
HAL Id: hal-03453551
https://hal.science/hal-03453551

Submitted on 28 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typology of the differences Between Model-Based
System Engineering (MBSE) and Safety Assessment

(MBSA) models: Analysis of a Reference System
Julien Vidalie, Michel Batteux, Jean-Yves Choley, Faïda Mhenni,

Mohamed-Sami Kendel

To cite this version:
Julien Vidalie, Michel Batteux, Jean-Yves Choley, Faïda Mhenni, Mohamed-Sami Kendel. Typology
of the differences Between Model-Based System Engineering (MBSE) and Safety Assessment (MBSA)
models: Analysis of a Reference System. Congrès Lambda Mu 22 “ Les risques au cœur des transitions
” (e-congrès) - 22e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la
Maîtrise des Risques, Oct 2020, Le Havre (e-congrès), France. �hal-03453551�

https://hal.science/hal-03453551
https://hal.archives-ouvertes.fr

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Typology of the differences Between Model-Based

System Engineering (MBSE) and Safety

Assessment (MBSA) models: Analysis of a

Reference System

Typologie des différences entre modèles

d’Ingénièrie Système Basée sur les Modèles

(MBSE) et de Sûreté de fonctionnement (MBSA) :

Analyse d’un système de Référence

Julien VIDALIE

Quartz Laboratoire

IRT SystemX

Palaiseau, France

julien.vidalie@irt-

systemx.fr

Michel BATTEUX

IRT SystemX

Palaiseau, France

Jean-Yves CHOLEY

Quartz Laboratoire

Supméca

Saint-Ouen, France

Faïda MHENNI

Quartz Laboratoire

Supméca

Saint-Ouen, France

Mohamed-Sami KENDEL

Quartz Laboratoire

Supméca

Saint-Ouen, France

Abstract—With the increasing complexity of systems,

engineers have to design an increasing number of models to

perform simulation of the product. In this work we intend to

compare the system engineering and safety models of a system,

and establish a typology of the differences between those models.

Résumé—Avec l'explosion de la complexité des systèmes, les

ingénieurs doivent concevoir un grand nombre de modèles afin

de les représenter et simuler. Dans cet article, nous comparons

les modèles d'ingénierie système et de sûreté de fonctionnement

d’un système et établissons une typologie des différences entre

ces modèles.

Keywords—MBSE, MBSA, Model consistency, differences

typology, AltaRica 3.0, SysML

I. INTRODUCTION

Developing complex systems is a multidisciplinary
process that requires many different models to be used to
represent and simulate one same system for different
purposes. As those different models are made by different
actors, it is obvious that there is a high risk that they present
some inconsistencies. In this context there is a need for
verification of consistency of the MBSA model with the
MBSE model it is derived from. System Engineering and
Safety Assessment are two disciplines that are deeply
correlated. The system engineer and safety analyst need to
work together to prove that the system is safe, especially in
industrial fields that require safety certification.

This paper aims at providing a typology of differences that
can occur between a Model Based System Engineering
(MBSE) model and a Model Based Safety Assessment
(MBSA) model. It is a basis for further work centered on

MBSE/MBSA synchronization. This typology does sort
differences between models based on their causes and allows
engineers to get a better understanding over what should or
shouldn’t be corrected in the models. This is the key for a
future formal definition of what is an inconsistency.

To establish this typology we modeled a reference system,
a landing gear study case [5], from both the MBSE and MBSA
point of view, and analyzed the differences that occurred
between those models.

The remainder of the paper is organized as follows.
Section II describes the landing gear study case that we used
for this study. Section III presents the modeling of the system
in both MBSE and MBSA points of view. Section IV presents
some previous work about model synchronization,
comparison of the models and foundations of our typology of
differences. Finally the conclusion is given in the last section,
along with some perspectives for future work.

II. THE LANDING GEAR STUDY CASE

A. Study case

The landing gear study case was described in [5] and
served as a benchmark for techniques and tools for the
assertion of system behavior. This system is a standard aircraft
landing gear composed of three gears (front, rear-left and rear-
right). It describes the system pilot interface, its mechanical
and hydraulic parts, and its digital control part.

This system is also relevant to a MBSA study, since
aeronautic systems are required to be compliant with CS25
regulations, an aeronautic recommended practice describing

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

safety analyses that are authorized to be completed on aircraft
equipment for certification is the ARP4761a [7].

