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Taylor-Couette flows in a horizontal annular gap between finite coaxial 

cylinders in rotor-stator configuration are numerically investigated. The inner 

cylinder (rotor) rotates at a constant angular velocity while the outer cylinder 

(stator) is at rest. They are limited at their extremities by two fixed walls that 

prevent axial fluid flow. In addition, a heat transfer is generated by an imposed 

temperature difference, with the rotor hotter than the stator while the end-walls 

are adiabatic. The fluid physical properties are temperature dependent. This 

non-linear physics problem, with a strong coupling of the conservation 

equations and boundary conditions, is solved by a finite volume method with 

numerical schemes of second order space and time accuracies. The radius and 

aspect ratios and the Taylor, Grashof and Prandt numbers are the control 

parameters. The developed numerical code has been tested for different meshes 

and perfectly validated. Extensive calculations have been made in large ranges 

of the Taylor and Grashof numbers to analyze the Taylor-Couette flow in 

convection modes. The results highlight the dynamic and thermal instabilities 

generated in the Taylor Couette flow from the appearance of Ekman cells to the 

Taylor vortex propagation in the entire annulus. The combined effect of these 

vortices with  the secondary flow improves the heat  transfer. Furthermore, the 

influence of the physical properties in the radial direction is more marked in the 

vicinity of the walls. Finally, we propose an empirical correlation of the Nusselt 

number in the studied parameter ranges.  

 

Key words: Taylor-Couette flow, Horizontal annular gap, Vortex, Mixed 

convection, Variable properties, Numerical simulation.  

1. Introduction  

Because of their great importance for many engineering applications (e.g. electrical engines) and 

for the fundamental research, the study of heated rotary flows is still relevant. Inevitably, the heated 

Taylor-Couette flow is the cornerstone for understanding this complex flow and heat transfer 

configuration. Since the Couette [1] and Taylor [2] precursor works, the topics of the rotating flows and 
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the centrifugal instabilities resulting from it have been the subject of intense research activity. As a 

reminder, a Taylor-Couette flow (TCF) is that of a viscous fluid enclosed between two coaxial cylinders 

whose the inner cylinder rotates about its axis while the outer one is fixed. The Taylor-Couette instability 

is a secondary flow formed by contrarotating toroidal vortices. It is induced by the force imbalance 

between the centrifugal force and the pressure gradient in the radial direction within the gap of the 

cylinders. It is possible to discern TCFs with and without heat transfer. For the latter, an abundant 

bibliography highlights the influence of the increase of the Taylor number (rotational Reynolds number) 

as well as the appearance and evolution of the Taylor vortices in the gap, [3-6]. A mapping of the 

different states of the flow and successive instabilities ranging from steady state Couette flow, 

abbreviated by CCF (circular Couette flow) until the turbulent Taylor flows has been developed by 

Andereck et al. [7] where each passage between two successive states is characterized by a critical 

Reynolds number [5]. Dutcher and Muller [8] have developed analytic formula for the determination of 

the critical Reynolds number for the newtonian Taylor-Couette primary instabilities for wide ranges of 

radius and aspect ratios. They showed that well-chosen dimensionless length scales can be used to fully 

describe the dependence of the critical conditions on the radius ratio. 

For the second class of TCFs with heat transfer, the studies are more recent and interesting 

bibliographic reviews [9-11] retrace the research evolution and propose open axes to explore. In addition 

to the inertial and centrifugal forces, the buoyancy forces generated by temperature gradients must be 

taken into account. These forces are at the origin of a secondary flow in mixed convection and have been 

shown to improve heat transfer in horizontal ducts [12-13]. For rotating flows, their influence in mixed 

convection mode is developed by Lei and Bakhtier [14] and Choi and Kim [15]. In their first 

experimental work, Bouafia et al. [16] carried out comparisons between two "smooth" and "grooved 

axially" configurations with and without axial flow. They show that the "smooth" configuration is more 

interesting in terms of heat exchange because the thermal heat transfer coefficient increases by 19%. 

