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ABSTRACT

Single molecule localization microscopy is an essential ob-
servation tool in biology that yields data in the form of point
clouds. It is still limited by an anisotropic resolution and inho-
mogeneous labeling density. This issue can be addressed by
reconstructing a single model from multiple aligned copies of
the same particle. However, generic registration methods fail
to align point clouds in the presence of anisotropic noise and
outliers. Therefore, we propose an alignment method dedi-
cated to a common type of particle geometry, namely cylin-
drical symmetry. We focus on the centriole, a fundamental
macromolecular assembly with ninefold cylindrical symme-
try. We design a neural network based on stacked PointNet
architectures that estimates the center and axis of symmetry
of individual particles in SMLM, in order to align them in the
same canonical space. We demonstrate the robustness of our
approach on simulated and real dSTORM data.

Index Terms— SMLM, centriole, point clouds, neural
networks, PointNet

1. INTRODUCTION

Single molecule localization microscopy (SMLM) is one of
the most widely used techniques of superresolution fluores-
cence microscopy [1]. The principle is to acquire images
populated with a few isolated fluorophores, such that their po-
sition can be determined accurately with a localization algo-
rithm [2]. The resulting data takes the form of a point cloud,
where each point represents a fluorophore and is associated
with an uncertainty on its localization. SMLM methods are
able to reach near nanometric resolution in 2D, and thus give
access to macromolecular assemblies smaller than the diffrac-
tion limit. However, the 3D resolution is usually 3 to 5 times
lower in the axial direction and prevents from accurate 3D
observation, as illustrated in Fig.1. Moreover, the fluores-
cent labelling does not cover homogeneously the surface of
the centriole, which can yield large unlabelled regions and a
significant amount of outliers.

To circumvent these issues, we opt for the single parti-
cle reconstruction paradigm: instead of observing a unique
centriole, multiple copies of the same rigid particle are im-
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Fig. 1. Example of point cloud acquired in SMLM (with dSTORM
[6]). (a) 3D view; (b) XY plane with high resolution; (c) XZ plane
with a low resolution in the Z-direction.

aged with random orientations, and a single average model
is estimated. The combination of different orientations and
labellings yields an improvement of the 3D resolution. This
approach has been investigated in a few works in 2D SMLM
[3, 4], and recently in 3D [5] but only in a simplified setting
where the orientation angles between particles are small. Sin-
gle particle reconstruction involves two tasks: alignment of
the particles in the same pose and reconstruction of the parti-
cle model. In this work, we address the alignment problem.

Particle alignment in SMLM amounts to multiview point
clouds registration, which has been a longstanding research
topic in computer vision. The standard framework consists in
computing registration between all pairs of point clouds and
to apply motion synchronization techniques [7]. We applied
state-of-the-art pairwise registration methods based on deep
neural networks [8, 9] to our SMLM data, but we observed
that they fail to produce satisfying results. The main reason
is that the local feature computation involved in [8, 9] is de-
signed for relatively clean data with a small amount of noise.
In SMLM, the high level of anisotropic noise drastically al-
ters the shapes of differently oriented centriole, as it can be
seen by comparing Fig.2(c) and Fig.2(d), such that matching
local features becomes a difficult task.

In this paper, we circumvent this issue by addressing the
alignment problem from a different perspective. Instead of
developing a generic registration method, we leverage prior
knowledge about the geometry of the particle. We focus here
on the centriole, a macromolecular assembly involved in sev-
eral fundamental cellular processes [10, 11], which has at-
tracted a lot of research to understand its role in diseases such



as cancer or ciliopathies [12]. The structure of the centriole
has a ninefold cylindrical symmetry. It implies that its ori-
entation is mostly determined by its axis of symmetry, which
corresponds to the first two Euler angles. The variation of the
third Euler angle is restricted to the range [0, 2π/9]. There-
fore, we can get a coarse alignment of the centrioles by esti-
mating their axis and center of mass. This is a first necessary
step towards further refinement and reconstruction that we let
for future work. Our method is based on a four-stage neural
network architecture that builds upon the PointNet global fea-
tures [13]. To create realistic training data, we use results that
revealed the ultrastructure of the centriole [14]. We validate
the relevance and accuracy of each stage of our approach on
synthetic point clouds, and on real dSTORM data [6].

