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Abstract. Image-guided radiotherapy (IGRT) allows observation of the location

and shape of the tumor and organs-at-risk (OAR) over the course of a radiation

cancer treatment. Such information may in turn be used for reducing geometric

uncertainties during therapeutic planning, dose delivery and response assessment.

However, given the multiple imaging modalities and/or contrasts potentially included

within the imaging protocol over the course of the treatment, the current manual

approach to tissue tracking may become time-consuming and error prone. In this

context, variational multi-modal deformable image registration (DIR) algorithms allow

automatic tracking of tumor and OAR deformations across the images acquired over

the treatment course. In addition, they require short computational times and a

low number of input parameters, which is particularly beneficial for online adaptive

applications, which require on-the-fly adaptions with the patient on the treatment

table.

However, the majority of such DIR algorithms assume that all structures across

the entire field-of-view (FOV) undergo a similar deformation pattern. Given that

various anatomical structures may behave considerably different, this may lead to the

estimation of anatomically implausible deformations at some locations, thus limiting

their validity. Therefore, in this paper we propose an anatomically-adaptive variational

multi-modal DIR algorithm, which employs a regionalized registration model in

accordance with the local underlying anatomy. The algorithm was compared against

two existing methods which employ global assumptions on the estimated deformations

patterns.

Compared to the existing approaches, the proposed method has demonstrated an

improved anatomical plausibility of the estimated deformations over the entire FOV

as well as displaying overall higher accuracy and precision. Moreover, despite the

more complex registration model, the proposed approach is very fast and thus suitable

for online scenarios. Therefore, future adaptive IGRT workflows may benefit from an

anatomically-adaptive registration model for precise tissue boundary tracking and dose

accumulation, in areas showcasing considerable variations in anatomical properties.
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1. Introduction

One of the major challenges during external-beam radiotherapy (EBRT) is addressing

the geometrical uncertainties introduced by the changes in shape and location of

the tumor and the organs-at-risk (OARs) over the course of the treatment (Roach

et al. 2011). In case such uncertainties are not taken into consideration during

the planning and delivery of EBRT, there is a high risk of under-dosage to the

tumor, while at the same time over-irradiating adjacent healthy tissues (Chavaudra

& Bridier 2001, Roach et al. 2011, Jaffray 2012). However, the recent integration of

on-board imagers within the radiotherapy delivery systems has allowed visualizing the

treated area and its surroundings during all phases of an EBRT work-flow: planning,

delivery and response assessment (Guckenberger 2011, Raaymakers et al. 2017). This

allows clinicians to identify the anatomical areas of interest on the acquired images and

in turn, reduce the impact of geometric shifts and deformations on the overall treatment.

Tracking the shape and location of the tumor and the OARs over the course of image-

guided radiotherapy (IGRT) is typically done manually by experienced physicians

(Eisenhauer et al. 2009, Mundt & Roeske 2011). However, given the current tendencies

towards imaging protocols which may include several imaging modalities and contrasts

over the full course of the treatment, this manual process can become severely time-

consuming and error-prone. In addition, the time required for manual contouring may

render a smooth clinical work-flow in an online setting unfeasible, in particular for on-

the-fly correction strategies with the patient already on the treatment table. Therefore,

an automatic tracking solution would be preferred instead.

A feasible solution for automatic tracking of organ and pathological tissue boundaries

over the course of the treatment is multi-modal deformable image registration (DIR)

(Hill et al. 2001, Mani & Arivazhagan 2013, Sotiras et al. 2013). Such methods have

the capability to estimate voxel-wise deformations across images acquired either with

the same or a different modality and/or contrast. In effect, the patient anatomy can be

practically tracked in an automatic manner within each acquired image, over the entire

duration of the treatment. Moreover, the estimated deformations allow the up-stream

mapping into the reference space of the therapy planning image of the dose delivered

by each radiation fraction, allowing thus dose accumulation in a spatially consistent

manner. This, in turn, gives way to potential adaptations of the therapeutic plan over

the course of the therapy (Kontaxis et al. 2017).

A particularly attractive type of multi-modal DIR methods for IGRT are the so-

called variational approaches (Weickert et al. 2003). Due to their high accuracy

and precision, low number input parameters and rapid convergence, such algorithms

were demonstrated to be especially beneficial in applications demanding on-the-fly

corrections or even real-time performance (e.g. during therapy delivery), where short

computational latencies are paramount (Ries et al. 2010, Glitzner et al. 2015, Zachiu

et al. 2017b, Lafitte et al. 2018, Zachiu et al. 2018). As a functioning principle, such

methods estimate deformations between two or more images as the minimizer of a cost
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function comprising two terms: a data fidelity term and a regularization term. The

data fidelity term quantifies the similarity between the images to be registered and

decreases as the alignment of the images improves. Data fidelity terms for variational

multi-modal DIR methods have been built around concepts such as mutual information

(Pluim et al. 2003, Maes et al. 2003), modality-independent descriptors (Heinrich

et al. 2012, Reaungamornrat et al. 2016) and normalized gradient fields (Denis de