Fig. 1 : Global Architecture of the system

This study case will also be used in further work for the
definition of a mathematical framework around the S2ML
language [1], which will be referred to in the IVth section of
this paper, and for MBSE/MBSA synchronization.

For this work, two models of this system were created, the
first one aiming at modeling the system architecture, made
with the Cameo System Modeler tool with the SysML
language [6], and the second one is a safety analysis view that
was created using the OpenAltaRica tool with the AltaRica 3.0
[2] modeling language. To comply with the aeronautic
certification requirement, these models have to be separated
and to be made by separated people. This allows safety
analysis to independently verify the compliance of the
architecture described in the MBSE model. In this work we
reproduce a realistic workflow, with models written by two
different people and did not eliminate differences before the
final review. By this protocol we want our workflow to present
realistic differences, and we want not to avoid inconsistencies
by not having independency between both models. The
creation of the MBSA model was based on the MBSE model,
and we aim at detecting differences that occurred in this
creation.

B. Introduction to the Landing Gear System

As depicted in Fig. 1, the system is composed of three
main parts :

1) The Pilot Interface

This part allows the system to communicate with the pilot.

It is composed of a Handle which is used by the pilot to order

the system to be up or down. This handle communicates its

position to the digital part.

Three lights indicate to the pilot the status of all three

gears using the following code:

 Green light: “Gear locked down”

 Orange light: “Gear maneuvering”

 Red light: “Landing gear system failure”

 No light: “Gear locked up”

2) The Mechanical and Hydraulical Parts

The structure of the Hydraulic part is described in Fig. 2.
The system is composed of three landing sets (front, rear-left

and rear-right). Each set has a box (containing all the

components, to be fitted in the aircraft landing gear well),

door which is opened and closed by a cylinder and a landing

gear that is extended and retracted by another cylinder.

The hydraulic power is provided to the cylinders from the

aircraft hydraulic circuit by a set of electro-valves:

 One general electro-valve supplies all the system
from the aircraft hydraulic circuit

 One electro-valve provides pressure to the portion of
the system related to door opening

 One electro-valve provides pressure to the portion of
the system related to door closing

 One electro-valve provides pressure to the portion of
the system related to gear extending

 One electro-valve provides pressure to the portion of
the system related to gear retracting

Each valve is controlled by electrical order from the digital
part.

Fig. 2. : Architecture of the hydraulic part [5]

3) The Digital Part
 The digital part is composed of two redondant computing
modules that run the same control software. It is used to
receive and analyze data from the system sensors, and to
command the system’s components.

III. SYSTEM MODELING

A. MBSE modeling

1) Methodology
In our study, the MBSE modeling was realized following

the SysML methodology described in [8]. This methodology
first focuses on a black box analysis of the system describing
requirements, system context, lifecycle and operational
scenarios. Then some white box views of the system represent
its functional and physical structure in addition to its behavior.

For synchronization of the MBSA model we only focus on
the white box views of the system. In fact, our interest is about
the structural and behavioral features of our models.

2) Modeling
The system architecture is modeled around its 3 main

subsystems which can be observed in the Block Definition
Diagram (BDD) shown in Fig. 3. This BDD shows the
system’s breakdown structure. Arrows in the diagram
represents composition links, meaning that one block (or

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

system) is composed of the components that arrows are
pointing to. This view of the system shows us its structure but
does not define its architecture for we lack connections and
flows between the components, which are specified in the
Internal Block Diagram (IBD) in Fig. 5. In this IBD, we can
observe the relations between components. The names of the
connections between them give us information over their type
of flows. Finally they can also contain typed variables. It is
important to note that this model does not intend to simulate
our system but rather to give us a communication tool over it,
and means for traceability. Therefore naming on this model is
of high importance and carries a lot of information compared
to usual simulation models where the content of variables,
flows, and other quantitative values are the most important
information carried by the model.

The two views we previously described are the ones that

will be interesting in the context of MBSE/MBSA

synchronization for the scope of this work. In further work

we will also investigate the state machines diagrams and

sequence diagrams that describe the functional behavior of

the system.