2. CENTRIOLE STRUCTURE AND SIMULATION

We focus on data with fluorescent labelling of tubulin, which
is one of the proteins that compose the centriole and is located
in its outer wall. Figure 2(a) shows our simulated model of the
ninefold cylindrical symmetry structure of tubulin, based on
the analysis reported in [14]. It is composed of nine micro-
tubule triplets organized symmetrically on a barrel-like struc-
ture. The direction is identified by a larger radius at the bot-
tom of the barrel, and a smaller radius at the top (see [14]
for details). The red arrow in Fig.2(a) indicates the axis and
direction of the centriole. In what follows, we call axis the
undirected axis of symmetry and direction the binary value
that indicates the top of the centriole on this axis. In our sim-
ulations, we randomly sample the parameters of the model to
reflect the natural variability of the centriole.

After rotating a noise-free centriole, our SMLM simula-
tion process begins by adding typical non-centriolar struc-
tures that we considered as outliers, shown in Fig.2(b). We
model three classes of outliers: microtubules represented as
filaments, Gaussian clusters of points and scattered points
sampled from a uniform law. We also account for the in-
homogeneity of the fluorescent labelling by removing groups
of points in the centriole structure. Then, we introduce
anisotropic localization uncertainty (Fig.2(c)) to obtain the fi-
nal simulated data. To create realistic noise, we sampled from
estimated distributions of the lateral and axial uncertainties
from real dSTORM data.

Figure 2(d) shows a simulated centriole tilted by 90
degrees with respect to (c). It illustrates the effect of the
anisotropic uncertainty: the noise on the lateral axis prevails
on the cylindrical shape, such that the barrel is filled with
noise in Fig.2(d) and registration of (d) on (c) fails with
standard methods.

3. NEURAL NETWORKS FOR POSE ESTIMATION

Our purpose is to estimate the axis, direction and center of
mass of centrioles represented by point clouds. The sim-
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Fig. 2. Simulation of centriole in SMLM. The red arrow repre-
sents the axis and the direction. The top line shows side views of
the centriole, and the bottom line shows views orthogonal to the axis
of symmetry. Columns (a), (b) and (c) show the three steps of the
simulation process: (a) simulated centriole model [14], (b) add out-
liers and missing parts, (c) add anisotropic uncertainties. Column (d)
shows a simulated centriole tilted by 90 degrees with respect to (c).

plest approach would be to use a regression network to di-
rectly estimate the parameters of the axis and center from
point cloud features such as PointNet [13]. This principle has
been applied for estimating canonical spatial transformation
[13], hand pose [15] or bounding boxes [16]. However, this
approach yields unsatisfactory results in our case due to the
aforementioned noise and partial labelling problems. There-
fore, we designed a sequential pipeline, summarized in Fig.3,
that divides the original task into four sub-problems solved
using neural networks (NN1 to NN4). The four steps are as
follows:

• NN1 performs a segmentation of the centriole from the
original noisy point cloud PC1. PC2 is obtained from
PC1 by removing points detected as outliers.

• NN2 estimates the center of mass c of the centriole from
PC2. PC3 is obtained by translating PC2 so that the cen-
triole is centered at (0, 0, 0).

• NN3 estimates a unit vector v aligned with the axis of
the centriole from PC3. PC4 is then obtained by rotating
PC3 to align the axis of the centriole with the z-axis.