Senneville et al. 2016, Spahr et al. 2018). However, the minimization of the data fidelity

term alone usually involves solving an under-determinate system of equations, which

therefore leads to a non-unique solution or divergence of the algorithm. Therefore, the

regularization term of the cost function adds further constraints on the system, rendering

it over-determinate and implicitly the minimization problem becomes well-posed. From

a practical perspective, the regularization term limits the degrees of freedom of the

estimated deformations and, for anatomically meaningful deformations, should be

chosen according to the deformation patterns and physical characteristics of the observed

anatomy (Zachiu et al. 2018). Multiple previous studies have chosen spatial smoothness

as a suitable constraint on the estimated deformations (Viergever et al. 2016). While

in many cases this has proven to be a reasonable choice, particularly for aligning

organ boundaries, it has been nevertheless demonstrated that within boundaries of

elastic soft tissues this type of regularization may result in anatomically implausible

deformations (Zachiu et al. 2018, Zachiu et al. 2020). More precisely, smoothness as the

regularization constraint frequently leads to considerable compressions and expansions

within the deformation vector field, which are physically implausible in such near-

incompressible tissue structures. This, in turn, may have a direct impact on the precision

and accuracy of the radiation dose mapping and accumulation process. In order to

address this, previous studies have suggested replacing the smoothness constraint with

a penalty on the Jacobian determinant of the deformations (Rohlfing et al. 2003, Haber

& Modersitzki 2004, Haber & Modersitzki 2006, Zachiu et al. 2018). While this has

led to acceptable boundary alignment and more anatomically meaningful deformations,

it does so only for near-incompressible anatomical regions. For areas which do

undergo volumetric changes, incompressibility as a motion constraint frequently leads

to misregistrations, in particular in purely gas/liquid-filled compartments of the human

anatomy. Since variational algorithms evaluate their respective cost function over the

entire field-of-view (FOV), the resulting misregistration of such problematic regions may

affect the estimation accuracy in adjacent incompressible regions, or worse - should such

a problematic region dominate the cost function - even prevent convergence entirely.

In the current work we propose an anatomically-adaptive multi-modal variational DIR

algorithm, which employs a local regularization depending on the anatomical properties

of the observed anatomy. A test bench is also constructed, which demonstrates the

benefits of such an approach compared to registration models which employ a global

regularization. Moreover, despite the more complex nature of an anatomically adaptive

approach, the numerical implementation has been optimized such that the performance

remains entirely compatible with the requirements of online IGRT.
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2. Method description

2.1. Investigated registration algorithms

2.1.1. DIR algorithms employing a global regularization In the scope of this work we

have selected as a point-of-comparison to our anatomically-adaptive approach (which is

described in detail in the subsequent paragraph), two previously-proposed algorithms

which respectively also employ smoothness and incompressibility as a regularization

constraint but, contrary to the new approach, assume validity of their respective regu-

larization over the entire field-of-view (FOV). Both methods were previously validated

for specific scenarios within the context of adaptive image-guided radiotherapy (Zachiu

et al. 2018, Zachiu et al. 2020).

(i) The EVolution registration algorithm (abbreviated EVO in the scope of this

manuscript), initially proposed in (Denis de Senneville et al. 2016), estimates

the deformation between two images I1 and I2 as the minimizer of the following

functional:

EEV O(~u) =
∑

~r∈Ω

e−C(~u(~r)) + α
(

‖~∇u1(~r)‖
2
2 + ‖~∇u2(~r)‖

2
2 + ‖~∇u3(~r)‖

2
2

)

(1)

where:

C(u(~r)) =

∑

~s∈Γ |
~∇I1(~s) · ~∇I2(~s+ ~u(~s))|

∑

~s∈Γ ‖
~∇I1(~s)‖2‖~∇I2(~s+ ~u(~s))‖2

(2)

with ~u = (u1, u2, u3) being the 3D displacement, Ω the image domain, ~r the voxel

position, ~∇ is the spatial gradient operator, ‖ · ‖2 is the Euclidean norm, α is

a parameter linking the two terms of the functional and Γ is a symmetric cubic

neighborhood around ~r. The data fidelity term (i.e. the first integrand) of the

cost function in eq. 1 favors the alignment of strong gradients (e.g. edges) present

in both I1 and I2. The regularization term (i.e. the second integrand) addresses

the ill-posedness of minimizing the data fidelity term alone, by assuming that the

underlying anatomical deformations are smooth/differentiable. The regularization

parameter α controls the amount of smoothness that the estimated deformations

should showcase. Additional details on the numerical minimization of eq. 1 together

with extensive validation of the algorithm can be found in (Denis de Senneville

et al. 2016).

(ii) The incompressibility-regularized EVolution algorithm (referred to as EVI for the

remainder of the manuscript), is a variation of EVO, initially designed as an

improved solution for estimating anatomically meaningful deformations within

elastic soft-tissues (Zachiu et al. 2018). Similar to EVO, it is a multi-modal

variational image registration algorithm, with the deformations being estimated

as the minimizer of:

EEV I(~u) =
∑

~r∈Ω

e−C(~u(~r)) + β (J(~r + ~u(~r))− 1)2 (3)
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with
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(4)

being the Jacobian determinant of the deformations. The rest of the terms maintain

their meaning from eq. 2. The regularization term in eq. 3 constrains the estimated

deformations to be incompressible, which has been demonstrated to be a better

choice within near-incompressible anatomical structures compared to EVO (Zachiu

et al. 2018, Zachiu et al. 2020).

