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Abstract. Accurate spatial dose delivery in radiotherapy is frequently complicated

due to changes in the patient’s internal anatomy during and in-between therapy

segments. The recent introduction of hybrid MRI radiotherapy systems allows

unequaled soft-tissue visualization during radiation delivery and can be used for

dose reconstruction to quantify the impact of motion. To this end, knowledge of

anatomical deformations obtained from continuous monitoring during treatment has

to be combined with information on the spatio-temporal dose delivery to perform

motion-compensated dose accumulation (MCDA).

Here, the influence of the choice of deformable image registration algorithm, dose

warping strategy, and MR image resolution and SNR on the resulting MCDA is

investigated. For a quantitative investigation, four 4D MRI-datasets representing

typical patient observed motion patterns are generated using finite element modeling

and serve as a gold standard. Energy delivery is simulated intra-fractionally in the

deformed image space and, subsequently, MCDA-processed. Finally, the results are

substantiated by comparing MCDA strategies on clinically acquired patient data.

It is shown that MCDA is needed for correct quantitative dose reconstruction. For

prostate treatments, using the energy per mass transfer dose warping strategy has the

largest influence on decreasing dose estimation errors.

Keywords: Motion-compensated dose accumulation, intra-fraction plan adaption, MR-

guided radiotherapy, dose reconstruction
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1. Introduction

Radiotherapy for cancer treatment aims to deliver a high dose to the tumor while

keeping the dose to the surrounding healthy tissue as low as possible. Biological motion

(e.g. respiration, bladder and rectal filling, peristalsis) during treatment might result in

geometric uncertainties and, thus, dose delivery errors to the tumor. Margins around

the tumor are typically used to optimize dose coverage (De Luca et al. 2010). However,

such margins generally lead to over-exposing healthy tissue or organs-at-risk (OAR)

situated within the margins and are often dose-limiting.

Image-guided radiotherapy offers the possibility to reduce these uncertainties,

allowing a reduction of these margins and alleviating the dose limitations, potentially

improving treatment outcomes (Jaffray 2012, Mundt & Roeske 2010). For example,

on-board imaging such as cone-beam computed tomography (CBCT) can be used to

compare the daily treatment anatomy to the anatomy at the time of planning, allowing

the correction of translations and rotations of the anatomy on an inter-fraction basis

(Guckenberger 2011, Thilmann et al. 2006). CBCT-guidance can thus be used to

decrease geometric uncertainties to a particular extent; however, the poor soft tissue

contrast renders the estimation of more complex deformations of individual anatomical

areas challenging (McBain et al. 2006). Additionally, CBCT-guidance also leads to

the delivery of imaging-related radiation, which is undesirable. Recently, magnetic

resonance (MR) imaging has also been integrated with radiotherapy delivery systems

(Lagendijk et al. 2014, Mutic & Dempsey 2014), allowing MR guided radiotherapy

(MRgRT). MRgRT offers high soft-tissue contrast suitable for tumor tracking at high

frame-rates without additional radiation exposure to the patient. This enables direct

tumor visualization and OAR localization from the treatment table, not only prior to the

daily treatment but also during radiation delivery. An example of dose reconstruction

for prostate treatments at the 1.5T MRI radiotherapy system is presented by Kontaxis

et al. (2020), where the information on the anatomical deformations is coupled with

knowledge of the delivered dose under the assumption of correct image registration of

the different time points. Thus, having knowledge of the delivered dose can aid more

precise reporting for treatment response assessment. Additionally, the time-resolved

dose reconstruction can also be used as input to adapt the treatment, i.e. for intra-

fraction plan adaption.

In particular, for radiotherapy for prostate cancer, several therapy innovations

have been suggested that rely on an accurate and precise motion-compensated dose

accumulation (MCDA), or motion-compensated dose reconstruction, as an input.

Hypofractionation has recently gained traction as it combines positive therapy results

with cost benefits and decreased patient burden (den Hartogh et al. 2019, Widmark

et al. 2019). However, when increasing the dose-per-fraction while decreasing the

number of fractions, there is less to none averaging out of the dose error over

fractions, making precise dose delivery and repeated adaptation even more of an

imperative. Furthermore, since fractions in a hypofractionated plan are generally of
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longer duration, there is a higher chance for (more extensive) biological motion to occur

(de Muinck Keizer, Pathmanathan, Andreychenko, Kerkmeijer, van Zyp, Tree, van den

Berg & de Boer 2019, de Muinck Keizer, Kerkmeijer, Maspero, Andreychenko, van Zyp,

Van den Berg, Raaymakers, Lagendijk & de Boer 2019). Note that the possibility of

large prostate motion is somewhat dependent on the treatment method used as for

modern non-MR-hybrid linacs, the duration of a standard fraction can be as short as 2

minutes, decreasing the possibility of large intra-fraction prostate motion.

Moreover, due to the relatively slow and episodic component of the changes in the

anatomy due to bladder filling and peristalsis, intra-fraction dose reconstruction and

plan adaptation are conceptually feasible for prostate MRgRT, as the temporal MR-

resolution is about one image per 10 to 20 seconds. For example, if the reconstructed

dose deviates from the planned dose distribution, the treatment might be interrupted

and continued with an adapted treatment plan, which accounts for the dose delivered

so far. This ensures convergence of the delivered dose to the planned dose, irrespective

of motion (Kontaxis et al. 2015b, Kontaxis et al. 2015a, Kontaxis et al. 2017), thus

increasing the quality of the treatment.

Since MCDA can potentially serve as an input for such motion correction strategies,

its reliability, precision, and accuracy become paramount, as any errors may end-up

accumulating over time. Moreover, such errors could even amplify due to feed-back into

the (re-)planning algorithm, up to a point where the (erroneous) corrections become

detrimental for therapy. The quality of MCDA (i.e. accuracy and precision) depends

on multiple factors such as (a) the deformable image registration (DIR) algorithm, (b)

the image resolution, (c) the signal-to-noise-ratio (SNR), and (d) the employed dose

warping strategy.