Empirical correlations have also been proposed in [16]. The temperature gradient effect on centrifugal 

instabilities in a TCF between two vertical cylinders (ratio of radii = 0.8 and aspect ratio = 114), was 

experimentally studied by Lepiller et al. [17]. By imposing the Grashof number and varying the Taylor 

number, they show that, beyond a critical value of the Taylor number, a spiral pattern occurs giving rise 

to a finite extent propagating pattern. The numerical results from a linear stability analysis made by 

Mutabazi et al. [18] are in agreement with those of [17]. Sommerer and Lauriat [19] numerically studied 

the forced convection flows of an incompressible Newtonian fluid (air) in a grooved annular space, closed 

by fixed and adiabatic lateral rings. The inner cylinder, in rotation, is brought to a uniform temperature 

greater than that of the fixed outer cylinder which is grooved axially. As in [16], they found that heat 

transfer is lower than the one obtained in smooth geometries and propose very precise correlations linking 

the Nusselt number to the friction coefficient for a low rotation speed.  

This work is a new contribution to a better knowledge of the rotating flows. To the 

authors’knowledge on the basis of the visited documentation, the vertical configuration is more studied 

than the horizontal one and only the thermal variations in density are taken into account. The thermo-

dependence of the other fluid physical properties can have a significant influence when a strong 

temperature gradient is present within the annular gap, especially when the fluid is simultaneously 

subjected to rotation and thermal convection in the gap: there will be a direct impact on the appearance 

and growth of the instabilities. Thus the purpose of the present analysis is to study TCF with heat transfer 

and temperature dependent physical properties in a horizontal annular pipe by numerical simulations. 
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2. Mathematical model  

The geometry of the studied system is illustrated in Fig.1. It is an annular tube formed by two 

coaxial horizontal cylinders of the same length, L, and inner and outer radii Ri and Ro respectively, whose 

ends are closed by two fixed walls. The heated inner cylinder rotates at a constant angular velocity,     , 

while the colder outer cylinder is at rest. The gap is filled with water whose temperature dependence of 

the dynamic viscosity and thermal conductivity is taken into account. Such a geometry is defined by the 

following set of parameters: the gap size (  ), the ratio of radii (  , and the aspect ratio (  , respectively 

defined by:       
 
-             , and         

 

 

 

 

 

 

 

 

 

 

The TCF with heat transfer and the temperature dependent physical properties of water are modeled by 

the mass, momentum and energy conservation equations, in a 3D cylindrical coordinate system, with the 

appropriate initial and boundary conditions, as follows: 

At t=0: 

      and                     (1) 

At t>0, using a bold notation for the vectorial form with a gravitational force oriented downward  

– Mass conservation equation: 

 
  

  
                         (2) 

– Momentum equation: 
     

  
                 [               ]                (3) 

– Energy equation: 
       

  
   (      )    [       ]             (4) 

 

The rotational fluid movement is characterized either by the rotating Reynolds number or Taylor number 

defined by:             ⁄   and         
  [          ⁄ ]. 

2.1. Boundary conditions  

At       
 ,           ,       ,   

    
   ,  

   ,      
                                      (5) 

At       
 ,           ,       ,   

    
    

   ,         
   (with   

    
                (6) 

At       and   ,   
       

 ,       ,       
    

    
  

   

   
                                     (7) 

The thermodependence of the dynamic viscosity and thermal conductivity of water is obtained by smooth 
fitting of the tabulated values in Baehr and Stephan’s book [20] and expressed by the dimensionless following 
relationships: 

μ
*
(T

*
) = 0.23087 + 0.78727  exp (-T

*
/0.11386)              (8) 

Figure 1. Geometry of the model 
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k
*
(T

*
) = 1.00111 + 0.80477 T

*
-1.06002 T

*2
              (9) 

2.2. Nusselt numbers 

The local heat transfer is quantified by the local Nusselt number defined as: 

         
         

  
 

         ⁄  |  
 

[     
            

     ]
                       (10) 

where the dimensionless bulk fluid temperature is expressed by: 

  
      

∫ ∫                              
  
 

  
 

  
 

∫ ∫                   
  
 

  
 

  
 

           (11) 

The axial Nusselt number        is defined as: 

       
 

  
∫           
  

 
             (12) 

3. Numerical method 

The finite volume method [21] was used to discretize the conservation equations Eq. (1-4), in 

cylindrical coordinates, with the boundary conditions Eq. (5-7). Second order discretization schemes are 

used: the nonlinear convective terms are discretized by the Adams-Bashforth scheme while the diffusive 

terms are discretized by the totally implicit central difference scheme. The velocity-pressure coupling is 

dealt with SIMPLER algorithm [21] with the time step            . The obtained systems of 

algebraic equations are solved iteratively by the ADI method based on Thomas algorithm. In order to 

ensure accurate and mesh independent solutions, the grid influence has been studied, especially in the 

axial direction. Thus the following grid sizes have been tested in the directions           respectively : 

(26×142×45), (26×162×45) and (26×182×45), keeping the same radius ratio         and aspect ratio 

       . As illustrated in Fig.2, the axial evolution of the azimuthal Nusselt number and the radial 

evolution of the temperature and angular component of the velocity in the annular gap are almost 

identical for the two finest grids. We therefore chose to represent the results with the (26×162×45) grid.  

