, according to the current literature, the following realistic values .

βnN = 0.1988 γn = 0.098 µn = 0.002

βsN = 0.0288 γs = 0.128 µs = 0.002

βnN− (γn +µn) = 0.0988

βsN− (γs +µs) = - 0.1012

and they discuss the case T = 30. We have done a simulation with these
parameters, with 2T = 60 and m = 0.005 and obtained the same picture than
[19] (see figure 17) which confirms that we are actually running the same
model but our objective is not to reproduce [19] results but to complete them.
For this purpose we consider the effect of migration, in the case of a small
phase shift in the application of social distancing. We assume that ϕ = 4
days.

In the absence of migration the linear model is :

dIi

dt
= 0.0988 Ii (normal)

dIi

dt
=−0.1012 Ii (social distancing)

(50)
If we multiply the dynamic of Ii by the factor 10 (which means a change unit
for the time) we have :

dIi

dt
= 0.988 Ii (normal)

dIi

dt
=−1.012 Ii (social distancing)

(51)
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Figure 18: Graphs of (m,T ), 7→ λ1(0.012,m,T,0.133) (left) and m 7→
λ1(0.012,m,3,0.133)

which we read as the ”(±1)model”:

dxi

dt
= (1− ε)xi (normal)

dxi

dt
=−(1+ ε)xi (social distancing)

(52)
with ε = 0.012. To T = 30 and a phase shift of 4 days in the model (48)
correspond T = 3 a shift of 0.133 in (52). For these values one sees on
the graphs of λ1 that there is no longer instability for m > 2 which means
m > 0.2 in the original system (48). This must be reflected on the epidemic.
If one looks to the cumulative number of cases for a duration of 1500 days
the simulation of the model gives the figure 19. We can see that no migration
at all is the best, when migration grows from 0 to approximately 0.1 the
number of cases is multiplied by 4 but and after that decreases. Very low
migration can increase dramatically the number of cases, while, if migration
is unavoidable, comparatively large one has better effect.

In their paper published in the P.N.A.S. the authors [20] say : "These
findings highlight a need for integrated, holistic policy: Intensify mitigation
locally, coordinate tactics among locations, and reduce movement."

We think, in view of our work, that the last recommendation must be
qualified : reducing movement to 0 is certainly beneficial, but if it is not
possible, in case of small asynchronicity, encourage movement could be bet-
ter. This does not invalidate but reinforces the conclusion of their paper with
which we fully agree. "It is increasingly recognized that monitoring and con-
trolling movement is essential for effective pandemic control. The impact
of such actions is, however, contextual, because their dynamical effects are
intertwined with the magnitude of asynchrony in local transmission across
space. More-realistic, spatially structured epidemiological models including
movement and asynchronous transmission − at scales from local to inter-
national − are essential to control this and future pandemics in the coupled
metapopulations of humans and their pathogens."
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Figure 19: Cumulative number of cases up to 1500 days as a function of migration.

4 Conclusion
Inflation is a spectacular phenomenon exhibited by the system that we called
the ”(±1)model” (see section 2.2). It is a spectacular phenomenon in two
respects.

• Two patches that each provide unfavorable habitat leading to extinc-
tion can become an overall favorable environment if there is migration
between the two sites.

• The phenomenon can be extremely abrupt, with a very small increase
in migration leading to a considerable increase in growth.

The simplicity of the “ (±1)model” allowed us to understand the fundamen-
tal role of exponential growth and to make explicit computations (possibly
using a formal calculator) which quantify the roles of the period and the rate
of migration.

Insofar as our ” (±1)model” is totally unrealistic, it is linear, strictly
periodic and the two sites are exactly out of phase, it was important to verify
that the phenomenon of inflation is not a specific mathematical curiosity of a
very particular model, but one that is likely to arise each time the following
ingredients are combined : several sites, environments that vary over time,
migration between sites. We did this by considering the case of non symetric
dispersal (see subsection 3.2), the case of partial phase shifts (see subsection
3.3) and of density dependent growth models (see subsection 3.4). In all
these extensions, inflation is present.

Moreover we showed that the phenomenon is not specific of deterministic
systems ; we showed existence of inflation in various stochastic models like
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those of subsections 2.3,2.3.1, 2.3.3, 3.4.1. For this random extension, we
use the theory of Piecewise Deterministic Markov Process (PDMP), which
enables us to prove the existence of a unique growth rate, and to investigate
the variation of this growth rate according to the parameters. On several as-
pects, our study can be related to former papers, where random switching
between two ODEs with the same asymptotic behaviour can completely re-
verse the trend. For example, in [5], switching between two competitive two-
species Lotka - Volterra equations favorable to the same species may lead to
the extinction of this favored species. Similarly, in [6], random switching
between two epidemiological models with extinction of the disease may lead
to persistence of the disease. We also briefly discussed the case of nonex-
ponential switching time, which is far more complicate to investigate, but
produces similar behaviour and which might be consider as more realistic in
many situations.