Here we investigated the impact of these factors on the accumulated dose of MCDA

for intra-fraction MRgRT for prostate cancer. To this end, a quantitative comparison of

the different MCDA strategies is performed on finite-element simulated motion patterns

representing ‘typical’ motion patterns observed in patients. A quantitative comparison

is then possible as the ground truth deformations are known, and the different MCDA

strategies can be compared to a gold standard. Subsequently, all MCDA strategies are

qualitatively evaluated on a single patient clinical dataset. The aim of this study is to

give an overview of the impact of the most relevant methodological choices on the quality

of the resulting MCDA and to provide guidance for making well-considered choices for

clinical implementations.

2. Materials and methods

In the following section, the experimental setup used for analyzing the impact of the

choice of registration algorithm, image resolution and SNR, and dose warping method

on the dose accumulation process will be described. Four finite element models (FEM)

of different typical prostate motion patterns are simulated. From these, a set of cine-

MR images depicting the motion trace is generated for a quantitative assessment of the
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DIR algorithms. A single radiotherapy fraction is simulated, using a typical clinical

treatment plan and incorporating the simulated motion patterns.

2.1. The data

As a basis for the FEM-generated images used here for the MRgRT simulation, we

have used a clinical 3D MR scan acquired on a prostate cancer patient treated on the

1.5T MR-Linac Unity system (Elekta Unity AB, Stockholm, Sweden) installed at the

UMC Utrecht, The Netherlands. The current study was conducted in agreement with

the required standards and regulatory requirements. Ethical approval was provided

by the Ethics Board of the University Medical Center Utrecht. The original spatial

dimensions of the image are 448 × 448 × 63, with a reconstructed voxel spacing of

0.93 × 0.93 × 2 mm3. The image was acquired using 3D bTFE with fat suppression

(relaxation time TR = 4.7 ms, echo time TE = 2.3 ms, flip angle = 50◦, field strength

B0 = 1.5 T). The delineations of the bladder, prostate, and rectum performed on the

image by an experienced radiation oncologist were then imported into the FEM software

FEBio (Maas et al. 2012). The prostate was modeled as an isotropic elastic material

with a density ρ = 1000 g/L, Young’s modulus E = 21 kPa (Barr et al. 2012) and

Poisson’s ratio ν = 0.4 (Bharatha et al. 2001). The rectum and bladder were modeled

as biphasic materials, allowing them to expand. Volumetric changes and movements of

the bladder and rectum were subsequently induced and used as actuators within the

FEM simulation, which in turn led to movements and deformations of the surrounding

anatomy.

We modeled four different anatomical deformations, mimicking typical patient

observed motion patterns, which we have outlined below (from largest to smallest

average prostate motion amplitude).

• Rectal filling motion. The rectum expands and moves in the superior direction,

modeling the passage of a gas-bubble. Under this effect, the prostate moves in the

anterior-superior direction, following an individual patient motion pattern observed

and reported within a previous study (de Muinck Keizer, Kerkmeijer, Maspero,

Andreychenko, van Zyp, Van den Berg, Raaymakers, Lagendijk & de Boer 2019).

• Bladder filling motion. The bladder expands, pushing the prostate in the inferior-

posterior direction. This motion is based on individual patient-motion, as observed

during 6 minutes in (de Muinck Keizer et al. 2020).

• Average prostate motion. The bladder expands, pushing the prostate in the inferior-

posterior direction. This motion is modeled after the population-average motion

of patients during 10 minutes, as reported in (de Muinck Keizer, Pathmanathan,

Andreychenko, Kerkmeijer, van Zyp, Tree, van den Berg & de Boer 2019) and

(de Muinck Keizer, Kerkmeijer, Maspero, Andreychenko, van Zyp, Van den Berg,

Raaymakers, Lagendijk & de Boer 2019).

• Residual motion only. The most common anatomical motion in the abdomen

during treatment is the absence of large scale deformations or displacements, with
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only residual motion due to the digestive tract’s peristalsis. In this simulation,

the bladder expands only slightly, pushing the prostate marginally in the inferior

direction. This dataset is added mostly as a control in order to investigate the effect

of MCDA on dose accumulation errors when minimal motion is present.

The resulting average displacements of the prostate for all motions are shown in figure 1

and the resulting anatomical deformations for the sixth time point of the simulation for

the rectal filling motion are shown in figure 2. The simulated motion was extracted in

Figure 1: Average displacements of the prostate in millimeters for the four different

motion patterns exported from the finite element models. The motion-patterns are

modelled after motions observed in patients during 6 to 10 minutes.

Bladder 

Prostate 

Rectum 

Figure 2: The modeled anatomical deformation for the sixth time point of the rectal

filling motion simulation. The total displacement is color-coded, with the scale matching

0.93 mm/voxel and running up to 8.73 voxels.

ten equally distanced time-steps, resulting in ten 3D deformation vector fields (DVF),

which relate each voxel’s position in 3D space to their original position. This set of

vector fields serves as the gold standard for all DIR algorithms investigated in the scope

of this study. The 11 time-steps correspond to motions observed during 6 to 10 minutes.

The FEM-generated deformations were then used to warp the aforementioned base

3D MR scan, resulting in a series of eleven MR images (the original scan was also
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included), which depict the simulated anatomical changes under the influence of the

simulated motion. Due to hardware limitations, the MR images and gold standard vector

fields were re-sampled onto an image matrix of size 256 × 256 × 128 (corresponding to

a resolution of 1.63 × 1.63 × 0.98 mm3).

In addition to the synthetic MR sequence, a clinical cine-MR series acquired

on the MR-Linac consisting of sixteen images with a temporal resolution of 16.9

seconds acquired during beam-on time (patient in the supine position, same acquisition

parameters as above) was also submitted to the analysis.

2.2. Simulating a radiation therapy fraction

For the systematic dose error analysis, we simulated the delivery of a single fraction for

a prostate tumor. We established a treatment plan using MatRad (Wieser et al. 2017)

with clinical constraints that are frequently used at the Radiotherapy department of

the UMC Utrecht for prostate cancer therapy (8 Gy to the prostate, maximally 4 Gy

to the rectum and bladder, using step-and-shoot IMRT as is clinically performed on

the MR-Linac with 7 photon beams at 0◦, 50◦, 100◦, 150◦, 210◦, 260◦ and 310◦ angles).