 

 

           

 

 

 

 

 

 

            (a)                                                 (b)                                                 (c)           

Figure 2. Mesh effects on:  a) the Nusselt number axial evolution, b) the local temperature radial 

evolution at        ⁄            ), c) the local angular velocity radial evolution at          
      ), for aspect ratio         and Taylor number           

The validation of our numerical code was done by comparing our results with those previously published. 

We first started with a comparison to the analytical solution of the laminar incompressible and 

axisymmetric Couette flow (CCF) given by [3, 9]: 
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             ⁄                                                     (13) 

where the constants    and   , for the case of a rotor-stator configuration, are: 

       
       ⁄    and           

       ⁄  

The two solutions, analytical and numerical, are shown in Fig. 3a, for different values of the radius ratio, 

 . The following parameters, used in the work by Aït Moussa et al. [22], have been adopted for our 

numerical computations:         ,            and        . We can see that there is a good 

agreement. In a second step, we considered the numerical results of [14] in the case of cellular flows in 

forced convection. Figure 3b shows the axial variation of the three velocity components at       , 

     and    , at a middle radial position and at any point along the angular direction. The 

comparison shows a good agreement of our results with those of [14]. Finally, we proceeded to a last 

validation of our results with the experimental linear stability analysis carried out in [16] for TCF, for the 

geometric conditions summarized in Tab. 1, with air as the working fluid and an imposed differential 

temperature gradient between the rotor (200°C) and the stator (100°C). In our simulations, the transition 

threshold between the laminar parallel basic flow and the vortex laminar regime has been obtained for a 

critical Taylor number equal to                       . This is in good agreement with the critical 

thresholds obtained in [16] since they are equal to                            respectively, with 

small differences equal to 1.6% for      and 0.8% for     . We also obtain a clear similarity of the 

development of the isotherms in the annular gap between the two studies (not shown here). 

 

 

 

 

 

 

                                                                                     

 

 

 

                        (a)                                                                                               (b) 

Fig.3a. Radial distribution of the velocity for the CCF in rotor-stator configuration for different radius ratios. 

Present numerical results and analytical results of [3] and [14]. 

Fig.3b. Comparison of the calculated axial distribution of the three velocity components, at the middle radial 

position of the annular gap and at any arbitrary angular location with the results of [14]. 

 

               Table 1. Geometric parameters used by [16] 

 

 

 

 

4. Results and discussion  

All the results presented in this paper have been obtained for a moderately wide gap duct with the 

geometric characteristics given in Table1. The Prandtl number at the reference temperature is Pr0  .0 2 

Model 
   

(mm) 
   

(mm) 
  

(mm) 
  

(mm) 
      ⁄      ⁄  

Smooth 

Water gap 
45.72 62.85 17.13 640 0.727 37.36 
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(distilled water). The Taylor and Grashof numbers, considered as operating parameters, varies in the range 

505.6  a 255 .6 and 10
 
  r 10

4
. Particular attention is given to the combination of these intervals so 

as not to depart from the forced and mixed laminar convection domains. In the present study, the 

Richardson number ( i  r  e2)⁄  measures the relative importance of the interaction between the 

buoyancy and rotational effects. It varies in the following range: 0  i 6.25. One of the objectives of this 

study is to identify the different states of the flow and the critical thresholds for their appearance. 