B. MBSA Modeling

1) Methodology

The MBSA modeling of a system can be part of its safety

analysis and is a method that is accepted by authorities as a

safety analysis method with its integration in the protocol

described in ARP 4761a [7] regulations.
 Although most safety analysis nowadays is carried
through analysis such as Fault Tree Analysis (FTA), MBSA
modeling is a good tool for safety analysis thanks to its high
expressivity. It is easier to understand and to communicate

with this model, making it easier for the safety analyst to
shows problems in the architecture to the system engineer.

The MBSA model that we made for this work was created

using the OpenAltaRica platform, based on the AltaRica 3.0

modeling language. It represents the system through its

structure and dysfunctional behavior. Unlike the MBSE tool

SysML, which is a graphical notation, AltaRica is a formal

language, meaning a textual syntax and a semantic, even

though some AltaRica tools such as Simfia provide graphical

interface to design parts of the AltaRica model.

2) Modeling

The MBSA modeling was achieved using the article [5]

presenting the system as a reference document and based on

the MBSE modeling it aims at verifying. We here considered

the MBSE model as a specification document of the system

and expect to verify its compliance to safety requirements

through MBSA modeling. Except for a few differences which

will be talked over in section IV, the model has a very similar

structure to the one presented in the SysML IBD and BDD in

Fig. 3 and Fig. 5 respectively.

Fig. 4 : Class NonRepairableComponent in AltaRica 3.0

In AltaRica 3.0, we represent the system by a main

“block” which is a container that will be considered and

domain nrpState {OK, KO}

class NonRepairableComponent

 nrpState s (init = OK);

 parameter Real lambda = 1.0e-5;

 event failure (delay = exponential (lambda));

 transition

 failure: s == OK -> s := KO;

end

Fig. 3 : Product Breakdown Structure of the Landing Gear System (BDD)

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

simulated by our tool. The components of our system are

described in classes that are instantiated in the main block.

Fig. 7 describes the main block representing the system and

Fig. 8 and Fig. 9 describes the class ElectroValve and

Cylinder which are components of the landing gear system.

Instances of those components are linked in the system to

allow for retraction and extension of the landing gear with

assertions such as the one presented in Fig. 6, this allows for

the input of the cylinder to be at all time equal to the value of

the output of the electrovalve.

digitalPart.CPIOM1.input:=

 pilotInterface.udHandle.output;

Fig. 6 : Example of assertion in AltaRica

 All components in our system are extending the

NonReparaibleComponent class presented in Fig. 4. This

class describes the state machine for failure of a component.
Those events are characterized by delays. This allows the
execution to compute the time after which the transition shall
be fired. Delays are described using probability distributions
such as, in our study case, an exponential distribution. They
also allow for computation of probability of event happening
for the generation of fault trees in the case of static systems.

 From this general class we derive all components of the
system, specializing this class by adding new variables that are
ports of our components and assertions that represents
connections between these variables. As an example Fig. 6
represents such a connection. It means that the output value of

the udHandle component of the pilot interface is given to the
input of the CPIOM1 component of the digital part.

This means that during the execution, the value of the

output of the udHandle component, which is the handle used

by the pilot to actuate the landing gear, will be given to the

input of the first CPIOM unit of the digital part. Assertions

can also be used to give values to variables based on

component state or other information.

The interest of having this formal representation of the

system rather than using a notation such as SysML is that it

allows for formal computation over the system safety. Thanks

to this model we are able to compute minimal cut sets of the

system with their probabilities. We can also execute

stochastic simulation of the system with failures, and identify

propagation paths of the failures. This wouldn’t be possible

if there was any ambiguity in the representation of the system.

Whereas for human communication with the MBSE model

this isn’t an issue.

block LandingSys

 PilotInterface pilotInterface;

 MechaHydraulicalPart mechahydraulicPart;

 DigitalPart digitalPart;

 assertion

 digitalPart.CPIOM1.input :=

 pilotInterface.udHandle.output;

 […]

end

Fig. 7 : Block Landing System in AltaRica 3.0 (some assertion were hidden

for clarity)

Fig. 5 : System Physical Architecture (IBD)

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

class ElectroValve

 extends NonRepairableComponent

 (lambda = 1.0e-6);

 Boolean input, output, order (reset = false);

 assertion

 output := if s == OK then input and order

 else false;

end

Fig. 8 : Class ElectroValve in AltaRica 3.0

class Cylinder

 extends RepairableComponent;