In a stimulating essay, Ecological orbits, how planets move and popula-
tions grow, Lev Ginzburg and M. Colyvan [16] defend the idea that exponen-
tial growth is, for population dynamics, the equivalent of the principle of in-
ertia in classical mechanics : a population whose growth rate is unconstrained
grows exponentially, just as a material body subjected to no force keeps the
same speed. We know how the theory of the periodically forced harmonic os-
cillator plays a central role in many fields of physics. From the perspective of
Ecological orbits the ” (±1)model” with its inflation phenomenon could be
compared to the forced harmonic oscillator with the resonance phenomenon.
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A The system Σ(ε,m,T ) for large m

Consider the system :

dx1

dt
= (+u(t)− ε)x1 +m(x2− x1)

dx2

dt
= (−u(t)− ε)x2 +m(x1− x2)

and put :
S = x1 + x2 D = x1− x2

One has :

dS
dt

= (+u(t)− ε)x1 +m(x2− x1)+(−u(t)− ε)x2 +m(x1− x2) = u(t)D− εS

dD
dt

= u(t)−2(m+ ε)D =−2(m+ ε)

(
D− u(t)

2(m+ ε)

)
From Tychonov theorem ([27, 22]), when 2(m+ ε)→ ∞ the solution to this
system (called a slow-fast system), after a short transient, tends to :

S(t) = S(0)e−εt D(t) = 0

Thus, in the variables (x1,x2) one has :

x1(t)≈ x2(t)≈
x1(0)+ x2(0)

2
e−εt

This is also called by physicists, the method of the quasi stationary state.

B The switched system F(m,T ) has a single glob-
ally stable periodic orbit
We consider the one dimensional switched system :

F(m,T ) dV
dt

=
1+u(t)

2
F+

m (V )+
1−u(t)

2
F−m (V ) (53)

with :

F+
m (V ) = 2(1−msinh(V )) F−m (V ) = 2(−1−msinh(V ))

and :
V+

m = sinh−1(+1/m) V−m = sinh−1(+1/m)

Since F+
m (V ) is continuous, differentiable and such that (V−V+

m )F+
m (V )<

0 except for V =V+
m , from the elementary theory of differential equations we

know that, if we denote by V+(t,V ) the unique solution of :

dV
dt

= F+
m (V ) V (0) =V

then V+(t,V ) is defined for every positive t and the mapping V 7→ V+(t,V )
is continuous and differentiable.
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Lemma B.1 Let T > 0. The mapping V 7→ V+(T,V ) is a continuous map-
ping, strictly increasing, from [V−m ,V+

m ] into [V−m ,V+
m ] ; moreover its deriva-

tive is strictly smaller than 1.
Proof Assume that V 7→ V+(T,V ) is not strictly increasing. Then it exists
V1 < V2 such that V+(T,V2) ≤ V+(T,V1) ; and, by the way, some t ≤ T for
which (V+(t),V1) =V+(t),V2) and, thus, two solutions starting from differ-
ent initial conditions meet at some point. This contradicts the uniqueness
of solutions. The derivative of V 7→ V+(T,V ) at the point Vo is obtained by
integrating the linearized equation along the trajectory t 7→ V+(t,Vo) up to
time T , that is to say :

dδV+

dt
= DF+

m (V+(t,Vo))δV+
δV+(0) = 1

where DF+
m (V ) is the derivative of F+

m (V ) at point V .

δV+(T ) = exp
(∫ T

0
DF+

m (V+(t,Vo))dt
)

dt

One has :∫ T

0
DF+

m (V+(t,Vo))dt =
∫ V+(T,Vo)

Vo

DF+
m (V )

F+
m (V )

dV = ln(F+
m (V+(T,Vo)))−ln(F+

m (V0))

Since the function F+
m (V ) is decreasing and V+(T,Vo) > Vo the integral is

negative and thus δV+(T )< 1.
�

For the same reasons we have the following : We denote by V−(t,V ) the
unique solution of :

dV
dt

= F−m (V ) V (0) =V

then V−(t,V ) is defined for every positive t and the mapping V 7→ V−(t,V )
is continuous and differentiable.

Lemma B.2 Let T > 0. The mapping V 7→ V−(T,V ) is a continuous map-
ping, strictly increasing, from [V−m ,V+

m ] into [V−m ,V+
m ] ; moreover its deriva-

tive is strictly smaller than 1.
Now consider ”period-map”, that is the composite mapping V 7→ Φ(V ) =

V−
(
T,V+(T,V )

)
from [V−m ,V+

m ] into [V−m ,V+
m ] (see figure 20, left); from the

preceding lemmas it turns out that it is strictly increasing, with Φ′(V ) < 1
such that V−m < Φ(V−m ) and Φ(V+

m ) < V+
m . From elementary calculus the

discrete dynamical system defined by :

V (n+1,Vo) = Φ(V (n,Vo)), V (0,Vo) =Vo

has a unique equilibrium Ve , i.e. the unique solution of Φ(V ) = V , this
equilibrium is globally asymptotically stable (see figure 20, right). Since
Φ(V (n,Vo) = V (n2T,Vo), where V (n2T,Vo) is the solution of the switched
system (53) we have proved :
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Figure 20: The switched system F(m,T ): m = 0.01 ; T = 3. The segment [A−,A+]
is the image of [V−m ,V+

m ] by the mapping V 7→V+(T,V ), and [B−,B+] is the image
of [A−m ,A

+
m ] by the mapping V 7→V−(T,V )

Proposition B.3 The switched system F(m,T ) has a unique periodic so-
lution, denoted Pm,T (t), globally asymptotically stable which oscillates be-
tween two values P−m,T , and P+

m,T contained in the interval [V−m , V+
m ] ; P−m,T =

−P+
m,T and the function T 7→ P+

m,T is an increasing function of T which tends
to V+

m when T tends to infinity.