4.1. Velocity field and transverse flow  

For the first case, Fig. 4a ( a  505.6), the movement of the fluid in the majority of the gap, except 

close to the annular end-walls, is stable and follows the laminar regime called “Azimuthal Laminar 

Flow”, as denoted in [8]. The flow is globally one dimensional, function of   , with the viscous forces 

still predominant over the centrifugal forces. Fig 4a also shows that the first disturbances that appear are 

the “Ekman cells” in the vicinity of the end-walls. They are mainly due to the immobility of the end-walls 

[8]. Their direction of rotation is opposite in the vicinity of the two end-walls (        : the first, at 

    , turns counterclockwise while for the second, at      , turns clockwise. Fig. 4b and 4c represent 

a small elevation of the Taylor number, from Ta = 790 to Ta = 1137.6. For these cases, the viscous force 

no longer compensates the centrifugal dynamic force, except in the central part of the gap where the 

streamlines keep their perfect radial stratification and horizontality (in the vertical bottom plane presented 

in Fig. 4b and 4c).  his force imbalance, where the dynamic force is more important, generates toroïdal 

vortices and induces the appearance of pairs of contrarotating cells of identical form. At this Taylor 

number magnitude, the axisymmetry is always preserved, with a perfect symmetrical arrangement of the 

cells in the axial direction, on either sides of the vertical diametric plane located in the middle of the duct. 

In Fig. 4c, the angular velocity is                  . By further increasing the angular velocity, a 

new bifurcation appears (after that mentioned in the validation section at § ) at a second critical value of 

the Taylor number equal to Tac2=2559.6, see Fig. 4d. The dynamic force overcomes the viscous force in 

the whole annular gap: this state is called the Taylor Vortex Flow (TVF). The range of the angular 

velocity is                  . It should be noted that the value of Tac2 can be different from one 

study to another, because it is very sensitive to the different parameters used [7]. In our case, this state is 

characterized by the formation of 24 pairs of juxtaposed and alterning counter-rotating cells, ie a total of 

48 cells and 24 wavelengths formed over the entire length of the annular gap ( =L
*
=37.36). Accordingly 

the dimensionless size of a wavelength is equal to 1.56. The same dimensions and the perfect 

arrangement of the fluid cells between the two cylinders, symmetrically through the vertical median plane 

and the plane at    ⁄ , deserves to be noted.  

Figure 5 consolidates Fig. 4 by presenting the formation of the contrarotating cells with isosurfaces 

of the angular velocity. One clearly distinguishes that the same angular speed iso-surface, equal to 

        , moves towards the outer cylindrical wall when the Taylor number increases. 
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Figure 4. Isolines in the meridional plane (     ) (vertical diametral plane), in the whole annular gap, for the 

various modes of instabilities for                 and        . 

 

 

 

 

 

a)                         b)                                 c)                                d)           

Figure 5. Same iso-angular velocity surface, equal to         , for different Taylor numbers 

                     at Gr=10
3
 

4.2. Thermal field  

 

 

   

 

a)           

 

 

 

 

   b)         

   

   

 

 

c)Ta=1137.6                                                           d)Ta=2559.6  

To illustrate the development of the thermal field with the increase of the Taylor number, the 

isotherms are plotted in Figure 6, in a meridional plane (       of the annular gap (vertical plane at the 

bottom), for the four cases already studied above at   r 10
 
. The corresponding Richardson numbers are 

equal to 0.625, 0.4, 0.28 and 0.12 indicating that the inertial forces are dominant over buoyancy forces. 

Despite the presence of a temperature gradient between the two cylinders, it remains too weak to be able 

to generate a natural convection of the fluid in the gap. For the lowest Taylor number, Fig. 6a, the 

stratification of the isotherms with the thermal gradient in the radial direction is clearly visible in the 

central part of the gap, thus revealing the preponderance of a conductive heat transfer from the hot 

internal cylinder towards the cold external one. This distribution of isotherms is consistent with the 

variation of the conductive thermal gradient in     ⁄  , which is found in annular geometries. Moreover, 

due to the existence of the Ekman cells in the vicinity of the end-walls which are adiabatic, a wavy 

character of the isotherm takes form, while respecting the orthogonality of the isotherms at the end-walls. 

As the Taylor number increases more, Fig. 6b-c, under the combined effect of the centrifugal and viscous 

forces which outweigh the buoyancy forces, the temperature gradient is always more important in the 

vicinity of the inner cylinder wall and it becomes weaker in the radial direction as one approaches the 

outer wall. The gradual propagation of the wave character in the axial direction, initially generated by the 

Ekman cells, is still preserved. In Fig. 6d, at a higher Taylor number  a   255 .6 but a smaller 

Richardson number  i   0.12, the wavy isotherms occupy the whole gap, in the    ,    -plane, due to 

their inertial transport. Thus, the results such as the velocity and temperature fields obtained at        

are almost identical to those obtained at     , corresponding to forced convection.  

a)                                                                                    b)                   

c)           (         d)           (         



8 

 

Figure 6. Thermal field in a longitudinal section (     ) of the annular gap, for different Taylor 

numbers                  and       . 