2.1.2. Proposed anatomically adaptive DIR solution In the scope of this paper we

propose replacing the global regularization employed by EVO and EVI, with a localized

regularization which depends on the specific anatomical and physical properties of the

observed anatomical structures. In effect, this new registration model which we will

call adaptive-EVolution (AEVO) provides the deformations between two images as the

minimizer of the following functional:

EAEV O(~u) =
∑

~r∈Ω

(

e−C(~u(~r)) +MS(~r) · γ
(

‖~∇u1(~r)‖
2
2 + ‖~∇u2(~r)‖

2
2 + ‖~∇u3(~r)‖

2
2

)

+MI(~r) · δ (J(~r + ~u(~r))− 1)2
)

(5)

where MS and MI are binary 3D matrices, defining the regions where the observed

anatomy undergoes smooth or incompressible deformations, respectively. Similar to

eq. 2 and 3, the regularization parameters γ and δ control the amount of smoothness

and incompressibility within their respective image regions. The two binary masks MS

and MI were chosen here to be complementary (i.e. MI = 1 − MS). Alternatively,

both regularizations could be employed simultaneously (i.e. MS = MI = 1) and allow

parameters γ and δ to be spatially variant instead. The amount of smoothness and

incompressibility of the estimated deformations could then be weighted in accordance

with the biomechanical properties of the observed tissues.

The minimization of the cost function in eq. 5 was performed by running an iterative

fixed-point scheme on the resulting Euler-Largrange equations, similar to the approach

described in (Denis de Senneville et al. 2016) and (Zachiu et al. 2018) for EVO and

EVI. The registration process was performed in a coarse-to-fine manner, by iterating

it from a 16-fold downsampled version of the images up to their original resolution,

with an upsampling factor of two. Together with the images, the binary masks MS and

MI were also downsampled accordingly, using and averaging downsampling kernel. At

each resolution level, we have also employed iterative refinement of the deformations,

which implied restarting the registration process several times at the same resolution,

using as an initial value the deformations from the previous refinement iteration. The

registration process at each resolution level was stopped when the relative average dif-

ference between the motion fields estimated by two successive iterations was lower than
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5% (chosen empirically). The stopping criterion was evaluated individually for both

the compressible and incompressible areas. Note that the EVO and EVI cost functions

were minimized using the approach described in their original manuscripts (Denis de

Senneville et al. 2016, Zachiu et al. 2018).

2.2. Experimental setup

The AEVO, EVO and EVI registration methods were evaluated within the context of two

clinically relevant applications of IGRT: CT/conebeam CT(CBCT)-guided radiotherapy

for lung cancer and MR-guided radiotherapy of prostate cancer. The two anatomical

sites were also chosen due to the considerably different deformation patterns showcased

by the respective structures present within the field-of-view, i.e. compressible areas

(lungs, bladder and rectum) situated in the immediate vicinity of near-incompressible

structures (such as the pathological tissue itself). In the following we will describe

the medical image data used for this purpose, together with the employed evaluation

methodology for the algorithms.

2.2.1. Selection of the medical image datasets For CT/CBCT-guided radiotherapy for

lung cancer, we have selected a 4D-CT image sequence from five patients, with each

sequence sampling the 3D anatomical changes over the course of their respiratory cycle

(from 0 to 90 %, with an increment of 10%). The data was downloaded from “The

Cancer Imaging Archive”, originally collected in the scope of the following studies

(Roman et al. 2012, Clark et al. 2013, Balik et al. 2013, Hugo et al. 2016, Hugo

et al. 2017). For each dynamic image volume of the selected 4D-CT sequences, the

curators of the database have also provided contours for the lungs, the tumor and

several other structures. Out of each 4D-CT sequence we have only selected image pairs

which showcase the largest anatomical differences between them. In effect, the full-

inhalation image (the 0% phase) was established as reference image for the registration

process, whereas the 40 - 70 % images were considered to be due for registration. The

resulting dataset was then used to evaluate the performance and behavior of EVO, EVI

and AEVO for CT to CT registration. Note that for the AEVO method, the lungs, the

heart and the area outside the body were considered to be compressible, while the rest

of the structures present in the FOV were deemed near-incompressible.

In order to evaluate the performance of the algorithms for CT to CBCT registration

(potentially beneficial for applications described in detail in (Zachiu et al. 2017b)), a

set of CBCT images were synthesized from the 40 - 70% CT images mentioned above.

This was achieved by a three-fold down-sampling of their sinogram and subsequent

reconstruction via the TIGRE toolbox (Biguri et al. 2016). This resulted in a set of

synthetic CBCT images with a quality similar to that provided by a regular CBCT

imaging device (see (Zachiu et al. 2017b) for further discussion on this topic). Thus,

registering the synthetic 40 - 70% CBCT images to the original 0% CT via the three
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algorithms, allowed their evaluation for CT-CBCT registration. In terms of acquisition

parameters, the original CT images were acquired on a Varian Trilogy scanner, in-plane

image size 512× 512 and a variable number of slices, voxel size 0.97× 0.97× 3.0mm3.