The solutions of (53) are explicitly computable as we show now.
On [0,T ] one has :

dV
dt

= 2(1−msinh(V )) V (0) =V0 (54)

and by the way :

t =
∫ V (t)

Vo

dV
2(1−msinh(V ))

(55)

Since the function that we have to integrate is a rational fraction with respect
to eV we can integrate it explicitly (by hand or with the help of some formal
software) and the result is :∫ dV

2(1−msinh(V ))
=

1
A

tanh−1
(

tanh(V/2)+m
A

)
where

A =
√

1+m2

The periodic solution oscillate between−P+
m,T and +P+

m,T solutions of the
equation :

T =
∫ P+

m,T

−P+
m,T

dV
2(1−msinh(V ))

(56)
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Figure 21: The switched system F(m,T ): m = 0.01 ; T = 3. Solutions converge to
a unique periodic orbit.

and thus P+
m,T is a solution of the equation :

tanh−1

(
tanh(P+

m,T/2)+m

A

)
− tanh−1

(
tanh(−P+

m,T/2)+m

A

)
= TA

Thus, if we put x = tanh(P+
m,T/2), we are searching for the solutions of the

equation :

tanh−1
(

x+m
A

)
+ tanh−1

(
x−m

A

)
= TA

From the formula tanh−1(a)+ tanh−1(b) = tanh−1 ( a+b
1+ab

)
, one obtains the

equation :

tanh−1
(

2Ax
1+ x2

)
= TA

and :
x2 tanh(TA)−2Ax+ tanh(TA) = 0

This equation admits two solutions :

x =
A−

√
A2− tanh2(TA)

tanh(TA)
, x =

A+
√

A2− tanh2(TA)

tanh(TA)
.

The second solution is not acceptable since it is grater than 1.We have :

tanh(P+
m,T/2) =

A−
√

A2−B2

B
, with B = tanh(TA) (57)

Thus we have proved the :
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Proposition B.4 The maximum P+
m,T (respectively the minimum P−m,T =−P+

m,T )
of the periodic solution of (53) is given by :

P+
m,T = 2tanh−1

(
A−
√

A2−B2

B

)
with A =

√
1+m2 and B = tanh(TA)

(58)

C Qualitative properties of S(ε,m,T )

We prove :

Proposition C.1 Qualitative properties of S(ε,m,T )

1. For small m, ∆(ε,m,T )< 0

2. For large m, ∆(ε,m,T )> 0

3. For fixed ε > 0 and m< 1−ε2

2ε
there exists a threshold T ∗(ε,m) such that

for T < T ∗(ε,m), ∆(ε,m,T )< 0 and ∆(ε,m,T )> 0 for T > T ∗(ε,m)

4. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly positive. In
other words there exists a threshold T ∗∗ > 0 such that for T < T ∗∗, for
all values of m, ∆(ε,m,T )< 0 : there is no inflation.

Proof of 1) Since in the interval [V−m ,V+
m ], where the periodic solution lives,

one has | dV
dt |< 1 we know that P+

m <T . Since lim
m→0

A+
ε,m = lim

m→0
cosh−1

(
1+

ε

m

)
=

+∞, for small enough m, the periodic solution Pm,T (t) lives in the interval
]A−ε,m, A+

ε,m[ where the function ϕ is strictly negative an hence so is ∆(m,T ).

Proof of 2) Given ε > 0 the relative positions of V+
m = sinh−1( 1

m ) and A+
ε,m =

cosh−1 (1+ ε

m

)
depends on m. One easily compute that :

A+
ε,m <V+

m ⇐⇒ m <
1− ε2

2ε
(59)

hence, if m > 1−ε2

2ε
one has [V−m ,V+

m ] ⊂ [A−ε,m, A+
ε,m] and ϕ(Pm(t)) is always

negative.

Proof of 3) On the one hand the function T 7→ P+
m,T is a strictly increasing

function of T , from 0 to V+
m and, on the other hand,

∫ V+
m

A+
ε,m

ϕ(V )dV = +∞. It

follows that the function :

T 7→ ∆(ε,m,T ) = 2
∫ P+

m,T

P−m,T

ϕ(V )dV

starts from 0, decreases to a minimum attained when P+
m,T = A+

ε,m, then is
strictly increasing and tends to +∞ and is 0 for a unique value T ∗(ε,m) (see
figure ??).

Proof of 4) Let ε > 0 given, consider mo =
1−ε2

2ε
and set To = A+

ε,mo = V+
mo .

Let T < To. For m > mo we already know that ∆(ε,m,T )< 0. If m < mo one
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has A+
ε,m > To > T and, by the way, ϕ(Pm,T (t)) is always negative. Thus for

T < sinh−1
(

2ε

1−ε2

)
, whatever the value of m, one has ∆(ε,m,T ) < 0 which

proves 4).

D Explicit formula for ∆(ε,m,T )

We consider the periodic solution Pm,T (t) to F(m,T ). We are interested by
the sign of :

∆(ε,m,T ) =
1
T

∫ P+
m,T

P−m,T

m(cosh(V )−1)− ε

1−msinh(V )
dV (60)

From the formula (60) and proposition B.4 we can deduce an explicit
formula for ∆(ε,m,T ). First, if we use formula (56) in the definition of
∆(ε,m,T ) we get :

∆(ε,m,T ) =
1
T

∫ P+
m,T

−P+
m,T

mcosh(V )dV
1−msinh(V )

−2(m+ ε) (61)

Since d
dV sinh(V ) = cosh(V ), one can explicitly compute the integral to get :∫ mcosh(V )dV

1−msinh(V )
=− ln(1−msinh(V )) (62)

and, by the way :

∆(ε,m,T ) =
1
T

ln
1+msinh(P+

m,T )

1−msinh(P+
m,T )
−2(m+ ε) (63)