 Integer input (reset = 0);

 Boolean output (reset = 0);

 assertion

 output := if s == OK then input else false;

end

Fig. 9 : Class Cylinder in AltaRica 3.0

IV. TYPOLOGY OF DIFFERENCES BETWEEN MBSE AND MBSA

 MBSE and MBSA are two important parts of the design
of the system, but as we explained it before, they serve two
different purposes. Therefore, differences occur between
those models, should it be for lack of communication between
the teams or for more fundamental reasons linked to the nature
of those models. These differences could lead to models
presenting two distinct and different systems instead of
representing the same model. Synchronization between
MBSE and MBSA models is thus necessary to ensure
consistency. Work is in progress to create consistency
methods that will be described in IV.A. We think that in order
to improve upon this work, there is a need for a formal
definition of inconsistencies. In order to prepare this definition
we established the typology of differences that is described in
IV.B.

A. Existing methods for MBSE/MBSA synchronisation

As synchronization between heterogeneous models is an
important concern for researchers in the modeling field, some
tools were already developed to help model synchronization,
even in the case of MBSE/MBSA synchronization.

In [9], the authors suggest a synchronization methodology
based on three phases: Abstraction, Comparison and
Concretization, illustrated in Fig. 10. The different models are
first translated to intermediary models written in a same
formalism that will allow comparison, this is the abstraction
phase. Those intermediary models are then compared to detect
the differences that exist between them, this is comparison.
Finally the source models are annotated with the differences
that are detected, and corrective actions are proposed to the
designers, this is concretization.

 The SmartSync synchronization framework [3] does
provide a methodology and tools for synchronization between
MBSE and MBSA derived from this methodology. This is
achieved by the abstraction of both models to a common
formalism, the S2ML language [1], then computational
comparison of the two abstracted models and finally a
concretization step, where inconsistencies are taken into
account and the models are adjusted to match each other.

The work proposed in [4] has a similar perspective as the ones
in [9] proposal. It focuses on the topological aspect of models,
and performs the comparison relying on graph theory after
abstracting the different models into graphs. This
methodology carries a flat view of the model. This
methodology is to be applied by an “interface expert” that
communicates with specific model designers.

Fig. 10 : Model Synchronization approach [9]

The MOISE project provided the system engineer and
safety analyst with a method to create “synchronisation
points” that are linked on one side to elements of the MBSE
model and to elements of the MBSA model on the other side.
This allows the users to review consistency by reviewing each
consistency point and attributing it a status and a rationale to
justify that elements of MBSE and MBSA models represent
the same component.

All those solutions highlight the need for an intermediate
representation of the models that enables the comparison.
However we feel that there is still a need for a typology and a
formal definition of the inconsistencies between MBSE and
MBSA models.

B. Comparison of models

In order to identify the types of differences, we reviewed
both MBSE and MBSA models together and searched for all
differences that occurred between them. We will not cite all of
them here because some are the same on different elements of
the model but we will list all different ones.

The first differences that occur when reviewing the models
are the names of the elements of the model. The names can
vary between both models, for example the handle from the
pilot interface is called “Handle” in the MBSE model and
“udHandle” in the MBSA model. Naming differences are
linked to the system engineer and the safety analyst calling the
same elements in different ways, which can happen because
of their different technical backgrounds, or their naming
practices (upper/lower cases, shortcuts…). Other naming
inconsistencies may come from the naming rules (that can be
either restrictions or only recommendations) in both tools. For
example the pilot interface subsystem is called “Pilot
interface” in the MBSE model and “pilotInterface” in the
AltaRica 3.0 model, this difference is caused by the
differences of uses of the two models: AltaRica 3.0, as a
formal modeling language, is used to compute reliability or
safety indicators, thus objects shall be represented in one
word; whereas SysML is used to declare and communicate
and as a consequence, there are no restrictions on naming
objects.