The results that show the presence of natural convection and, consequently, mixed convection flows are 

obtained at much higher Grashof/Richardson numbers, with  r 5 10
 
 and 10

4
 (or  i 1.02 and 1.2 ) for 

instance, as shown in Fig. 7c-d. With these values of   , natural convection cells are generated by the 

buoyancy forces, that are no longer dominated by the forced convection caused by the centrifugal and 

viscous forces. Conversely, Fig. 7a-b show circular isotherms and streamlines which follow a curvilinear 

path to join the movement of the inner cylinder. For these two cases, the symmetry with respect to a 

vertical diametral plane is respected and the preponderance of forced convection is confirmed. It can be 

seen that the center of the convection cell moves towards the top of the annular gap when Gr or Ri 

increases. 

 

 

 

 

 

                                                                                                                        

 

 

 

 

 

 

 

        r  0,  i 0                r  10
 
    i 0.12            r  5 10

 
    i 1.02            r   10

4
,  i 1.2  

Figure 7. Isotherms and isolines with the increase of the Grashof number, at the same Taylor number, 

Ta=2559.6 (Re=90) and Ri=0, 0.12, 1.02 and 1.23, in the half annular plane at z*=4.489. 

Figures 8a-d show the presence of a non-symmetrical secondary flow in the whole annular plane. It is 

created by the buoyancy forces at higher Richardson numbers (Ri=1.23 and 6.25 or Re=40 and 90 at 

 r 10
4
). In both cases, we can clearly see the formation of two counter-rotating cells of different 

dimensions. The largest occupying 3/4 of the gap and moves counterclockwise, while the smaller is 

pushed towards the lower and right part of the gap and flows in a clockwise direction. In both cases, the 

centers of the vortices are located in the middle zone of the gap. This configuration with a strong 

transverse flow in (r, ) plane modifies the axisymmetric distribution of the fluid temperature with the 

lowest fluid temperatures located in the lower part of the gap (see Fig. 7).  
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                 (a)                                              (b)                                       (c)                                              (d)                

Figure 8. Velocity vectors and isolines of the secondary flow in (r*,) plane at z
*
=4.489 for Gr=10

4
: (a,b) 

Re=40, Ri=6.25, (c,d) Re=90, Ri=1.23 
 

Furthermore, the existence of a thin boundary layer, with a thickness of the order of      , can be noted 

very close to the inner cylinder which directly follows the rotational movement of the cylinder, in the 

clockwise direction. Beyond this thickness, due to the viscous driving force, a boundary layer detachment 

phenomenon appears, due to the natural convection effect which drives the fluid particles in a 

counterclockwise angular movement. In this work, we have considered that the physical properties of the 

fluid vary with temperature. It is then interesting to represent the variations of the thermal conductivity 

and dynamic viscosity in the radial direction of the gap for the parameters studied. Figure 9 illustrates 

these variations as a function of   . It clearly appears that, in the vicinity of the inner hotter cylinder, the 

conductivity increase with the temperature increase while the viscosity is the lowest. Close to the outer 

colder duct, the conductivity also decreases while the viscosity undergoes a marked increase. These 

behaviors are physically acceptable in accordance with eqs. (8) and (9). To quantify the wall-fluid heat 

transfer, the variations of the local Nusselt number on the inner cylinder are illustrated in Fig. 10 for 

Gr=10
3
 and for the same Ta values as in Fig. 4 and 5, that is in forced convection regimes. The local 