Using the formula sinh(a) = 2tanh(a/2)
1−tanh2(a/2)

, from (57) one gets :

sinh(P+
m,T ) =

A−
√

A2−B2B

B2−A2 +A
√

A2−B2

If we replace in (63) we have :

∆(ε,m,T ) =
1
T

ln
B2−A2 +A

√
A2−B2 +m(A−

√
A2−B2B)

B2−A2 +A
√

A2−B2−m(A−
√

A2−B2B)
−2(m+ ε)

and, after a multiplication by the conjugate quantity of the denominator one
have the more simple expression :

∆(ε,m,T ) =
1
T

ln
A2−B2 +m2B2 +2mB

√
A2−B2

A2−B2−m2B2 −2(m+ ε)

Using A2 = 1+m2 and B = tanh(TA) = e2TA−1
e2TA+1 , one gets :

∆(ε,m,T ) =
1
T

ln
m2b4 +2b2 +m2 +m(b2−1)

√
C

2(1+m2)b2 −2(m+ ε) (64)

with b = eT
√

1+m2 and C = m2b4 +2m2b2 +4b2 +m2.
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E Asymptotics of ∆(ε,m,T ) for large T

We are looking for solutions of m 7→ (∆(ε,m,T ) = 0 which are exponentially
small with respect to T , that is to say for x solutions of :

∆(ε,exT ,T ) = 0 x < 0 (65)

We use Landau notation o for any quantity that tends to o when t tends to ∞.
From (64),

∆(ε,m,T ) = 0 is equivalent to :

m2b4 +2b2 +m2 +m(b2−1)
√

C
2(1+m2)b2 = e2(m+ε)T (66)

with

b = eT
√

1+m2
, C = m2b4 +2m2b2 +4b2 +m2, m = exT (67)

From (67) one have :

mb = eT xeT
√

1+e2T x
= eT (1+x+ 1

2 e2T x(1+o)) (68)

since for x < 0 we have T e2T x = o we deduce mb = eT (1+x+o) which tends
to ∞ as long as x >−1. from which we deduce that as long as x >−1 :

m2b4 +2b2 +m2 = m2b4(1+o(1)) m(b2−1)
√

C = m2b4(1+o(1))
(69)

which introduced in (66) gives :

m2b2(1+o(1)) = e2T (1+x)(1+o(1)) = e2T (ε+o(1)) (70)

from which we deduce :

2T (1+ x)(1+o(1)) = 2T (ε +o(1)) =⇒ x =−(1− ε)+o(1) (71)

which is the evaluation of proposition 2.5.

F The randomly switched system FFF(m,T ) admits
a unique stationary distribution
Proposition 2.7 is a consequence of the following property of the process V:

Proposition F.1 The process (Vt)t≥0 admits a unique stationary distribution
ΠΠΠm,T . The support of ΠΠΠm,T is the set [V−m ,V+

m ]×{−1,+1}, and if we denote
ΠΠΠ

h
m,T (·) = ΠΠΠm,T (· × {h}) for h ∈ {−1,+1}, then ΠΠΠ

h
m,T has a density ρρρh

m,T
with respect to the Lebesgue measure on R. Furthermore, ΠΠΠm,T is ergodic
and globally asymptotically stable for the law of VVV in the sense that, for all
initial condition VVV 0 ∈ [V−m ,V+

m ]×{−1,+1},

sup
(A,h)∈B([V−m ,V+

m ])×{−1,+1}
|P(VVV t ∈ A×{h})−ΠΠΠm,T (A×{h})| ≤Ce−γt ,
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and, for all bounded measurable function f , almost surely,

lim
t→∞

1
t

∫ t

0
f (Vs)ds =

∫
f (V,u)ΠΠΠm,T (dV,du).

Proof
It is easily seen that the compact set [V−m ,V+

m ] is positively invariant by
the flows generated by F−m and F+

m , hence it is also invariant for V solution
to F(m,T ). Moreover, every point in v ∈ (V−m ,V+

m ) is accessible for Z in
the sense of [4, Definition 3.6] and satisfy F+

m (v)−F−m (v) = 4 > 0. Hence,
the strong bracket condition is satisfied at some accessible point, and [4,
Theorem 4.6] yields the result.

In addition, the density functions ρρρ
−
m,T and ρρρ

+
m,T are explicitly com-

putable, and are given by (see e.g [11, Proposition 3.12] for the general for-
mula)

ρρρ
h
m,T (v) =

C(m)

|Fh
m(v)|

(
eV+

m − ev

ev + eV−m

ev− eV−m

ev + eV+
m

) 1
2T
√

m2+1

; (72)

where C(m) is a normalisation constant such that∫ V+
m

V−m
ρρρ
+
m,T (v)+ρρρ

−
m,T (v)dv = 1.

Proposition 2.7 follows by setting Πm,T = ∑h ΠΠΠ
h
m,T and

ρm,T = ∑
h

ρρρ
h
m,T = ρρρ

−
m,T +ρρρ

+
m,T , (73)

where ρρρ
−
m,T and ρρρ

+
m,T are given by (72). �

Remark 4 is a consequence of (72) and the fact that

F+
m (v) = me−v(eV+

m − ev)(ev + eV−m ).

G Asymptotic of ∆∆∆(ε,m,T )

We now prove the statements in Proposition 2.8.

The limit as T → 0 By Lemma 2.14 in [6], as T → 0, Πm,T converges
weakly to µ ⊗ p, where µ is an invariant probability measure of the flow ϕ

generated by the average vector field

Fm(v) =
1
2

F+
m (v)+

1
2

F−m (v) =−2mssinh(v)

and
p =

1
2

δ+1 +
1
2

δ−1.