The simulated treatment time is 10 minutes and 14 seconds. The electron density and

Houndsfield units were extracted from the clinical planning CT-image of the patient,

pre-registered to the first MR-image in the cine series. Subsequently, both electron

density and Houndsfield units were warped using the FEM-generated DVFs, which in

turn allowed the calculation of the absorbed radiation dose for each of the deformed

anatomical states. To simulate the aggregate dose absorption under the influence of

motion, MatRad was modified to allow the simulation of sequential dose absorption for

all different gantry and MLC positions with an updated anatomical situation and to store

the corresponding dose fragments separately. In summary, this strategy provided for

each of the simulated time points a complete set of (I) anatomical MRIs, (II) electron

density and Houndsfield units, and (III) the resulting dose absorption maps for each

delivery configuration of the Linac in the known frame-of-reference of the deformed

anatomy. Finally, both the gold standard DVFs and those estimated by the DIR

algorithms were used to accumulate the dose onto the original anatomy, as detailed

in section 2.3.3.

2.3. Considered factors influencing motion-compensated dose accumulation

2.3.1. Deformable image registration algorithms In the scope of this study, we have

selected five different variational DIR algorithms previously proposed in the context

of MRgRT (Zachiu, Papadakis, Ries, Moonen & Denis de Senneville 2015, Zachiu,

Denis de Senneville, Willigenburg, de Boer, Raaymakers, Ries et al. 2020). A variational

registration algorithm typically implies the minimization of a two-part cost function:

E = D + αR. The data fidelity part D is a function quantifying the dissimilarity

between the images. Since the minimization of the data fidelity term alone is usually an

under-determined problem, a regularization term R is added to ensure well-posedness.
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This regularization represents an assumption on the pattern of estimated deformations,

which essentially reduces the dimensionality of the solution space. The regularization

parameter α determines the relative weight of the regularization. One of the most

frequently used regularization terms for DIR algorithms constrains the estimated

deformations to be spatially smooth, and is defined as

Rs = ‖~∇u(~r)‖2
2, (1)

where u = (u1, u2, u3) is the 3D DVF and ‖ · ‖2 is the Euclidean norm. Aside

smoothness, previous studies have also employed incompressibility as a constraint on

the estimated deformations (Yang et al. 2000, Haber & Modersitzki 2004, Haber &

Modersitzki 2007, Zachiu et al. 2018). This can be applied when, due to their high

water content, biological soft tissues (e.g. liver, kidney, prostate etc.) are not expected

to undergo volumetric changes at the time scale of a radiotherapy fraction. The

corresponding mathematical formulation of this incompressibility regularization is

Ri = ‖J(~r + u(~r))− 1‖2
2, (2)

where we have used the Jacobian determinant of the deformation:

J(~r + u(~r)) =

∣∣∣∣∣∣∣
1 + ∂u1(~r)

∂x
∂u1(~r)
∂y

∂u1(~r)
∂z

∂u2(~r)
∂x

1 + ∂u2(~r)
∂y

∂u2(~r)
∂z

∂u3(~r)
∂x

∂u3(~r)
∂y

1 + ∂u3(~r)
∂z

∣∣∣∣∣∣∣ . (3)

The five DIR algorithms used in this project are listed below. Their specifics are detailed

in the Appendix A.

• The original optical flow (OF22), introduced in the seminal paper by Horn &

Schunck (1981). Assumes that moving voxels conserve their brightness, combined

with a smooth regularisation. The implementation was adapted from (Zachiu,

Denis de Senneville, Moonen & Ries 2015a)‡.
• Improved optical flow (OF21), introduced in (Zachiu, Papadakis, Ries, Moonen &

Denis de Senneville 2015). Substitutes the L2-norm of the original optical flow

by an L1-norm, making the algorithms less sensitive to local grey-level intensity

variations.

• EVOlution (EVO), introduced by Denis de Senneville et al. (2016). This algorithm

aims to align similar contrast patterns by matching image gradients. Also uses a

smooth regularisation.

• Incompressible EVOlution (EVI), introduced in (Zachiu et al. 2018). Using the

same data-fidelity term as EVO, combined with an incompressibility-regularisation.

• Spatially adaptive EVOlution (AEVO), introduced by Zachiu, Denis de Senneville,

Willigenburg, de Boer, Raaymakers, Ries et al. (2020). Uses a spatially-adaptive

‡ See http://bsenneville.free.fr/RealTITracker/
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combination of both regularisations, allowing incompressibility in certain regions

(e.g. bones and the prostate) and smoothness in others, combined with the same

data-fidelity term as EVO.

In this study, an exhaustive search in the parameter space of the regularization

parameter(s) was employed, minimizing the endpoint error (further discussed in section

2.4) between the estimated and gold standard deformations. The results are shown in

section 3.1.

2.3.2. Resolution & signal-to-noise-ratio of the MR-images MRI acquisitions typically

imply a compromise between spatial resolution, temporal resolution and SNR. Since

both accuracy and precision of image registration algorithms depend on both the spatial

resolution and SNR of the underlying images, we evaluate the impact of both factors

on the MCDA results.

To assess the influence of the spatial resolution, the synthetic cine-MR data were

downsampled with an isotropic factor of 2, 3, and 4. A sagittal slice for the four

resolutions is shown in figure 3. After performing the registration for each downsampling

Figure 3: A sagittal slice of the reference MR-image for the four evaluated resolutions.

The top-left image displays the original resolution.

factor, the estimated DVF is then re-sampled to the original resolution (256 × 256 ×
128) and compared to the gold standard.

To vary the SNR of the images, increasing levels of Rician noise were added to the

images (Henkelman 1985, Gudbjartsson & Patz 1995, Rice 1944). The resulting images
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have SNR-values of approximately (12, 9, 6, 4, 3) or PSNR-values of (30, 26, 22, 19,

17). A sagittal slice for the resulting images is shown in figure 4.

Figure 4: A sagittal slice of the reference MR-image for the different levels of SNR

(excluding the original SNR already shown in figure 3).