It also happens that some elements of both models can
sometimes not be named, whereas their counterpart in the
other model is. Assertions in AltaRica 3.0 are unnamed, they
serve a pure purpose of simulation, defining rules for the
calculation of variables values. On the contrary connections in
the SysML model are sometimes named using the type of flow
or actions they convey, when the ports they connect are often
unnamed by the engineer and automatically named p1, p2,
p3… by the modeler. As the previous one, this difference is
also caused by the differences of uses of the two models and
by the modeling habits of both engineers.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Most variables in the AltaRica model are typed with
discrete values, this is explained by the fact that we are mainly
interested in knowing whether they are nominal or
dysfunctional and not by their accurate values. The system
engineer and the safety analyst do not have the same point of
view on the system. Therefore they do not represent system
variables in the same way. Those variables type are sometimes
not affected to the ports in the SysML model but to the
connections, depending on the engineer modeling habits.
Because the system engineer wants to prove that the system
answers requirements that can be linked to those values, so
they are usually typed as their physical unit.

We also observe different structural differences between
our models.

The first one is that some subsystems are specified at
different levels of abstraction. For example, the arborescence
for the electro-valve that brings hydraulic pressure to the door
extension cylinders is “Landing gear system\mecahydraulic
part\Hydraulic part\Open door Electro-Valve” in the MBSE
model and “LandingSys\mechahydraulicPart\hydraulicSys\
DoorHydraulicSys\extensionDoorElectroValve”. Although
the naming differs, subsystem levels between those paths
match apart for the “DoorHydraulicSys” level in the MBSA
model that does not match any subsystem in the MBSE model.
This originates from the Safety analyst regrouping parts in a
different way, which may be due to his wish to only consider
failure of a group of parts rather than every unique part, and it
could also happen that the MBSA model only specified
“DoorHydraulicSys” without modeling the electro-valve
inside itSome components have also been specified at a
different place of the Product Breakdown Structure. This is the
case of the cylinders in our comparison. The system engineer
considered them to be part of the hydraulic set of parts,
whereas the safety analyst did put them in the landing sets
along with the gears/doors they are connected to. Such a
difference could be caused either by a different point of view
over the system as it is here, or by a modeling error.

Finally, in the Internal Block Diagram we observe some
connections to the outside of the system that are not
considered in the AltaRica model, for example the “Electric
Power” input, this is due to the need for the system engineer
to represent all interactions within the system and with its
environment. However, even though this connection has a real
impact on the system, it was not considered relevant for safety
analysis of the landing gear system and thus not modeled with
AltaRica. Such a difference could be either considered a
modeling error or not depending on whether that connection
has an impact or not on safety analysis.

We note that although it is not the case in our models, some
connections could have been placed between ports that do not
necessarily exist in the MBSE or MBSA representations of the
system. This could either occur by modeling error, or because
those values are not relevant to one or the other modeling
intent.

C. Typology of differences

From this comparison we deduce three main types of
differences in our model that are in fact related to the cause of
the differences between the models. Some of those differences
are caused by modeling errors and lead to the models
describing different systems, those are inconsistencies, but we
also note differences that are due to modeling practices and
tools.

The first type of differences we encountered is related to
differences that are caused by the different modeling tools and
practices. Examples of this are different naming rules or
connections between ports or assertions that relate variables
carrying names in different ways. This type of differences
could be handled by modeling practices or rules in certain
cases, for example the implementation of naming rules in
SysML similar to the ones that exist in other modeling
languages. It could also be taken into account in the
comparison by not taking into account names that have no
counterpart, or by cleverly comparing them, for example in
our case, comparing connections names in SysML to variables
names in AltaRica.

Fig. 11 : Typology of differences associated to examples from VI.B

The second type of differences that we denote are
differences linked to modeling intent. This is the case of the
difference in abstraction that could occur between both
modeling as we showed it with the electro-valve, or in the case
of the different value types that are observed. These
differences are necessary for both the system engineer and
safety analyst to work correctly. Their existence is the reason
for having two separate models rather than modeling all
information in one global model.

Our third type of differences are the ones caused by
modeling errors. The aim of model synchronization is to
eliminate those differences. They can be different naming,
wrong values, incorrect links between components, etc. These
inconsistencies will probably be more difficult to recognize
from the second type of differences (modeling intent) than the
first (modeling practices and tools).

We also raise another interesting way to classify
differences. We encountered differences between the models
that were either related to a particular element of the system,
such as a naming difference or a variable type difference, or
differences that were related to the structure of the model, such
as abstraction differences, different placement of an element
in the Product Breakdown Structure, or wrong connections
between component ports/variables. These two kinds of
differences are also interesting because we intuit that they
should translate very differently in a mathematical framework
around the models.