The point 0 is a globally asymptotically stable equilibrium of Fm, hence µ =
δ0. This entails

lim
T→0

∆∆∆(ε,m,T )=
∫

2(mcosh(v)−m−ε)dµ⊗ p= 2(mcosh(0)−m−ε)=−2ε.
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The limit as T →∞ From Equation (72), it is possible to prove that ΠΠΠ
+
m,T

and ΠΠΠ
−
m,T converge respectively to 1

2 δV+
m

and 1
2 δV−m as σ → 0. From that and

the fact that cosh(V+
m ) = cosh(V−m ) =

√
1+ 1

m2 , we deduce the result to be
proven.

The limit as m→∞ Set δ = 1
m and consider Xδ

t =Vδ t and uδ
t = uδ t . Note

that for fixed m > 0, (Xδ ,uδ ) and (V,u) have the same invariant probability
measures, which reduces here to ΠΠΠm,T . From Equation (28), one has

dXδ
t

dt
= 2

(
δuδ

t − sinh(Xδ
t )
)
.

Let also (xt)t≥0 be the solution of

dxt

dt
=−2sinh(xt). (74)

Hence, Xδ
t is a perturbation of xt when δ goes to 0, and Grönwall Lemma

implies that for all m≥ 1, all S > 0,

sup
x∈[V−m ,V+

m ]

sup
t∈[0,S]

|Xδ
t − xt | ≤ δSe

√
2S, (75)

where
√

2 comes from the fact that maxy∈[V−m ,V+
m ] sinh′(y) =

√
1+ 1

m2 ≤
√

2.

From (75), one can easily prove (see e.g. [6, Lemma A.5]) that ΠΠΠ
+
m,T +ΠΠΠ

−
m,T

converges to the unique invariant probability measure of the system (74), that
is the Dirac mass at 0. This entails the expected result.

The limit as m→ 0 For this limit, it is more convenient to use the system
in the polar coordinate. For (x1(0),x2(0)) 6=(0,0), we set ρt = ‖(x1(t),x2(t))‖
and θ(t) = x1(t)

ρt
. Then (ρt ,θt) is solution to

dρ

dt
= ρ(u(2θ −1)− ε)

dθ

dt
= 2uθ(1−θ)+m(1−2θ).

(76)

It is easily seen that θ does not depend on ρ and that

1
t

ln(ρt) =
1
t

ln(ρ0)+
1
t

∫ t

0
(u(s)(2θs−1)− ε)ds

Moreover, the point 1/2 is accessible for θ and satisfies the strong bracket
condition. Hence, (θ ,uuu) admits a unique stationary distribution µm on (0,1)×
{−1,+1} by Theorem 4.6 in [4], and

lim
t→∞

1
t

ln(ρt)= lim
t→∞

1
t

∫ t

0
(u(s)(2θs−1)− ε)ds=

∫
(u(2θ−1)µm(dθ ,du)−ε.

On the other hand, by Proposition 2.9,

lim
t→∞

1
t

ln(ρt) = ΛΛΛ(ε,m,T ) =
1
2

∆∆∆(ε,m,T )
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and thus
∆∆∆(ε,m,T ) = 2

∫
(u(2θ −1)µm(dθ ,du)−2ε.

To conclude, we prove that the integral term in the right hand side of the
above equation goes to 0 as m goes to 0. As for the case m→∞, if for m≥ 0,
we denote θ m the solution to

dθ m

dt
= 2uθ

m(1−θ
m)+m(1−2θ

m),

then θ m is a perturbation of θ 0 and we can prove that θ m
t converges to θ 0

t uni-
formly on finite time horizon and on the initial condition in [0,1]. Therefore,
weak limit points of (µm)m>0 for m→ 0 are invariant probability measure of
(θ 0,uuu). Since

dθ 0

dt
= 2uθ

0(1−θ
0),

the process (θ 0,uuu) has two trivial ergodic probability measures : δ0⊗π and
δ1⊗ π , where π = (1/2,1/2) is the stationary distribution of u. We claim
that there is no other ergodic measures for (θ 0,uuu). Let us first show how this
claim proves the result. For m > 0, let am = 2

∫
(u(2θ−1)µm(dθ ,du) and let

a be a limit point of (am)m>0: for some sequence (mk)k∈N converging to 0,

a = lim
k→∞

amk = lim
k→∞

2
∫
(u(2θ −1)µmk(dθ ,du)

Since (µmk)k∈N is a sequence of probability measures on the compact set
[0,1]×{−1,+1}, it is tight, and thus we have a subsequence mnk such that
µmnk

converge to some µ which is an invariant probability measure of (θ 0,uuu).
Since δ0⊗π and δ1⊗π are the only two ergodic probability measures, there
exists s ∈ [0,1] such that µ = sδ1⊗π +(1− s)δ0⊗π . Now,∫

(u(2θ −1)δ1⊗π(dθ ,du) =
1
2

1×1+
1
2
(−1)×1 = 0,

and similarly for
∫
(u(2θ−1)δ0⊗π(dθ ,du). Therefore,

∫
(u(2θ−1)µ(dθ ,du)=

0, hence

a= lim
k→∞

amnk
= lim

k→∞
2
∫
(u(2θ−1)µmnk

(dθ ,du)= 2
∫
(u(2θ−1)µ(dθ ,du)= 0

In other words, every limit point of (am) is equal to 0. Since am lives in the
compact set [−6,6], this proves that am converges, as m→ 0, to 0 and thus
that ∆∆∆(ε,m,T ) converges to 0.