2.3.3. Dose warping strategies For a motion-compensated dose accumulation, the

delivered dose for all moving images is warped to the reference image using their

respective DVF. In this study, two different strategies are used for this warping:

direct dose mapping (DDM) and energy per mass transfer (EMT), as detailed in (Li

et al. 2013). Due to the deformable character of the motion, tissues from multiple voxels

in the moving anatomy might end up, for example, in a single reference voxel. Using

DDM in this situation, the reference voxel dose is found by averaging the doses from the

moving voxels. EMT on the other hand, is motivated by the physical definition of dose

as the energy absorbed by a mass. This method warps both the energy and mass from

the moving voxels and then divides the energy by the mass to get the reference dose.

The EMT method thus requires a mass-map for the anatomy, which we created from

the CT-image, differentiating between air (a density of ρ = 1.225 g/L was assumed) and

soft tissue (density ρ = 1000 g/L).
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2.4. Error measures

To assess the quality of an estimated DVF, it is compared with the gold standard DVF in

terms of absolute, component-wise differences, or the endpoint error (Baker et al. 2011):

∆DV F (x, t) = ‖DVFgs(x, t)−DVFest(x, t)‖2, (4)

i.e. the Euclidean distance between the 3D deformation vectors of the gold standard and

the estimated vector field. This results in a scalar for each voxel, providing a distribution

of errors. In a clinical setting, however, the gold standard DVF is not available.

Therefore, an alternative surrogate quality assurance criterion is required for evaluations

of the clinical data included in this study. Evaluated on our simulated datasets, we found

the structural similarity index (SSI) (Wang et al. 2004) and image intensity differences

(IID) of the MR-data inside a contour or set of contours to have a Pearson correlation

coefficient with the mean endpoint error of 0.90 and 0.95, respectively. This value is

much higher than found for the Dice similarity coefficient (Dice 1945, Sorensen 1948)

(0.79) or Hausdorff distance (Hausdorff 1914) (0.57). Therefore, the former two criteria

will be used to evaluate the registration performances on the clinical dataset.

Additionally, we use the Jacobian determinant in incompressible regions to

investigate the physiological plausibility of a DVF, as suggested in (Zachiu et al.

2018, Zachiu, Denis de Senneville, Raaymakers & Ries 2020). For the intra-fraction

investigation, only minor volume variations of the prostate are expected (and therefore

modeled), such that large deviations of the Jacobian determinant from one are an

indication of implausible deformations.

To assess the performance of MCDA, the accumulated dose using an estimated

DVF and the dose warping method of choice (i.e. DDM or EMT) is compared to the

accumulated dose resulting from the gold standard DVF in combination with the EMT

dose warping method. This choice is motivated by the physical definition of dose (i.e.

amount of absorbed radiation energy per unit mass). The relative difference in grays is

what we will refer to as the dose (accumulation) error. As for the endpoint error, this

gives a value for each voxel, providing a distribution of errors.

3. Results

3.1. Deformable image registration algorithm configuration

The approach used to investigate and optimize the regularization parameters for the five

DIR algorithms is described in section 2.3.1. The optimal values for the regularization

parameters used in this study are reported in table 1. Of the four single-parameter

algorithms, EVO and EVI are most robust with respect to a choice of α, while OF22 is

the most sensitive. Furthermore, OF22 has its optimum with respect to the endpoint

error at the lowest analyzed regularization level. For EVO and EVI, the error is rather

stable for 0.3 ≤ α ≤ 1, but EVI does not converge in all voxels for α ≤ 0.2. For the

interested reader, the complete results of the endpoint error averaged over the bladder,
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Table 1: Optimal values for the regularization parameters.

DIR algorithm α β

OF22 0.05

OF21 0.35

EVO 0.30

EVI 0.35

AEVO 0.10 0.30

prostate, and rectal wall as a function of α for the four single-parameter algorithms for

the four different simulated motion patterns is shown in figure A1 in the appendix.

AEVO has two free parameters: α for the smooth regularization and β for the

strength of the incompressible regularization. Their influence on the endpoint error

can be seen in the appendix in figure A2. To reduce computation time, only the last

time point for the rectal filling motion is evaluated. The regularization parameter space

displays a global minimum for the endpoint error at 0.1 ≤ α ≤ 0.2, 0.2 ≤ β ≤ 0.8.

3.2. Influence of the deformable image registration algorithm & dose warping method

In figure 5, a boxplot of the distribution of the absolute dose accumulation errors on the

prostate in [Gy] (grays) for the four different motions are shown. The central red line in

the boxplots indicates the median while the bottom and top edges of the box mark the

25th and 75th percentiles, respectively. The indicators connected by the dotted lines (the

‘whiskers’) give the most extreme data points not considered outliers, while the outliers

are shown as black dots (for a normally distributed variable they consist of 0.7% of

the data). The results for performing no registration and the five DIR algorithms are

presented, using both DDM and EMT to accumulate the dose. From the figure, it is

clear that the choice of dose mapping method generally has a much larger effect on

the error than choosing the optimal DIR algorithm. When performing no MCDA, the

median dose error on the prostate is 0.42 Gy for the rectal filling motion. Using DDM,

this is reduced to 0.24-0.28 Gy for the different algorithms. When using EMT, however,

the median dose error decreases by a factor 6-8 to 0.06-0.07 Gy. Furthermore, using

EMT outperforms DDM in every case.

A noteworthy observation is that for the residual motion pattern (bottom right

graph in figure 5), OF22 and OF21 coupled with a DDM dose warping strategy lead to

larger dose errors compared to the case where no motion compensation is performed.

On the other hand, when using EMT or one of the EVOlution-based algorithms for

MCDA, the resulting dose error is slightly decreasing.

It should be noted that all y-axes are scaled to the maximum dose error of

performing no registration. The (out-of-range) maxima are OF22 (7.1 Gy) for the

rectal filling motion, OF22 (3.3 Gy) for the bladder filling motion, OF22 (6.0 Gy) and

OF21 (3.0 Gy) for the average prostate motion, and OF22 (4.3 Gy) and OF21 (2.0 Gy)
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for only residual motion, all associated with a DDM dose warping strategy.