The evaluation of the algorithms for MR-guided radiotherapy for prostate patients was

performed on image data acquired as part of a cohort study on the Unity MR-Linac

installed at the UMC Utrecht, Utrecht, The Netherlands. In-line with the potential

requirements of adaptive IGRT on the MR-Linac, we have evaluated the algorithms

for: 1) Mono-modal MR image registration; 2) Multi-modal/cross-contrast MR image

registration and 3) CT to MR image registration. For each of these instances, we have

selected image pairs from five patients, with contours for the prostate, bladder, rectum,

femurs and the pelvis being available for each individual image. The contours were

validated for accuracy by two experienced radiation oncologists. For registration using

the proposed AEVO method, the prostate and the bony structures (i.e. the pelvis

and the femurs) were considered to be near-incompressible, while the remainder of the

areas (including the region outside the body) were allowed to smoothly deform. The

acquisition parameters for the reference and the moving images in the three datasets

are reported in table 1. Note that all MR images were acquired on a 1.5 T Philips

Achieva scanner, Philips Healthcare, Best, The Netherlands, while the CT prostate

cancer images were acquired on a Philips Brilliance Big Bore scanner, Philips Healthcare,

Best, The Netherlands. For instances in which the reference and the moving image

Dataset Image
TR TE

FA◦
Image Voxel Size

[ms] [ms] Dimension [mm3]

MR-MR Reference 1535 277 90 480× 480× 300 0.83× 0.83× 2

Mono Moving Same as the reference image

MR-MR Reference 1535 277.81 90 480× 480× 300 0.83× 0.83× 2

Multi Moving 4.68 2.34 50 448× 448× 63 0.93× 0.93× 2

CT-MR
Reference - - - 512× 512× 125 1.03× 1.03× 3

Moving 1535 277 90 480× 480× 300 0.83× 0.83× 2

Table 1: Acquisition parameters for the images used in the scope of evaluating EVO,

EVI and AEVO for MR-guided radiotherapy of prostate cancer patients. The employed

abbreviations are as follows: TR - repetition time, TE - echo time and FA - flip angle.

had a different FOV and/or voxel size, the moving image was initially re-sampled on

the grid of the reference. This was subsequently followed by resizing both images to

256 × 256 × 256, for computational purposes. For the CT - MR dataset, we have also

performed an approximate rigid manual re-alignment of the images prior to applying

deformable registration.

2.2.2. Algorithm evaluation criteria The three algorithms were comparatively

evaluated against three criteria: contour propagation performance, anatomical
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plausibility of the estimated deformations and accuracy and precision of the estimated

deformations.

(i) In order to determine the performance of the algorithms for contour propagation,

we employed the dice similarity coefficient (DSC) before and after registration

(Dice 1945):

DSC(A,B) =
2 ∗ |A ∩ B|

|A|+ |B|
(6)

where A and B are two contours whose overlap is determined and | · | corresponds

to the number of voxels within a contour.

(ii) For anatomical plausibility, the voxel-wise Jacobian determinant of the estimated

deformations was evaluated. It is known from continuum mechanics that

deformations of near-incompressible materials have a Jacobian determinant that

is close to one. Similarly, within anatomical areas which are known to undergo

volumetric changes (such as the lung, bladder and rectum), a value which is close

to one may be indicative of misregistrations. For the mathematical expression of

the Jacobian determinant of a 3D deformation field we refer the reader to eq. 4.

(iii) For the comparative evaluation of the accuracy and precision of the algorithms, we

have applied a set of known deformations on one of the CT lung cancer images and

one of the MR prostate cancer images. In this manner, two pairs of synthetically

deformed images were generated and subsequently registered to one-another via the

investigated algorithms. The voxel-wise root square error between the known and

the estimated deformations was then calculated and used as an evaluation criterion:

RSE(~r) = ‖~uest(~r)− ~uknown(~r)‖2 (7)

where ~uest and ~uknown are the estimated and the known deformations, respectively,

‖ · ‖2 is the Euclidean norm and ~r is the voxel position.

The known deformations were generated via a finite element modeling (FEM) of

the organ displacements in each of the two images. In summary, the available

organ contours were initially imported into the FEM software PreView v2.1.4 (Maas

et al. 2012), which allowed establishing the physical properties of the tissues and

the motion actuators. The latter implied a lung inflation for the CT data and an

increase of the bladder volume and rectum for the MRI. This was followed by the

effective finite element simulation of the resulting deformations via the FEBio v2.9.1

software (Maas et al. 2012). Finally, the simulated deformations were inspected

using PostView v2.4.4 (Maas et al. 2012) in order to confirm their similarity to the

typical deformation patterns occurring in these anatomical regions. The resulting

vector fields were then used to deform the original CT and MR image, respectively.

Note that the employed elastic modulus (E) and the Poisson ratio (ν) for the tissues

of interest, required as part of the simulation, were adopted from previous studies

(Qiao et al. 2005, Chai et al. 2009, Al-Mayah et al. 2009, Lee et al. 2012, Zachiu

et al. 2020).
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2.3. Algorithm implementation and calibration

All algorithms were implemented using the Compute Unified Device Architecture

(CUDA) and executed on a Nvidia TITAN V graphics card.

The regularization parameters α, β, γ and δ (see eq. 1, 3 and 5) were configured by

an exhaustive search, maximizing the post-registration contour alignment of the clinical

target volume (CTV). The calibration procedure was only performed on one of the image

pairs in each of the datasets (CT-CT, CT-CBCT, MR Monomodal, MR Multimodal

and CT-MR), with the parameter values being maintained for the remainder of the

image pairs in each dataset. Such an optimization procedure is justified by the fact

that in clinical practice, registration results are validated by a visual inspection of the

post-registration organ boundary alignment. In effect, we have used the maximization

of the post-registration DSC as an objective surrogate for such a criterion. The

employed values for the regularization parameters are reported in table 2. The size

of the neighborhood Γ required for the calculation of the data fidelity term was set to

11 × 11 × 11 for all algorithms, as suggested in (Denis de Senneville et al. 2016) and

(Zachiu et al. 2018).