It remains to prove the claim. Note that (0,1)×{−1,1} is invariant for
the process (θ 0,uuu). Moreover, every point in (0,1) is accessible from (0,1)
and satisfy the strong bracket condition, hence Theorem 1 in [3] implies that
if (θ 0,uuu) has an invariant measure on ν on (0,1)×{−1,1}, then ν is unique
and absolutely invariant with respect to the Lebesgue measure. Moreover,
the density functions ρ+ and ρ−, should be equal to

ρ
+(θ) = ρ

−(θ) =
C

2θ(1−θ)
exp
(
− 1

T

∫ 1
2θ ′(1−θ ′)

+
1

−2θ ′(1−θ ′)
dθ
′
)

=
C

2θ(1−θ)
.
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Here C would be a normalization constant such that
∫ 1

0 ρ++ρ− = 1. How-
ever, ρ+ and ρ− are clearly not integrable on (0,1), hence can not be normal-
ized to a probability measure. Hence, the process (θ 0,uuu) does not admit any
invariant probability measure on (0,1)×{−1,1} and the set of its ergodic
probability measures on [0,1]×{−1,1} reduces to δ0⊗π and δ1⊗π . This
shows the claim and concludes the proof.

H Stochastic Approximatively Periodic Environ-
ment
This section is devoted to the proof of Proposition 2.15. Let (µn

−,µ
n
+) be

a (ηn,T ) - SAPE for some sequence ηn converging to 0. We denote by
(V n,τnun) the associated process, and (V,τ,u) the process in the periodic
environment µ∞

− = µ∞
+ = δT .

We begin by an approximation Lemma.

Lemma H.1 For all S > 0, there exists C(S,T,m) such that for n large
enough, ∫ S

0
‖(V n

t ,u
n
t ,τ

n
t )− (Vt ,ut ,τt)‖dt ≤C(S,T,m)ηn.

Moreover,
sup

t∈[0,T ]
|V n

t −Vt | ≤C(S,T,m)ηn.

Proof First, let us prove that for n large enough,

∫ S

0
|un

t −ut |dt ≤ 2
(⌊

S
T

⌋
+1
)2

ηn.

Since un,u ∈ {±1}, one has |un
t − ut | = 21lun

t 6=ut . Let k =
⌊ S

T

⌋
+ 1. Then,

S≤ kT , and if ηn≤ 1, both processes un and u switches values at most k times
on the interval [0,S]. Now, assume that ηn ≤ T

2k+1 . Then, all the intervals
[ j(T −ηn), j(T +ηn)], for j = 1, . . . ,n are disjoints. Moreover, un

t and ut can
only be different if t belongs to one of this interval. Since the j-interval is of
size 2 jηn, we conclude that

∫ S

0
|un

t −ut |dt ≤ 2

(
k

∑
j=1

2 j

)
ηn ≤ 2k2

ηn.

Now, since

V n
t −Vt =

∫ t

0
2(un

s −us +msinh(Vs)−msinh(V n
s )) ds,

Gronwall Lemma implies that, for all t ∈ [0,S], for some constant C(S,m);

|V n
t −Vt | ≤C(S,m)

∫ S

0
|un

s −us|ds≤ 2C(S,m)k2
ηn.

43



Finally, using that fact that, at some time t ≤ S, the difference between the
number of jumps of un and those of u before time t is at most one, one can
prove that for some constant C(T ),∫ S

0
|τn

t − τt |dt ≤C(T )ηn.

�

For a starting point (v,h, t0) ∈ R×{±1}× [0,T ), let φs(v,h, t0) = (Vs,us,τs)
where (Vs,us,τs) is the process in periodic environment at time s, starting
from (v,h, t0). We define the measure Πp on R×{±1}× [0,T ) by

Π
p(·) = 1

2T

∫ 2T

0
1lφs(Ve,1,0)∈· ds,

where Ve is the unique equilibrium of the map Φ = V−T ◦V+
T (see Appendix

B). Elementary computations prove that Πp is the unique stationary distri-
bution of (V,u,τ) which furthermore satisfy that for all bounded continuous
function g, for all starting point (v,h, t0),

lim
t→∞

1
t

∫ t

0
g(φs(v,h, t0))ds = Π

pg. (77)

Moreover, for g(v,h, t) = 2(mcosh(v)−m−ε), one has by definition Πpg =
∆(ε,m,T ). Hence, Proposition 2.15 is a consequence of the following lemma.

Lemma H.2 Let Πn the unique stationary distribution of (V n,un,τn) granted
by Proposition 2.11. Then, Πn converges weakly to Πp, ie for all bounded
continuous functions f , limΠn f = Πp f .

Proof The sequence (Πn)n≥0 is tight since for all n, Πn is a probability
distribution on [V−m ,V+

m ]×{±1}× [0,T +ηn)⊂ [V−m ,V+
m ]×{±1}× [0,K] for

some K large enough. Let ν be a weak - limit point of (Πn)n≥0, ie for some
sequence (nk)k≥0, Πnk converges weakly to ν . Without loss of generality, we
assume that Πn converges to ν . The proof of the lemma is complete if we
can prove that ν = Πg. We claim that, for all S > 0, for all bounded Lipschitz
function f

1
S

∫ S

0
ν ( f ◦φs) ds = ν f .