Nusselt number is directly influenced by the temperature distribution which is itself related to the velocity 

field and the presence of the counter-rotating cells. It is weaker in the thermally stratified regime and 

shows a clear increase as the Taylor number increases. In quantitative terms, the maxima of Nu goes from 

      to         for Ta=505.6 to 2559.6. In Tab. 2, we present the mean Nusselt numbers of all the 

simulated cases at Gr=10
3
. In this forced convection regime, we found the following correlation of the 

averaged Nusselt number as a function of the Taylor number:                   . It is important to 

specify that, in the domain of  large Gr numbers,  5 10
 
, 10

4
), for the same Gr number 5 10

 
 or    , 

natural convection can becomes negligible at small Ta numbers while it becomes more important for 

larges Ta numbers. That is to say, eventhough Gr is large, the centrifugal and viscous forces can still 

annihilate natural convection at low Taylor numbers. But, as the number of Ta increases, natural 

convection progressively intensifies to counteract the retarding effects of the viscous forces. Therefore, 

for high Gr, the heat transfer is better at high Ta. Thus, for the geometric conditions of our model, we find 

that, for obtaining a better heat transfer, Ta must be greater than or equal to 1294.97 (Re = 64) for Gr = 

     , and for Gr =   ,  Ta must be greater than or equal to Ta = 1778.35 (Re = 75).  
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Table 2. Average Nusselt numbers for        
 

 
 

 

 

 

 

                                     

                                                                          Figure 9. Thermal conductivity and dynamic viscosity variations                                             

                                                                          in the radial direction of the gap  for each Taylor number at Gr=0 

 

 

 

 

 

 

 

a)                                      b)                                   c)                                 d)           

Figure 10. Evolution of the local Nusselt number for different Taylor number and       . 

 

5. Conclusion  

This study concerns the 3D numerical simulation of the Taylor-Couette Flow (TCF) with convection heat 

transfer in a horizontal annular duct. The inner and hotter cylinder is driven by a constant rotation 

velocity while the outer and colder one is stationary. This is a rotor-stator system with fixed geometrical 

parameters and thermal dependent fluid properties. The operating parameters are the Taylor (  ) or 

rotational Reynolds numbers (  ) and the Grashof (  ) or Richardson (Ri) numbers. Extensive results 

have been obtained to show the effect of the Taylor number (                ) on the dynamic 

and thermal fields in the gap, for Grashof number           . We obtain three laminar regimes: at 

low Ta, only Ekman cells are present; for a moderate augmentation of   , there is a propagation of 

contrarotative cells towards the center of the gap with vertical and horizontal symmetries; for high   , a 

complete occupation of the gap by the cells is observed with symmetry respect or not. The thermal and 

dynamic behaviors are similar. In term of heat transfer, at Gr=10
3 , the forced convection is the dominant 

mode while, increasing Gr to       to    , intensifies the buoyancy forces that generate a secondary 

flow and, as a result, the mixed convection. At Gr=10
3
, heat transfer is improved as Ta is increased. But 

for high Gr numbers, we conclude that the evolution of the local Nu number as a function of the Taylor 

number begins with a decay phase as long as the Taylor numbers are small, to reach a minimum, and 

finally initiate a monotonic growth with large Taylor numbers. Finally, in the range of Ta values 

explored, we propose the following empirical correlation of the Nusselt number in forced convection 

(Gr=0) and for a very low natural convection (Gr=10
3
):                    . 
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Nomenclature 

     = inner (rotor), outer (stator) radius, [ ] 

   = hydraulic diameter, (         ),[ ] 

  = gravitational acceleration, (     )[    ] 

   = Grashof number, (       
     ⁄ ), [-] 

   = dimensionless thermal conductivity, (    ), [-]  

   = dimensionless annulus length, (    ⁄ ), [-] 

         = local Nusselt number (           ⁄ ),[-]   

  = pressure, [        ] 

   = Prandlt number (=     ,[-] 

   = Reynolds number (=        ⁄ ),[-] 

          = Richardson number(      ⁄  ,[-] 

        = dimensionless radial, angular and axial ccordinate 

   = dimensionless time (       ⁄ ),[-]  

    = dimensionless temperature, [                ⁄ ] 

   = Taylor number, (     [          ⁄ ]), [-]      

  ,    = inner (rotor), outer (stator) temperature respectively,[°C] 

   = reference temperature,[°C] 

  
    

    
  =   dimensionless velocities components (          ⁄           ⁄            ⁄   [-]  

Greek symbols 

  = thermal diffusivity, [     ] 

  = thermal expansion coefficient,[    ] 

  = aspect ratio (     , [-]  

  = difference, [-] 

  = ratio of radii (      , [-] 

  = angular coordinate,[rad] 

   = non-dimensional dynamic viscosity (    ), [-] 

   = density, [     ] 

  = angular rotor velocity, [       ]                                          
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