Figure 5: Absolute dose accumulation errors for the four motion patterns on the

prostate in grays. From left to right in each graph are shown the results for performing

no registration, the original optical flow, the improved optical flow, EVOlution,

incompressible EVOlution, and spatially adaptive EVOlution, both using direct dose

mapping (DDM) and energy per mass transfer (EMT). Noticeable is that EMT (greatly)

outperforms DDM in every case and that MCDA using EMT can decrease dose errors

by a factor of 2.3 to 8.

In figure 6, the dose accumulation errors on the rectal wall are shown for the

rectal filling motion. Here, the relative (i.e. not using the absolute value) errors are

shown. This offers little additional information for the prostate region as all errors are

fairly symmetric around zero for this anatomy. For the rectal wall, however, the non-

compensated dose error is not centered around zero. For this particular deformation

pattern, where the rectum would move into the high dose region, performing no MCDA

underestimates the dose received by the rectal wall, by a median of almost 2 Gy, ranging

up to 6 Gy, on a plan with a dose constraint of 4 Gy to the rectum. Performing any

MCDA centers the dose error around zero.
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The median absolute dose accumulation error on the rectal wall for no MCDA is 1.9

Gy. This error is reduced to 0.2-0.4 Gy when using DDM. When using EMT, the error

is reduced by a factor of 12-16 to 0.12-0.16 Gy. For the other three motion patterns,

the results are qualitatively similar but of a lower magnitude. It is also worth noting

that MCDA always decreases the maximal and median dose error, except when using an

optical flow algorithm combined with DDM. Moreover, similar to the results obtained

on the prostate (see figure 5), EMT outperforms DDM in every case.

For the interested reader, we have also included figure A3 in the appendix,

showcasing an example of the spatial distribution of the dose accumulation errors for one

of the motion patterns (i.e. rectal filling motion). The resulting observations are well

in line with the ones made above. For the reader interested in comparing the quality

of the registration only, the distribution of endpoint errors within the prostate, bladder

and rectal wall for all time point of the four different simulated motion patterns are

shown in figure A5 in the appendix. The lowest maximum and median endpoint errors

are achieved by either OF21 or EVO, while the highest outliers arise from OF22.

Figure 6: Relative dose accumulation errors for the rectal filling motion on the rectal

wall in grays. Shown from left to right are the results for performing no registration

and for the five DIR algorithms using direct dose mapping (DDM) and energy per mass

transfer (EMT). Without MCDA, there is an underestimation of the dose delivered to

the rectal wall of 2 Gy. This asymmetry vanishes for all algorithms, and the median

absolute dose error decreases by a factor of 12-16 when using EMT.

Figure 7 shows the Jacobian determinants within the prostate of the simulated and

estimated DVFs for the bladder filling motion. The results for the other three motion

patterns (not shown) are qualitatively similar. The deformations from all the simulated

time points were included in the analysis. OF21, OF22, and EVO have a wider range

of Jacobian determinants (0.93 - 1.09, 0.91 - 1.10, and 0.93 - 1.07, excluding outliers)

compared to EVI and AEVO (0.94 - 1.04 and 0.96 - 1.04), which are closer to the gold
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standard values (1.00 - 1.00). For OF22, the outliers even range from -0.25 to 3.0,

indicating tissue folding and extreme expansion.

Figure 7: Jacobian determinants on the prostate for the bladder filling motion pattern

for the gold standard, the original optical flow, the improved optical flow, EVOlution,

incompressible EVOlution, and spatially adaptive EVOlution (from left to right). Note

that the gold standard shows only slight deviations from 1. EVI and AEVO produce a

narrow range around 1, while OF21, OF22, and EVO show a wider spread.

For completion, the endpoint error distribution on the prostate, bladder and rectal

wall is shown in figure A5 in the appendix, showing that performing image registration

considerably reduces the endpoint error with errors after registration mostly under half

a voxel.

3.3. The influence of image resolution and signal-to-noise-ratio

Figure 8 shows the influence of resolution on the dose accumulation errors within the

prostate and rectal wall for the rectal filling and bladder filling motion patterns. The

dose accumulation errors for the other two motion patterns (not shown) are qualitatively

in-between those shown, with slight relative differences between the optical flow and

the EVOlution-based algorithms. Given the observations made in section 3.2, we only

report the results obtained by using EMT, for better graph readability. Note that the

six leftmost boxes correspond to registrations performed at the original image resolution

and are the same as in figure 5.

Except for OF22 on the lowest resolution on the prostate for the bladder filling

motion, the maximum and median absolute dose accumulation error is decreased by

performing MCDA with any DIR algorithm on any resolution, for both anatomies

and shown motion patterns. For the bladder filling motion, the median absolute dose

accumulation error on the prostate decreases with a factor 5-6 on the highest resolution,
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4-5 on the second-highest, 3-4 on the second-lowest, and 1.3-2.6 on the lowest resolution.

On the rectal wall, this becomes a factor 10-17 on the highest, 2-9 on the second-highest,

3-9 on the second-lowest, and 1.4-3.2 on the lowest resolution. EVO and AEVO are the

most robust algorithms for lower resolutions, but the differences between algorithms are

relatively small.

Figure 8: Absolute dose accumulation error on the prostate and rectal wall for

different algorithms at no, two-fold, three-fold and four-fold down-sampled images

for the rectal filling and bladder filling motions, respectively. The resolutions in

millimeters are provided in the graphs. The DIR algorithms shown from left to right

are no registration, the original optical flow, the improved optical flow, EVOlution,

incompressible EVOlution, and spatially adaptive EVOlution, all combined with energy

per mass transfer. The effect of lowering the resolution is multiple factors higher than

the differences between algorithms. Even on the lowest resolution performing MCDA

decreases the dose error notably, while a resolution below 2 mm3 is optimal.