Dataset
Algorithm (Parameter)

EVO (α) EVI (β) AEVO (γ, δ)

CT - CT 0.2 0.8 (0.2, 1.5)

CT - CBCT 0.25 0.8 (0.25, 1.5)

MR - MR Mono 0.2 0.6 (0.25, 0.8)

MR - MR Multi 0.2 0.6 (0.25, 0.8)

CT - MR 0.5 0.8 (0.5, 1.5)

Table 2: Regularization parameters for the three registration algorithms, for each of the

image modalities.

3. Results

3.1. Performance of the investigated algorithms for tracking organ boundaries

3.1.1. CT/CBCT-based tracking in lung cancer patients Figure 1 illustrates the

statistical distribution of the Dice Similarity Coefficient (DSC) following the registration

of the CT-CT and CT-CBCT datasets (see section 2.2.1). The pre- and post-registration

DSC values were pooled together from the five patients, for each of the anatomical

structures-of-interest, and displayed under the shape of a boxplot. The box limits of

each boxplot are represented by the 25th and 75th percentiles, while the whiskers are

approximately the 1st and the 99th percentiles, respectively. While all three algorithms

lead to improvements of the post-registration DSC, there is a noticeable tendency of

the EVI algorithm to under-perform for the lungs, compared to both EVO and AEVO.
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On the other hand, there are no considerable differences between the algorithms for the

tumor itself (assumed near-incompressible).

3.1.2. MR-based tracking in prostate cancer patients Table 3 reports the DSC before

and after registration of the datasets acquired on the prostate cancer patients (see section
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Figure 1: Boundary tracking capabilities of the investigated methods for (a) CT-based

and (b) CBCT-based tracking. The two images showcase the statistical distribution

of the DSC for the lungs and the tumor before and after registration using the three

algorithms.
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2.2.1). The values in the table represent the DSC averaged over the five image pairs from

each of the MR Monomodal, MR Multimodal and CT-MR datasets. The DSC values are

reported individually for the bladder, prostate and rectum. Similar to the CT/CBCT

tracking scenario, all three algorithms have led to a notable improvement of the DSC in

all cases, compared to pre-registration. On the other hand, while for the prostate itself

all three algorithms perform similarly, for the bladder and rectum, the EVI algorithm

has a tendency to misregister the images in these areas, with differences of the average

DSC of up to 7% compared to EVO and AEVO. The latter two algorithms, however,

showcase no notable differences in terms of the DSC.

ROI Algorithm MR-MR Mono MR-MR Multi MR - CT

Bladder

None 0.79 0.79 0.73

EVO 0.93 0.91 0.86

EVI 0.86 0.85 0.81

AEVO 0.93 0.90 0.85

Prostate (CTV)

None 0.83 0.78 0.78

EVO 0.92 0.83 0.82

EVI 0.92 0.84 0.83

AEVO 0.93 0.84 0.82

Rectum

None 0.75 0.79 0.73

EVO 0.88 0.85 0.80

EVI 0.82 0.82 0.80

AEVO 0.88 0.85 0.80

Table 3: Boundary tracking capabilities of the evaluated algorithms for MR-based

guidance in the context of EBRT for prostate cancer. The values represent the average

DSC over the five image pairs in each of the MR Monomodal, MR Multimodal and

CT-MR datasets. The reporting is made individually for the bladder, prostate and

rectum.

3.2. Anatomical plausibility of the estimated deformations

Figure 2 illustrates the voxel-wise Jacobian determinant of the deformations estimated

by the evaluated algorithms on one of the image pairs from each of the five datasets.

It can be observed that in all cases, the EVO algorithm displays moderate to high

deviations of the Jacobian determinant from one, regardless whether the underlying

anatomy is near-incompressible or not. On the other hand, as the EVI algorithm

penalizes deviations of the Jacobian determinant from one, such deviations are

considerably reduced over the entire field-of-view. This also includes anatomical

structures which are expected to change volume such as the lung and the rectum.

The AEVO method, on the other hand, maintains a Jacobian determinant close to

one for structures which were considered to be near-incompressible in the scope of this
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study (enclosed by the red dashed lines), while for the remainder of the structures

moderate to high deviations can be observed. Another interesting observation is that

for the illustrated CT-CBCT case, the AEVO algorithm showcases a more uniform

spatial distribution of the Jacobian determinant within the lung, compared to the EVO

method.

To support the observations stemming from figure 2, figure 3 shows the statistical

distribution of the Jacobian determinant provided within incompressible structures by

the three registration algorithms. The illustrated boxplots were generated by pooling

together the Jacobian determinant of the deformations within incompressible structures

from all registered image pairs in each of the five datasets. It can be observed

that, to different extents, the EVO algorithm leads in all cases to considerably larger

variations of the Jacobian determinant compared to EVI and AEVO. On the other hand,

within incompressible structures, AEVO demonstrates similar ranges of the Jacobian

determinant to EVI.