Combining this with (77) and dominated convergence yields Πp f = ν f for
all bounded Lipschitz function f , which implies that ν = Πp. It only re-
mains to prove the claim. Let S > 0 and f bounded Lipschitz with Lipschitz
constant equal to C. For all n≥ 0,∣∣∣∣ν(1

S

∫ S

0
f ◦φs ds

)
−ν f

∣∣∣∣≤ ∣∣∣∣ν(1
S

∫ S

0
f ◦φs ds

)
−Π

n
(

1
S

∫ S

0
f ◦φs ds

)∣∣∣∣
+

∣∣∣∣Πn
(

1
S

∫ S

0
f ◦φs ds

)
−Π

n
(

1
S

∫ S

0
Pn

s f ds
)∣∣∣∣+ |Πn f −ν f |

where Pn
s f (v,u, t) =E(v,u,t) [ f (V n

s ,u
n
s ,τ

n
s )] and where we have used the invari-

ance of Πn with respect to Pn
s , ie ΠnPn

s = Πn. It is easily checked that the
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function
∫ S

0 f ◦ φs ds is continuous and bounded. Hence, by definition of ν ,
the first and the third terms of the above right hand side goes to 0 as n goes to
infinity. Using Lemma H.1, the second term is bounded, for n large enough,
by∣∣∣∣Πn

(
1
S

∫ S

0
f ◦φs ds

)
−Π

n
(

1
S

∫ S

0
Pn

s f ds
)∣∣∣∣≤ 1

S
C sup

(v,u,t)
E(v,u,t)

[∫ S

0
‖(Vs,us,τs)− (V n

s ,u
n
s ,τ

n
s )‖
]

≤ C(S,T,m)C
S

ηn

Hence, the second term also goes to 0, and the proof is over. �

I Density dependent model

The deterministic case

Proposition I.1 If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=
Σ(ε,m,T ) is stable, then the solutions of D(ε,α,m,T ) tend to 0.
Proof. We denote by (x1(t,x10 ,x20),x2(t,x10 ,x20)) the solutions of D(ε,α,m,T )
and by (ξ1(t,ξ10 ,ξ20),ξ2(t,ξ10 ,ξ20)) the solutions of Σ(ε,m,T ). Let (x10 ,x20)
be any initial condition for D and choose (ξ10 ,ξ20) such that:

xi0 < ξi0 i = 1,2

then, for every t one has :

xi(t,x10 ,x20)< ξi(t,ξ10 ,ξ20) i = 1,2

Assume this is not the case ; let t∗ be the first time for which one has x∗i =
xi(t,x10 ,x20) = ξi(t,ξ10 ,ξ20) for at least one of the two indices ; assume for
the shake of definitiveness that this index is 1 ; one has:

dx1(t∗)
dt

=(±1−ε−m)x∗1−αx∗
2

1 +mx2(t∗)< (±1−ε−m)x∗1+mξ2(t∗)=
dξ1(t∗)

dt

The inequality dx1(t∗)
dt < dξ1(t∗)

dt contradicts the fact that t∗ is the first time for
which x1(t,x10 ,x20)= ξ1(t,ξ10 ,ξ20). Since Σ(ε,m,T ) is stable ξi(t,ξ10 ,ξ20) (i=
1,2) tends to 0 and also xi(t,x10 ,x20) (i = 1,2).
�

Proposition I.2 If the parameters (ε,m,T ) are such that the system D(ε,0,m,T )=
Σ(ε,m,T ) is unstable, then the system D(ε,α,m,T ) is uniformly persistant.
In order to prove proposition I.2 we need two lemmas. Let :

U = ln(x1x2) V = ln(x1/x2)

In the (U,V ) variables the system D is :

D(ε,α,m,T )


dU
dt

= 2(mcosh(V )−m− ε)−2αeU/2cosh(V/2)

dV
dt

= 2(u(t)−msinh(V ))−2αeU/2sinh(V/2)
(78)
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which is the system S(ε,m,T ) perturbed by the term :

−2αeU/2
(

cosh(V )
sinh(V )

)
(79)

It is easily seen that the solutions of the system D enters in finite time the
strip R× [V−m ,V+

m ] and thus persistance of D is equivalent to the fact that for
any solution liminft→+∞ U(t)>−∞.

Denote by :

(U(t,U0,V0, t0,S),F(t,U0,V0, t0),S) (resp.(U(t,U0,V0, t0,D),F(t,U0,V0, t0),D))

the solution of S (resp. D) with initial condition (U0,V0) at time t0 and simply
by (U(t,D),V (t,D)) (resp. (U(t,S),V (t,S)) the solution of D (resp. S) when
the reference to the initial condition is not needed.

Lemma I.3 Assume that S(ε,m,T ) is unstable. Let a > 0. Then there is
θ > 0 such that :

∀V0 ∈ [V−m ,V+
m ],∀U0, ∀ t0 : U(t0 +θ ,U0,V0, t0,S)≥U0 +a

Proof: Fix some a > 0. Since S is unstable, for each U0,V0, t0 such a θ exists
; it follows from the compactness of [V−m ,V+

m ], the periodicity of S and the
property U(t,U0,V0, t0) =U0 +U(t,0,V0, t0) that a universal θ does exist. �

Lemma I.4 For any δ > 0 there exists U such that :{
maxt≤t∗U(t + t0,U0,V0, t0,D)≤U

}
=⇒ ···

· · · |U(t∗+ t0,U0,V0, t0,D)−U(t∗+ t0,U0,V0, t0,S)| ≤ t∗δ (80)

Proof. Since the perturbation (79) tends to 0 when U tends to−∞ uniformly
with respect to V ∈ [V−m ,V+

m ] this is easily deduced from Gronwall inequality.