Figure 9 shows the influence of SNR on the absolute dose accumulation errors within

the prostate and rectal wall, again for the rectal filling and bladder filling motions. The

results for the other two motion patterns (not shown) are qualitatively similar to those
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of the bladder filling motion. It can be observed that all DIR algorithms decrease the

median as well as the maximum absolute dose accumulation error on both anatomies

for all levels of the SNR. For the bladder filling motion, the median absolute dose

accumulation errors on the prostate decrease by a factor of 2.0 to 4.3, even for the

lowest SNR. On the rectal wall, this becomes a factor of 3.4 to 6.8.

Figure 9: Absolute dose accumulation errors on the prostate and rectal wall for different

values of the SNR and different algorithms. The rectal filling and bladder filling motion

patterns are shown. The SNR is provided within the graph. No registration, original

optical flow, improved optical flow, EVOlution, incompressible EVOlution, and spatially

adaptive EVOlution are shown from left to right, all using energy per mass transfer. The

difference in dose errors between an SNR of 12 and 9 is about as big as the difference

between an SNR of 9 and 3.

3.4. Evaluation on the clinical data

For the clinical dataset, the prostate experiences a sudden displacement between the

8th and 10th time point of about 4-5 millimeters in the anterior direction and about 3



Quantitative investigation of intra-fraction dose accumulation errors 17

millimeters in the superior direction. The prostate then only slowly drifts towards its

original position for about 0.5-1.5 and 1 millimeters, respectively, during the final 6-7

time-steps. For the interested reader, an assessment of the motion as estimated by the

five used DIR algorithms is shown in figure A4 in the appendix.

As discussed in section 2.4, for the clinical cine-MR series, we use the SSI and IID

to evaluate the registration performances since no gold standard DVF is available. Note

that we evaluate 1-SSI (as the SSI gives a value between 0 and 1) such that it increases

for larger registration errors, as does the endpoint error. Figure 10 showcases the SSI (in

(a)) and the IID (in (b)) quantified jointly inside the prostate, bladder, and rectum wall.

Note that the same regularization parameters as for the simulated data were used. On

a qualitative level, the results are similar in nature to those obtained for the simulated

data illustrated in figure A5: the differences between algorithms are relatively small,

and the registration error decreases notably for all algorithms compared to performing

no registration. In terms of both SSI and IID, it can be observed that EVI performs

worst of all algorithms. Excluding EVI, the median registration error decreases by a

factor of 1.4 to 3.0, depending on the DIR algorithm and quality assurance criterion

used.

Figure 10: (a) the time-averaged structural similarity index (shown as 1-SSI) and (b)

image intensity differences (IID) within the bladder, prostate, and rectal wall for the

clinical data. The results for performing no registration, the original optical flow, the

improved optical flow, EVOlution, incompressible EVOlution, and spatially adaptive

EVOlution are shown, from left to right. For both error measures, the differences

between algorithms are relatively small, and the error decreases considerably compared

to no registration. (c) the Jacobian determinants for the original optical flow, the

improved optical flow, EVOlution, incompressible EVOlution, and spatially adaptive

EVOlution on the prostate for the clinical data. OF22, OF21, and EVO show a wider

range of values than EVI and AEVO.

Figure 10 (c) displays the Jacobian determinants on the prostate for all time points

of the clinical dataset. As for the simulated data, OF22, OF21, and EVO show a wider

range of Jacobian determinants for voxels inside the prostate (0.64 - 1.41, 0.72 - 1.31,
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and 0.86 - 1.13, excluding outliers), compared to EVI and AEVO (0.95 - 1.04 and 0.93 -

1.07, respectively). For OF22, the outliers even range from -0.5 to 6.2, indicating tissue

folding and extreme expansion.

Due to its competitive registration errors (figure 10 (a) and (b)) and better

anatomical plausibility of the estimated deformations in terms of Jacobian determinant

values (figure 10 (c)), the accumulated dose provided by the AEVO algorithm was chosen

as a point of comparison to analyze dose accumulation errors on the clinical data (the

results on the simulated data also supported this choice). Note that for dose warping,

the EMT strategy was employed as before.

The resulting dose accumulation errors are shown in figure 11, showing great

similarities to the results for the simulated data. Without registration, the dose

accumulation errors on the prostate range towards 2.5 Gy, with outliers towards 5.6

Gy. As for the simulated data, the dose warping method has a larger impact than the

choice of the DIR algorithm. Moreover, as for the simulated rectal filling motion, there

is a median underestimation of the dose delivered to the rectal wall when not performing

any MCDA of almost 2 Gy, ranging up to 4.5 Gy while the rectum had a dose constraint

of 4 Gy in the therapy plan. This asymmetry is again addressed by all algorithms and

warping methods.

Figure 11: Dose accumulation errors for the clinical data (AEVO with EMT was used

as a point of comparison). The absolute error on the prostate (left) and the relative

error on the rectal wall (right) are shown for the five different DIR algorithms, as

well as no registration, for energy per mass transfer (EMT) and direct dose mapping

(DDM). The difference between the dose warping methods is much larger than between

DIR algorithms, with EMT outperforming DDM substantially. All methods resolve the

underestimation of the dose received by the rectal wall when not performing MCDA.
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4. Discussion

All presented dose accumulation results show that performing MCDA using variational

algorithms for motion mitigation can considerably reduce errors in the estimated

delivered dose for prostate cancer therapy. Figure 5 shows that using an EVOlution-

based algorithm, or EMT, always results in a decrease in the dose error. When

using EMT, the median dose error on the prostate is reduced by a factor of 1.5 to

7, depending on the motion pattern and DIR algorithm. For the rectal wall, the median

dose error decreases with a factor of 2.5 to 16 for the non-residual motion patterns.

Additionally, MCDA resolves any asymmetry or bias in the uncorrected dose error. Of

similar importance is the observation that this type of MCDA in the absence of large-

scale biological motion does not degrade dosimetry compared to the uncorrected dose

estimate.

4.1. Dose warping strategy

The choice of dose warping strategy has the most substantial impact on the dose

accumulation error of all factors considered in this project, with EMT always

outperforming DDM. This reconfirms the findings of Siebers & Zhong (2008) on a

deformable phantom (1.1% difference between EMT and DDM along the beam and

up to 25% in the penumbra), Zhong & Siebers (2009) on a lung plan (7.3% difference)

and Li et al. (2013) on a lung plan (11.3% difference in the planning target volume and

4.4% in the internal target volume minimum doses). We observe median dose differences

of approximately 2.5% on the prostate and 10% on the rectal wall.