3.3. Algorithm performance with respect to known deformations

Figure 4 showcases a selected slice from the anatomical images used in the FEM

experiment (see section 2.2.2). More precisely, the images illustrate a coronal (figures

4(a)-4(c)) and a sagittal (figures 4(d)-4(f)) slice selected from the reference image, the

moving image and their color-coded fusion, associated to the lung CT and prostate MR

FEM simulation. Within the color-coded fusion, the magenta channel corresponds to

the moving image, while the green channel is the reference. As intended, it can be

observed that the anatomical differences between the images stem from an inflation of

the lungs for the CT data and a volumetric increase of the bladder and rectum for the

prostate cancer data.

The spatial distribution of the Jacobian determinant of the deformations estimated by

the three algorithms on the FEM-generated data is illustrated in figure 5. The results

are consistent with the observations made for the clinical data: the EVO and AEVO

algorithms showcase high deviations from one within compressible structures such as

the lungs, bladder and rectum, whereas the values for EVI remain in the proximity of

one. On the other hand, within incompressible anatomies, the EVO method showcases

moderate to high deviations from one, while AEVO and EVI provide similar values.

This is again re-confirmed by the statistical analysis of the Jacobian determinant within

incompressible structures, showcased within figure 6.

Figure 7 displays the statistical distribution of the RSE calculated between the

estimated and the simulated deformations, for all three algorithms. The errors were

aggregated from both the compressible and incompressible structures in order to

generate the illustrated boxplots. It can be noted that for both image pairs, the AEVO

algorithm has a tendency to provide lower estimation errors compared to both EVO

and EVI, with a maximum RSE of 1.5 - 2 mm. On the other hand, the EVI method

leads to rather large errors of up to ∼7 mm for the CT data and ∼9 mm for the MR
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Figure 2: Anatomical plausibility of the deformations estimated by the three algorithms

on the five datasets - example. The first column showcases a slice from the reference

image of one of the registered image pairs from each of the five datasets. Columns

two, three and four display the spatial distribution of the Jacobian determinant of the

deformations estimated by EVO, EVI and AEVO, respectively. The red dashed lines

indicate the anatomical areas which were considered to be incompressible in the scope

of this work. The blue dashed lines within the first two rows enclose the lungs, which

were considered compressible.

images. The EVO algorithm is situated in-between AEVO and EVI, with errors of up

to ∼4.5 mm for the lung images and ∼2.5 mm for the prostate data, with the RSE for

the latter being overall only slightly higher compared to AEVO.
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Figure 3: Statistical distribution of the Jacobian determinant provided by the three

algorithms within incompressible areas. Illustration is performed individually for each

of the five datasets.

3.4. Computational time of the proposed registration algorithm

Table 4 reports the average computational time required by the proposed AEVO

registration algorithm, for each of the five registered image modalities. Recall that

all images were re-sampled on a 256 × 256 × 256 grid prior to registration (see section

2.2.1).

It can be observed that in all instances, the average convergence time remains under

one minute. Noteworthy is also the fact that for CT-to-MR image registration, the

algorithm converged considerably faster to a solution, compared to the rest of the

imaging modalities.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Anatomical images employed in the FEM experiment. The figures illustrate

a selected slice from the reference, moving and color-fused image for (a)-(c): the lung

CT and (d)-(f): the prostate MR FEM simulation.

Dataset
Average

Convergence Time [s]

CT - CT 49.5

CT - CBCT 46.3

MR - MR Mono 44.8

MR - MR Multi 55.0

CT - MR 19.4

Table 4: Average convergence time for the AEVO algorithm for each of the five image

modalities.

4. Discussion

Several applications within image-guided radiotherapy such as daily positioning, contour

propagation, dose accumulation and adaptive re-planning may potentially benefit from

the inclusion of DIR algorithms in their workflows, with the aim of improving the

geometric accuracy of treatment planning, delivery and response assessment (Brock

et al. 2017). Since current IGRT may include multiple imaging modalities and contrasts

over the course of the treatment, multi-modal DIR methods are of particular interest in

this context. Additionally, in case such methods are employed for applications requiring
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Figure 5: The spatial distribution of the Jacobian determinant for each of the three

analyzed algorithms when applied on the FEM-generated image pairs. The illustration

is made for the same slices as in figure 4. The red dashed lines enclose the anatomical

structures which were considered to be incompressible, i.e. the tumor, rib cage, liver

and spleen for the CT data, while for the MR data it is the prostate and the pelvis.

The blue dashed line indicates the compressible structures, namely the lungs and the

heart for the CT image and with the bladder and the rectum for the MR data.
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Figure 6: Statistical distribution of the Jacobian determinant provided within near-

incompressible regions by the three algorithms when applied on the FEM-generated

data.

on-fly-processing, for example if the patient is already positioned on/in the therapy

system, computational times and robust convergence become an important factor. In

this sense, variational multi-modal DIR algorithms are a particularly attractive solution,

due to their previously demonstrated precision, accuracy and fast convergence times

(Glitzner et al. 2015, Denis de Senneville et al. 2016, Zachiu et al. 2017b, Lafitte
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Figure 7: Statistical distribution of the RSE between the deformations estimated by the

three algorithms and the FEM-simulated deformations.

et al. 2018, Zachiu et al. 2018).