Proof of the proposition I.2 Fix some a > 0 and let θ be given by lemma I.3
and U given by lemma I.4 such that δ = a

2θ
. The proof goes by contradiction.

Assume that:
liminf
t→+∞

U(t,D) =−∞

then there exist (see fig. 22 ) t1 and t2 such that :

U >U(t1,D)+a >U(t1,D)>U(t1,D)− θ

π
=U(t2,D) (81)

where

−π = min
U≤U ,V∈[V−m ,V+

m ]
2(mcosh(V )−m− ε)−2αeU/2cosh(V/2)<−2ε

Since U(t,D) is continuous, from the intermediate value theorem there is
some τ > t1 such that :

t ∈ [τ, t2]⇒U(t,D)≤U(t1) (82)

and since π is the minimum of the velocity of U(t,D) it takes a duration
t2− τ greater than θ = π

θ

π
to cover the distance from U(τ,D) to U(t2).
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U

U(t1, D) + a

U(t1, D)

U(t2, D) = U(t1, D) −
θ
π

t1 t2
τ τ + θ

t

U

Figure 22: Illustration of the proof of proposition I.2

• From lemma I.3 :

U(τ +θ ,U(t1,D),V (τ,D),τ,S)>U(t1,D)+a

(red curve of fig 22).

• From lemma I.4:

|U(τ+θ ,U(t1,D),V (τ,D)),τ,S)−U(τ+θ ,U(t1,D),V (τ,D),τ,D)|< a
2

These points imply U(τ +θ ,U(t1,D),V (τ,D),τ,D)≥U(t1)+
a
2

which is a
contradiction with (82).�

The stochastic case

We now prove Proposition 3.2 thanks to results in [6]. Note that the vector
fields in the right hand side of DDD(ε,α,m,σ−,σ+) satisfy conditions E1, E2,
E3, E4 and E5 in [6, Section 4] and admit a positively invariant compact
set K containing 0. Thus, Proposition 2.9, [6, Theorem 4.3] (for the case
Λ(ε,m,T )< 0) and [6, Theorem 4.12] (for the case Λ(ε,m,T )> 0) and [24,
Theorem 3.8] (for the case Λ(ε,m,T ) = 0) conclude the proof of proposition
3.2.

J Connection between ∆(ε,m,T ) and σ(ε,m,T ).
Let (x1(t),x2(t)) be any solution of Σ(ε,m,T ) ; let U(t)= ln(x1(t))+ln(x2(t))=
ln(x1(t)x2(t)) and V (t) = ln(x1(t))− ln(x2(t)) = ln(x1(t)/x2(t)).Then V (t) is
a solution of F(m,T ) and since the periodic solution of F(m,T ) is globally
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asymptotically stable V (t) converges to Pm,T (t), thus :

lim
n→+∞

U((n+1)2T )−U(n2T ) = · · ·

lim
n→+∞

∫ (n+1)2T

n2T
2(mcosh(V (s))−m− ε)ds = · · ·∫ 2T

0
2(mcosh(Pm,T (s))−m− ε)ds = 2T ∆(ε,m,T )

(83)
and hence :

∆(ε,m,T ) =
1

2T
lim

n→+∞
ln
(

x1((n+1)2T )x2((n+1)2T )
x1(n2T )x2(n2T )

)
(84)

Now, choose (x1(0),x2(0)) = Z1 where Z1 is the positive eigenvector of
M(ε,m,T ) associated with λ1 (note that M(ε,m,T ) has positive entries).
Then, for all n≥ 0, x1((n+1)2T )= λ1x1(n2T ) and x2((n+1)2T )= λ1x2(n2T ),
thus

x1((n+1)2T )x2((n+1)2T )
x1(n2T )x2(n2T )

= λ
2
1

and thus ∆(ε,m,T ) = 1
T ln(λ1), which we wanted to prove.

We can also prove this equality directly from the explicit formulas of ∆

and λ1. The value of λ1 given by Maple is :

λ1 =
e−2(m+ε)T

2A2b2

(
m2b4 +2b2 +m2 +

√
C1

)
with

C1 = b8m4 +4b6m2−2b4m4−8b4m2 +4b2m2 +m4

ln(λ1) = ln
m2b4 +2b2 +m2 +

√
C1

2A2b2 −2(m+ ε)T

which is the value of ∆ given by the proposition (2.3) since one has :

C1 = m2(b2−1)2(m2b4 +2m2b2 +4b2 +m2)

.

Remark 7 On figure 23 one sees on the left the graphs of ∆(ε,mT ) (in blue)
and 2ln(λ1(ε,m,T )) (in red plotted) in slightly translated axes and, on the
right, in the same axes. The perfect superposition is not surprising since
we just proved the equality of ∆(ε,m,T ) with 2ln(λ1(ε,m,T )). Nevertheless
it is interesting to notice that the graphs of ∆(ε,m,T ) and 2ln(λ1(ε,m,T ))
are obtained using completely different means of simulation. The first is ob-
tained by simulation of a differential equation using a discrete approxima-
tion scheme (we integrate from some initial condition, wait until the periodic
regime is attained and, then, compute ∆) and the second using a calculus
software able to compute formally the eigenvalues of a matrix depending on
parameters. This indicates that our simulations of trajectories have a satis-
factory precision.
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Δ(ε, m, T )

2 ln(λ1(ε, m, T ))

m
m m

Figure 23: Comparison between m 7→ ∆(ε,m,T ) and m 7→ λ1(ε,m,T ). ε = 0.1,
T = 3.
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