• NN4 estimates a binary variable that indicates the direc-
tion of the centriole.
The networks NN1 to NN4 are all composed of two mod-

ules: the first one computes a feature vector encoding global
shape information, and the second module operates on the
feature vector and is adapted to each specific task.
First module The feature vector is computed with the same
PointNet architecture in the four networks [13]. The interest
of PointNet for our problem is that it encodes global shape
information. Indeed, since the local geometry is distorted by
the presence of anisotropic noise and undesirable structures,
local features are not able not capture the characteristic shape
of centrioles. PointNet performs independent pointwise fea-
ture computation followed by a symmetric pooling function to
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Fig. 3. Pipeline of the proposed method.

achieve invariance to permutation in unordered point clouds.
We used average pooling, which we found to be more robust
to noise than the usual max-pooling. The original PointNet ar-
chitecture contains two transformation networks (T-nets) that
estimate an affine transformation to achieve pose invariant
feature computation. As mentioned at the beginning of the
Section, this pose estimation module does not work in our
case and has been removed.
Second module For NN1, we used the segmentation mod-
ule of [13]. For NN2 and NN3, we defined fully connected
regression networks adapted to the output size expected for
each stage (see Fig.3). Finally, for NN4 we used a binary
classification network also described in [13].

The overall architecture can be seen as stacked PointNet
regression and classification networks that successively ac-
complish one step of the final goal. Each subtask is necessary
and benefits from the estimation of previous step, as will be
demonstrated experimentally in Section 4.

We train each network separately with different loss func-
tions adapted to each task. For the segmentation task of NN1
we used the mean absolute error, which yielded better results
than binary cross entropy as reported in [17]. For the re-
gression task NN2, we used the Mean Square Error (MSE)
Lc = 1

N

∑N
i=1 Lc,i where N is the number of point clouds,

Lc,i = ‖ci − cgti ‖22, (1)

and cgti , ci are the ground truth and the estimated center of
the ith point cloud, respectively. For NN3, we only aim at the
direction of the vector v, which means that both v and−v are
valid vectors. To account for this, we define the loss function
as Lv = 1

N

∑N
i=1 Lv,i with

Lv,i = min{‖vgt
i − vi‖22, ‖vgt

i + vi‖22}, (2)

where vgt
i and vi are the ground truth and the estimated vec-

tor that represent the axis of the ith point cloud, respectively.
Note that ‖vgt

i −vi‖22 corresponds to 2(1−cos(θ)) where θ is
the angle between vgt

i and vi since both vectors are unitary.
Finally, the loss of the binary classification network NN4 is
defined as the binary cross entropy.

Each neural network has been trained individually and se-
quentially (from NN1 to NN4) using 1000 point sets as a train
set, 200 as a validation set, and 800 as a test set. When train-
ing the n-th neural network, the parameters of the n − 1 pre-

vious neural networks are freezed. The optimization is per-
formed with the Adam optimizer with a batch size equal to
16. The learning rate, the `2 regularization weight and the
number of epochs have been optimized using the validation
set. The other hyperparameters of the Adam optimizer are set
to the recommended values in [18].

4. RESULTS

4.1. Synthetic data

To demonstrate the necessity of each step of our pipeline, we
analyze three variants of the proposed approach (that we de-
note P) by removing or merging different modules as follows:

• P1: The segmentation network NN1 is removed.
• P2: The center estimation network NN2 is removed and

the center is computed as the center of mass of the point
cloud. Note that the center of the point cloud is equivalent
to the center of the centriole if there is no noise and no
missing part.

• P3: The axis and direction networks NN3 and NN4 are
merged. It means that NN4 is removed and NN3 outputs
jointly the axis and the direction. The architecture remains
unchanged and the loss function is defined similarly to (2)
but with a single direction (Lv,i = ‖vgt

i − vi‖22).
Results obtained on the test dataset are shown in Table 1

for the four approaches. The first column represents the per-
centage of correctly segmented points. The second and third
columns are the MSE for the estimation of the center c and
the axis v ((1) and (2)), respectively. The numbers in paren-
theses are the percentages of successful estimations. We con-
sider that an estimation is successful if Lc,i is below 0.052 =
25.10−4 (which approximately corresponds to an error of one
twentieth of the size of the centriole since most of the points
are in the unit cube) and Lv,i is below 0.32 = 900.10−4

(which approximately corresponds to an error of 17 degrees).
These thresholds have been determined visually and exam-
ples are shown in Fig.4. The fourth column is the percentage
of correct direction classification. The last column is the per-
centage of jointly correct estimations of the center, axis and
direction.