Here, we propose a variational multi-modal registration algorithm, which adapts its

registration model in accordance with the observed underlying anatomy (AEVO). In

order to determine the benefits such an approach may provide, we have comparatively

evaluated it against two existing solutions: one with a regularization term stemming

from the field of digital image processing (EVO) (Denis de Senneville et al. 2016) and

its variation which has been adapted for tracking elastic soft tissues (EVI) (Zachiu

et al. 2018). The rationale is hereby that the majority of the existing cross-modality

variational registration algorithms such as EVO or EVI employ a spatially invariant

regularization across the entire field of view. The underlying assumption is hereby,

that (a) either the overall tissue structure is sufficiently homogenous with respect to

their biomechanical properties to justify this generalized choice of the regularization,

or (b) that the data fidelity term of the variational is strong enough ”to pull” the

algorithm even in those regions to the anatomically correct result, where assumption

(a) is (partially) violated. As our results and the results of numerous papers have

shown, this assumption is generally well fulfilled for the evaluated EVO and EVI

algorithms and can furthermore be addressed by choosing the appropriate regularization

parameter. However, in the direct vicinity of biomechanically heterogeneous regions, and

in particular for imaging modalities (or anatomical regions) associated with poorer soft

tissue contrast, these assumptions become problematic due to the limited contribution of

the data fidelity term to the variational in these regions. As it has been shown in previous

studies for finite element-based registration algorithms (Bharatha et al. 2001, Brock

et al. 2005, Zhong et al. 2012, Velec et al. 2017), taking local biomechanical properties

as prior knowledge into account can significantly improve the result of the registration

process. Unfortunately, for most biomedical image modalities such as MRI, CT or

CBCT it is generally not possible to derive precise local knowledge of all biomechanical

parameters on an inter-individual basis from the images themselves. Nevertheless,
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almost all these imaging modalities allow a coarse classification of imaged tissue into

the categories air, liquid, soft-tissue and bone. This, in-turn, unlocks the possibility

to employ variational algorithms with a locally variant regularization, which matches

locally best for a given type of tissue.

An additional point to be made is that all three algorithms employ the same data fidelity

term, allowing thus to study the impact the different regularization terms have on the

estimated deformations.

4.1. Algorithm performance for contour propagation

The contour propagation capabilities of all three algorithms was evaluated in the

context of registering multiple imaging modalities which may be involved in an IGRT

workflow: CT - CT, CT - CBCT, same-contrast MR, multi-contrast MR and CT -

MR. The images were acquired as part of a protocol for lung and prostate cancer

patients, respectively. Both of these anatomical sites contain neighboring regions with

considerably different deformation patterns. For example, while the lungs can undergo

significant volumetric changes over the respiratory cycle, the surrounding tissues are

only displaced/transported from one part of the FOV to another, with limited changes

in volume. A similar situation arises in the prostate, which may be displaced under the

effect of volumetric changes within the bladder and/or rectum.

In order to determine the contour propagation performance of the three algorithms,

we have evaluated the pre- and post-registration dice similarity coefficient (DSC) for

several structures of interest in each of the five datasets. As shown in figure 1 and table

3, all algorithms have led to a notable improvement of the DSC compared to the pre-

registration case. However, for anatomies which can undergo volumetric changes (such

as the lungs, bladder and rectum), the EVI algorithm leads to systematically larger

errors in terms of contour alignment, compared to EVO and AEVO. Such an outcome

is, nevertheless, in line with the design of EVI, which globally penalizes deviations of

the Jacobian determinant from one and implicitly any volumetric changes. Concerning

AEVO, while there is a tendency to provide slightly lower values for the DSC compared

to EVO, this situation only occurs within isolated cases, with limited differences of 1-2

%.

On the other hand, for near-incompressible structures such as the pathological area, all

three algorithms provided similar DSC values in both the lung and the prostate cancer

cases. It is worth noting that for EVO and EVI this is in good correspondence with our

previous findings in (Zachiu et al. 2018, Zachiu et al. 2020).

4.2. Anatomical plausibility of the estimated deformations

As previously discussed, the Jacobian determinant of near-incompressible anatomies

should be close to one. Thus, large deviations from this value in such areas are physically

implausible and indicative of misregistrations (Schreibmann et al. 2012, Zachiu et al.

2018). In turn, this may lead to mapping errors of quantitative information such as



Anatomically-adaptive multi-modal image registration 20

Houndsfield units, radiation dose and/or diffusion/perfusion values, as discussed and

demonstrated by previous studies (Zachiu et al. 2018, Zachiu et al. 2020). In effect, we

have evaluated here the spatial and statistical distribution of the Jacobian determinant

for all three of the algorithms.

What is already apparent from a visual analysis of figures 2 and 5 is that both

EVO and EVI provide a spatial distribution of the Jacobian determinant with

consistent characteristics over the entire FOV. While EVO showcases moderate to high

deviations from one within both compressible and near-incompressible structures, EVI

overall penalizes such deviations, including within structures which typically undergo

volumetric changes. Particularly for the FEM experiments (see figure 5), where large

volumetric changes were simulated for the lungs and the bladder, a Jacobian determinant

close to one within these structures is a clear indication of misregistration. AEVO, on

the other hand, limits such deviations solely within structures which were considered to

be near-incompressible, with the areas outside these structures showcasing volumetric

changes to approximately the same extent as EVO. A noteworthy observation is that,

within “compressible” regions, the AEVO algorithm leads to smoother spatial variations

of the Jacobian determinant compared to EVO. This effect is particularly observable

within the lungs and is in good correspondence with the physical reality, since during

respiration the pressure within the lungs is near-uniform. We hypothesize that this

stems from the multi-resolution scheme used to minimize the AEVO variational (see

section 2.1.2). At the lower resolution levels, both the smoothness and incompressible

regularizations may end-up operating on the same voxels, particularly for the ones

situated at the boundary between the two regions. This can lead to an incompressible

deformation pattern, partially being present within smooth regions of the motion field

used as an initializer for the higher resolutions. In turn, this may lead to a more uniform

spatial distribution of the Jacobian determinant within compressible areas.