These earlier works evidenced that the typical situations where DDM becomes

increasingly problematic are deformations of boundary interfaces displaying high tissue

density variations and tissue areas that display internal density fluctuations. This trend

can clearly be seen in figure 5, where the difference between using DDM and EMT is

found to be larger for algorithms for which the Jacobian determinants are unequal to

one (figure 7), i.e. where compression or expansion is estimated. This is due to the

fact that EMT intrinsically compensates for density modifications introduced by the

realignment process, while DDM is very susceptible to this effect. As a consequence,

algorithms that have been optimized to minimize density variations (such as EVI and

AEVO) display a considerably better performance when paired with DDM, as shown in

figure 5 and 6. Nevertheless, even in this configuration, EMT resulted in a lower dose

error compared to DDM. It is noteworthy that the usage of EMT compared to DDM

introduces only a small level of additional complexity and thus computing time.

4.2. Different deformable image registration algorithms

First and foremost, the selection of algorithms in the scope of this paper has been

motivated by the established track record of variational algorithms concerning robust

registration performance even for image data of low SNR and resolution (Glitzner
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et al. 2015, Zachiu, Denis de Senneville, Moonen & Ries 2015b, Zachiu, Papadakis, Ries,

Moonen & Denis de Senneville 2015, Denis de Senneville et al. 2016). Since variational

algorithms also employ ‘surrounding’ information of respective voxels, accuracy and

precision can, for coherent deformations, typically exceed the image resolution. We

observed that the 75th percentile of the endpoint error for all motion patterns and all

algorithms is around half a voxel.

When using DDM, clear differences in dose error between DIR algorithms

are observed. EVI and AEVO with biophysical plausibility (in the form of an

incompressibility regularization) built-in outperform the other algorithms, in particular

OF22 and OF21. The biophysical plausibility is observed in the narrow range of

Jacobian determinants (figure 7), as described in (Zachiu et al. 2018, Zachiu, Denis de

Senneville, Raaymakers & Ries 2020). Exemplary for the implausible deformations is for

example the tendency of the OF22 algorithm to estimate tissue folding in problematic

regions. This phenomenon is most likely caused by violations of the brightness constancy

assumption. Using all gray-level information, the optical flow algorithm is more likely

to be biased by image artifacts to converge into local minima. Although the effect of

these unrealistic deformations on the accumulated dose is reduced by using the EMT

dose warping strategy, such an approach may not be physically applicable for warping

other quantitative information such as Houndsfield units, diffusion/perfusion values,

mass maps, etc.

Furthermore, an asset of the EVOlution-based algorithms is that they perform well

for a wide range of regularization parameters (figures A1 and A2 in the appendix). This

can be of considerable clinical value in particular for online scenarios, where the tuning

of regularization parameters with the patient on the treatment table is either impossible

or for a smooth work-flow highly undesirable.

Based on these grounds, we consider AEVO the optimal choice for the DIR

algorithm, as the clinical data shows its superiority over EVI in terms of registration

errors for sudden deformations.

4.3. Resolution and SNR

Generally, a resolution of about 1 mm3 seems good, 2 mm3 seems adequate, and from

3 mm3 onward, we start to under-sample. This corresponds to approximately half the

size of some relevant structures like the rectal wall (8 by 24 mm) and the dose gradient

(11 to 2 Gy) between the prostate and rectal wall (7-11 mm).

The EVOlution-based algorithms prove to be the most robust with respect to lower

resolutions. Interestingly, for these algorithms, even at the lowest resolution, the median

dose error is lower for all simulated motions and anatomies compared to the one obtained

by performing no motion mitigation. For the rectal filling and bladder filling motion, the

error on these low-resolution images is still reduced by a factor of two. It is thus overall

beneficial to perform MCDA even when only compensating for bulk motion; however,

the optimal resolution value resulting from the present study is above 2 mm3.
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All variational methods are fairly robust and still perform well for a low SNR. The

difference in median absolute dose error for the rectal filling motion between the lowest

and highest SNR is only a factor of 1.5 to 3.5. EVI is the optimal DIR algorithm when

working with images of very low SNR due to incompressibility being a strong-natured

regularization. For all DIR algorithms, the step in dose errors from an SNR of 12 to an

SNR of 9 is about as big as from an SNR of 9 to an SNR of 3. Using an SNR above

10 thus gives the optimal results, but even for an SNR of 3, performing MCDA (using

EMT) is beneficial.

4.4. Clinical data

The dose errors found for the clinical data (figure 11) confirm the findings of the

simulated data. First, performing MCDA again proves to be able to decrease errors

in the estimated dose considerably. Secondly, the choice of dose warping strategy again

impacts the dose errors the most. Finally, as for the simulated rectal filling motion, when

not performing MCDA, there is a significant underestimation of the dose delivered to

the rectal wall that is resolved by performing MCDA.

The dose accumulation errors for the clinical data reported in figures 11 are found

using AEVO with EMT as a the point of comparison. AEVO was used as it produces

particularly low registration differences (figure 10 (a) and (b)) and a narrow Jacobian

determinant range within the prostate (figure 10 (c)) as well as competitive dose errors

for the simulated data (figures 5 and 6).

Combined with the simulated data results, there is a strong case for performing

MCDA in scenarios where the delivered dose is of interest. This will provide another

step in the direction of hypofractionation and intra-fractionally adapted treatments that

count on reliable MCDA for further development and implementation.

The results presented here for the prostate are expected to carry over to other

tumor sites with motion patterns having a slow motion component (like peristaltic

events, respiratory baseline, muscle relaxation or digestive activity). For inter-fraction

dose accumulation, deformations are generally more extreme than for intra-fraction, and

it is to be expected that using EMT over DDM has an even larger impact.