We observe that as soon as one of the four modules is
removed, the results are significantly deteriorated. Without
the segmentation step (P1), the accuracy of all the stages is



Lc,i = 40.0× 10−4 Lc,i = 1.42× 10−4 Lc,i = 6.45× 10−4

Lv,i = 753× 10−4 Lv,i = 0.141× 10−4 Lv,i = 43.0× 10−4

Fig. 4. Results on simulated data. The red arrow is the ground truth
axis, and the green arrow is the estimation.

Seg. Lc × 104 Lv × 104 Orient. All
P 86.1 8.10 (93.5) 93.8 (99.1) 83.4 79.2

P1 X 15.3 (80.3) 621.1 (89.8) 71.2 55.8
P2 86.1 43.3 (52.9) 649.7 (82.5) 81.0 40.0
P3 86.1 8.10 (93.5) 599.9 (85.6) 53.1 43.9

Table 1. Results on the test dataset (see the text for details).

affected and the overall accuracy falls at 55.8%. When the
center estimation is removed (P2), the centriole is not prop-
erly centered and it prevents from an accurate estimation of
the axis. Finally, results obtained with P3 show that estimat-
ing jointly the axis and the direction is significantly less effi-
cient than our independent sequential estimation. Also note
that the direction estimation is particularly challenging since
the difference of radius between the bottom and the top of the
centriole is so small that it is most often impossible to iden-
tify it visually. These results demonstrate that the direct pose
estimation is impracticable, and it validates our general ap-
proach of dividing the pose estimation problem into several
sub-problems solved sequentially.

Figure 4 shows visual results that illustrate the quality of
the estimation and the complexity of the data. It also illus-
trates the thresholds chosen to compute the success rates in
columns three and four of Table 1.

4.2. Real data

We applied our method on real data acquired with dSTORM
combined with expansion microscopy [19]. Each acquisition
usually contains several centrioles (see Fig.1). We manually
cropped a total of 42 centrioles from the original data. Figure
4.2 shows examples of estimation results on this data. Since
we do not have access to the ground truth poses, we had to
rely on visual inspection to evaluate the accuracy of the esti-
mation. It is visually difficult to detect the direction, so we
focused on the estimation of the axis only. By considering a
similar visual threshold than the one used for the computation
of the success rate in column four of Table 1, we observed
that the estimation was successful on 40 centrioles over 42
(this represents a percentage of approximately 95 %). We can

Fig. 5. Results on real dSTORM data. The green arrow is the es-
timated axis and direction. The segmentation step classified the or-
ange points as centriole points and the blue points as outliers. Each
row shows one centriole with two views. The left column shows a
random view, and the the right column shows a view orthogonal to
the estimated axis.

conclude that the model achieves good generalization prop-
erties on real data despite the fact that it has been learned on
synthetic data.

5. CONCLUSION AND FUTURE WORK

We have presented a method for estimating the axis, direc-
tion and center of structures with cylindrical symmetry, with
an application to the centriole. Our method is based on a neu-
ral network architecture that stacks PointNet feature computa-
tion with regression and classification networks. We demon-
strated that our subdivision of the problem in four stages is
crucial to obtain satisfying results. This work is a first step
towards a full single particle reconstruction method. It pro-
vides an initialization of pose estimation that will be used for
refinement and reconstruction in future work. We also plan to
investigate improvements such as end-to-end training of the
network, or iterative refinement. Our framework can be ap-
plied to other particles with cylindrical symmetry (e.g the nu-
clear pore [20]), and it could also be extended to other types
of geometrical prior.
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