Type Observed differences

Due to Modeling tools
and Practices

Different naming rules

Different name meaning

No naming counterpart

Different abstractions of
subsystems

Due to Modeling
Intent

Different variable types

Different model
arborescence

Different
interactions/connections in
and with outside the system

Due to Modeling
Errors

Wrong model arborescence

Wrong Variable Values/Types

Wrong connections between
system components

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

V. CONCLUSIONS AND PERSPECTIVES

 Since system engineering and safety analysis are serving
different purposes, they need to be using two different models
and two different formalisms. This results in a risk of
inconsistency between those models.

 In this paper, we proposed a typology of the differences
that may exist between MBSE and MBSA models. This is
made possible by MBSA and MBSE modeling of a reference
system, and analyzing the differences noticed between the two
models.

 This typology shows that differences can be sorted by their
causes. These causes are the use of different modeling tools
and practices, different modeling intents, and finally modeling
errors. We think that differences due to modeling intents and
standards are important to the models since they are the reason
for two models being used instead of one, and they should be
preserved. Whereas inconsistencies due to modeling errors
should be eliminated from the model, and differences due to
different modeling tools and practices should be reduced as
much as possible by unifying naming practices for example.

 On the basis of this typology, we want to write a formal
definition of what is an inconsistency between MBSE and
MBSA models. This will be helpful in the formalization of a
consistency assessment method and model reconciliation. We
think that reconciliation requires to develop strategies to
eliminate unacceptable inconsistencies, i.e. ones caused by
modeling errors, and reduce other differences to an acceptable
threshold.

 Moreover, in further work, we believe that the
formalization of a mathematical framework supporting those
models will help us with consistency assessment, and
therefore we intend in formalizing the S2ML language used in
the SmartSync methodology with the category theory
formalism, to allow better comparison between models, and
easier translation from SysML and AltaRica to S2ML.

ACKNOWLEDGMENTS

The authors want to thank the S2C project at IRT SystemX
and IRT Saint-Exupéry and all its industrial and academic
partners for the funding of this research and the trust they give
us.

REFERENCES

[1] M. Batteux, T. Prosvirnova, and A. Rauzy. “From Models of Structures
to Structures of Models”. In IEEE International Symposium on
Systems Engineering (ISSE 2018). Roma, Italy. October, 2018.

[2] M. Batteux, T. Prosvirnova, and A. Rauzy. “AltaRica 3.0 in 10
Modeling Patterns”. In International Journal of Critical Computer-
Based Systems. Inderscience Publishers. Vol. 9, Num. 1–2, pp 133–
165, 2019

[3] M. Batteux, J.Y. Choley, F. Mhenni, T. Prosvirnova, and A. Rauzy.
“Synchronization of System Architecture and Safety Models : a Proof
of Concept.”. ”. In IEEE International Symposium on Systems
Engineering (ISSE 2019). Edinburgh, Scotland, UK. October, 2019

[4] A. Berriche, F. Mhenni, A. Mlika and J.Y. Choley. “Towards Model
Synchronization in Model Driven Engineering of Mechatronic
Systems.”. In IEEE International Symposium on Systems Engineering
(ISSE 2019). Edinburgh, Scotland, UK. October, 2019

[5] F. Boniol., and V. Wiels. “The Landing Gear System Case Study”. In
ABZ 2014. Communications in Computer and Information Science,
vol 433. Springer Cham. 2014

[6] S. Friedenthal, A. Moore, and R. Steiner. “A Practical Guide to
SysML”. In A Practical Guide to SysML. 2008

[7] International, S. A. E. “Guidelines and methods for conducting the
safety assesment process on civil airborne systems and equipment
ARP4761”. 1996

[8] F. Mhenni, J.Y. Choley, O. Penas, R. Plateaux, and M. Hammadi. “A
SysML-based methodology for mechatronic systems architectural
design”. In Advanced Engineering Informatics, Vol. 28(3), pp 218–
231, 2014

[9] A. Rauzy, and C. Haskins “Foundations for model-based systems
engineering and model-based safety assessment”. Systems
Engineering, Vol. 22(2), pp 146–155. 2018