5. Conclusion

The presented study analyzed the influence of the choice of DIR algorithm, dose

warping strategy, MR image resolution, and MR image SNR on the resulting motion-

compensated accumulated dose. For a quantitative investigation, deformations based

on clinical observations were simulated using finite element modeling, which provided a

gold standard for both the deformations estimated by the registration algorithms and

the accumulated dose. The evaluation was also extended to include clinical patient data.

The analysis conducted on both the simulated and the clinical data demonstrates

that, in general, performing MCDA leads to a notable improvement of the geometric
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uncertainty with respect to the radiation dose delivery. We have found that, for an

optimal selection of the investigated influence factors, for large-scale biological motion

such as the passage of a rectal filling, the dose error when performing MCDA decreases

by a factor of 7 and 15 within the anatomical structures of interest. While not to the

same extent, MCDA continued to provide improvements in geometric uncertainty even

for the lower end of the image resolution and SNR investigated within the scope of this

study. Moreover, MCDA did not introduce any relevant errors for the case in which

only minimal motion is present.

Out of all the investigated factors, we conclude that the most important one

impacting the accumulated dose is the dose warping strategy. The differences between

the two dose warping strategies were considerably larger than the differences between

the registration algorithms. Furthermore, using energy per mass transfer over direct

dose mapping decreases dose errors in all cases, at no extra scan time, and only implies

limited extra computing power.

In terms of the employed registration algorithm, it was found that, due to its

accuracy, anatomical plausibility, and robustness to deviations of the regularization

parameters, AEVO is a marginally better choice than the rest of the investigated

algorithms. Finally, an isotropic image resolution of 2 mm and an image SNR above 10

were found to be optimal for an accurate MCDA.

Overall, the present work provides an extensive analysis of the dependency of

MCDA on multiple contributing factors, providing a guideline for their choice in

accordance with the specific technical and functional specifications of ongoing and future

MRgRT workflows.
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Appendix A. DIR algorithms

The specifics of the five DIR algorithms used in this project are outlined below.

• The original optical flow (OF22). It relies on the assumption that voxels conserve

their gray-level intensity as they move. This implies minimizing a cost function

which uses the square Euclidean distance between the images as a data fidelity

term, coupled with a smoothness regularization:

EOF22 =

∫∫∫
Ω

(Ixu1 + Iyu2 + Izu3 + It)
2 + αRs, (A.1)

where (Ix, Iy, Iz) are the image spatial partial derivatives, It is the temporal

derivative.

• Improved optical flow (OF21). Replaces the quadratic data fidelity term from the

original optical flow by a linear L1 norm, reducing the impact of local gray-level

inconsistencies between the images to be registered. In effect, this implies the

minimization of the following cost function:

EOF21 =

∫∫∫
Ω

|Ixu1 + Iyu2 + Izu3 + It|+ αRs. (A.2)

• EVOlution (EVO). This algorithm aims to align similar contrast patterns between

the registered images. This is achieved by the minimization of the function

EEV O =
∑
~r∈Ω

exp (−C(u(~r))) + αRs, (A.3)

with

C(u(~r)) =

∑
~s∈Γ

∣∣∣~∇I1(~s) · ~∇I2(~s+ u(~s))
∣∣∣∑

~s∈Γ ‖~∇I1(~s)‖2‖~∇I2(~s+ u(~s))‖2

, (A.4)

where Γ is a neighborhood around ~r and I1,2 are the reference and moving images,

respectively.

• Incompressible EVOlution (EVI). This algorithm uses the same data fidelity term

as EVO, but replaces the smoothness regularization term with a global penalty on

incompressibility.

• Spatially adaptive EVOlution (AEVO). Employs the same data fidelity term

as EVO and EVI. However, it uses the smoothness and the incompressibility

regularization selectively, depending on the physical properties of the underlying
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anatomy. Knowledge of the underlying anatomy can thus be used to enforce

incompressibility within e.g. biological soft tissues, while allowing other regions to

expand or compress, using the smoothness regularization. In effect, this algorithm

employs two regularization parameters: one for the incompressible region and one

for the smooth region.

Figure A1: Endpoint error averaged over the voxels of the bladder, prostate, and

rectal wall for different values of the regularization parameter α for the original optical

flow (OF22), the improved optical flow (OF21), EVOlution (EVO), and incompressible

EVOlution (EVI), respectively. The different colors correspond to the four simulated

motion patterns. The vertical green line depicts the optimal choice for the regularization

parameter used in this paper. OF22 in particular is very sensitive to the correct value of

the regularization parameter. TODO: change legend to rectal filling motion and adapt

scale for optical flows α→ α2!.
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Figure A2: Average endpoint error on the bladder, prostate, and rectal wall in voxels for

different values of the two regularization parameters for spatially adaptive EVOlution.

Results for the last time point of the rectal filling motion are shown. The arrow points

at the optimal configuration used in this paper.

Figure A3: Sagittal slice of delivered dose distribution and the dose accumulation errors

in grays for the rectal filling motion pattern. Shown are the results for no MCDA,

original optical flow, improved optical flow, EVOlution, incompressible EVOlution, and

spatially adaptive EVOlution combined with direct dose mapping (DDM) or energy

per mass transfer (EMT) to warp the dose. The prostate (center) and rectum (right)

contours are shown in black. A large influence of the choice of dose warping method

can be observed.
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Figure A4: Average displacement of the prostate as estimated by the five DIR algorithms

for the clinical dataset. There is a sudden shift in the position of the prostate in

the anterior (4-5 mm) and superior (3 mm) directions between the 8th and 10th time

point. Thereafter it slowly drifts back in the posterior (0.5-1.5 mm) and inferior (1 mm)

directions.
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Figure A5: Image registration performance in terms of endpoint errors in millimeters

on the prostate, bladder, and rectal wall for the different DIR algorithms and motion

patterns. From left to right in each graph are shown the results for performing

no deformable image registration, the original optical flow, the improved optical

flow, EVOlution, incompressible EVOlution, and spatially adaptive EVOlution. All

algorithms lower the median endpoint error considerably, from a factor of 5-13 for the

rectal filling motion to a factor of 1.4-2.1 for residual motion. Note that the y-axis is

scaled differently for the four different motion patterns.
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