The above observations on the Jacobian determinant values for the three algorithms

were confirmed by its statistical analysis within near-incompressible regions. It can be

seen in figures 3 and 6 that while AEVO and EVI provide values within a similar range,

EVO leads to a systematic ∼20 - 40% higher range of the Jacobian determinant. In

effect, the deformations provided by AEVO and EVI are more anatomically plausible

in near-incompressible anatomical structures, compared to EVO.

4.3. Overall performance of the algorithms

Depending on the specific particularities and requirements of the application at hand,

a registration algorithm may or may not be suitable for the task. In case contour

propagation within elastic soft tissues is of interest, the results in figure 1 and table 3

indicate that either of the three evaluate algorithms would provide satisfactory results.

For anatomical structures which undergo volumetric changes however, the EVI method

is by design unsuitable to handle such deformation patterns.

On the other hand, in case the application requires the mapping of quantitative
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information within elastic soft tissues, the EVO algorithm may lead to mapping errors

due to its tendency to provide moderate to high deviations of the Jacobian determinant

from one (Zachiu et al. 2018, Zachiu et al. 2020), while AEVO and EVI considerably

mitigate this effect (see figures 3 and 6). Nevertheless, within compressible anatomical

structures, EVI is unsuitable for this task as well, due to its limited ability to register

volumetric changes, in particular within structures displaying poor soft-tissue contrast.

In effect, the proposed anatomically-adaptive approach appears to be the optimal choice

among the three: it is able to accurately track the boundaries of both compressible and

incompressible anatomical areas, while at the same time maintaining the anatomical

plausibility of the estimated deformations within elastic soft tissues. This assertion is

also supported by the two FEM experiments, which have demonstrated that in both

cases the AEVO algorithm outperforms in both accuracy and precision (to different

extents) the EVO and EVI methods (as shown in figure 7).

Compared to EVO and EVI, however, the AEVO algorithm requires a map of

compressible/incompressible regions as an input. This basically provides the registration

method with prior information regarding the deformation characteristics of different

anatomical regions present within the FOV. While this may seem as a limitation of the

approach, contours of the tumor and the organs-at-risk (allowing the definition of such

areas) are readily available from the therapy planning step of the IGRT. Additionally,

the recent developments within the domain of deep learning-based segmentation, present

the potential to automate the generation of the required maps.

Another distinguishable difference between AEVO and the two other methods is the

requirement to calibrate two regularization parameters instead of one (see eq. 1, 3 and

5). While this leads to longer calibration times, we have observed that from a practical

point-of-view, this only needs to be performed once per registration modality. In effect,

similar to EVO and EVI, the regularization parameters can be prospectively optimized

and, as long as the MR/CT acquisition parameters do not change significantly, the same

values can be maintained over practically any number of cases. Nevertheless, for future

studies we intend to investigate methodologies which allow the automatic calibration of

the proposed AEVO method.

In terms of computational requirements, the average convergence time for AEVO

remained under 60 s for all registered image modalities. An interesting observation is

that CT-to-MR registration was considerably faster compared to the rest of the imaging

modalities (see table 4). We hypothesize that this is due to the strong dissimilarity in

the appearance of anatomical structures between the CT and the MR images. In effect,

it is only the most prominent features such as organ boundaries which contribute to the

data fidelity term of the AEVO cost function in eq. 5, requiring overall less iterations to

optimize. Nevertheless, the convergence time remains compatible with clinical workflows

in an online setting. Naturally, the computational requirements may scale with the size

of the images, the employed hardware and magnitude of the deformations.
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5. Conclusion

The present study proposes a novel multi-modal variational DIR algorithm, which

adapts its registration model in accordance with the local properties of the observed

anatomy. The method was comparatively evaluated against two existing DIR methods

EVO and EVI, which employ a smoothness and an incompressible regularization

over the entire field-of-view, respectively. In terms of contour propagation, both the

proposed AEVO and the existing EVO have shown a similar performance, whereas

EVI was demonstrated to be sub-optimal for areas which undergo volumetric changes.

On the other hand, while the EVO algorithm can lead to anatomically implausible

deformations within elastic biological soft-tissues, the proposed AEVOmethod addresses

this shortcoming, leading to a local Jacobian determinant similar to that of EVI.

As demonstrated in previous studies, this leads to a more precise and accurate

mapping of quantitative information such as the delivered radiation dose. The FEM

experiments have also demonstrated that overall, the AEVO algorithm has the potential

to estimate deformations with a higher accuracy and precision, compared to the existing

methods. Moreover, despite the more complex registration model and numerical

implementation, the proposed anatomically adaptive approach leads to computational

times which remain compatible with clinical scenarios in an online setting. Therefore,

we can conclude that, compared to the methods employing a global regularization, the

proposed AEVO algorithm showcases better potential benefits for future adaptive IGRT

workflows.
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