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Function splitting, isolation, and placement
trade-offs in network slicing

Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, Stefano Secci, Senior, IEEE

Abstract—We model the network slice provisioning as an
optimization problem including novel mapping and provisioning
requirements rising with new radio and core function placement
policies. We propose an open-access framework based on an
MILP formulation that encompasses flexible functional splitting,
with possibly different splitting for different slices and slice
subnets, while taking into account different network sharing
policies from 5G specifications. We also consider novel mapping
and continuity constraints specific to the 5G architectures and
beyond. We show by numerical simulations the impact of taking
into full and partial consideration these peculiar novel technical
constraints.

Index Terms—Network slicing; functional split; sharing policy

I. INTRODUCTION

Telecommunications network infrastructures evolved with
5G [2] and the development of the ‘network slice’ as a
novel virtualized infrastructure model. This technology now
not only covers application-level slice abstraction as done
with preliminary works on ‘slicing’, but also physical and
switching layers virtualization, with different radio access and
link communication technologies. This transition challenges
slice network design since multiple resources and segments,
historically managed independently from each other, are to
be operated with continuity in networking and computing
resource allocation and provisioning as a whole and unique
service. In this context, different providers can be associated
with different communication services running on the same
physical network at the access, core, and application segments.

Because of different bitrate and latency requirements, poli-
cies on radio access function splitting have an impact on
the backhauling network dimensioning, and therefore on the
placement of core network functions and on the configuration
of edge computing application servers. Moreover, different
policies for control versus data-plane function sharing and
scaling are to be applied. For instance, in 5G a first service
classification in three classes is given [3]: enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low Latency Communica-
tions (URLLC), and massive Machine Type Communications
(mMTC). Each of these application categories has its specific
requirements, such as maximum latency, minimum availability,
and bandwidth capacity and, to provide a flexible environment
to support those customized networks, novel infrastructures are
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supported by Network Function Virtualization [4], Software
Defined Networking [5], and Network Slicing [6] technologies.
Hence, each CS provider is to be able to deploy its services
on top of logical networks, named Network Slices, specifically
tailored to its technical requirements.

At the state-of-the-art, optimization approaches related to
network slicing mostly considered it either as Virtual Network
Embedding [7], Function Placement and Routing [8], or Ser-
vice Function Chaining [9] problems. Addressing end-to-end
network slicing, however, requires considering heterogeneous
resources from different physical and virtual network topolo-
gies, each with specific technical constraints and particular
orchestration rules. Furthermore, an important novelty of 5G
specification is the introduction of three novel mapping dimen-
sions influencing the placement and interconnection of slices
and network functions: (i) a CS can be delivered by multiple
network slices; (ii) Slices can be decomposed into Network
Slice Subnets; and (iii) Network Functions can be decomposed
into Network Function Services. While the first mapping re-
quirement can simply impact network design hyperparameters
only, the second and third ones come with new technical
constraints to guarantee a coherent provisioning of each CS.
Namely, continuity constraints among slice subnets and the
capacity to support specific behaviors for all the components of
the same slice, such as function splitting, sharing, and scaling
policies. In addition to these peculiar constraints, classical
network function embedding, routing, and requirements on
latency, availability, and network and computing capacities
hold as well.

Taking the 3rd Generation Partnership Project (3GPP) [3],
[10], [11] 5G standard as the reference system, our main con-
tribution relies on formally defining the network slice design
problem as a comprehensive network function dimensioning,
placement, routing, and mapping framework. Firstly, we take
into consideration the above-mentioned new mapping dimen-
sions by modeling the relationship between flexible radio ac-
cess functional splitting, control-plane and data-plane function
isolation, and core network function placement. Secondly, we
show by numerical simulations the impact of taking into full
and partial consideration these peculiar novel technical con-
straints. Even though several works partially cover the network
slice design problem [12], [13] and related sub-problems, such
as functional split mode selection [14]–[19], network slicing
with VNF sharing [20]–[22], and network slicing with VNF
scaling [23]–[27], no attention has been given to address
jointly all aforementioned aspects in order to design network
slices and understand the impact of mapping, sharing, and split
policies on both virtual and physical networks.
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This paper is an extension of [1], differing in the following
aspects: (i) we model new variants and extensions of the
problem, and (ii) we provide additional analyses regarding
the impact of each proposed variant on the network. In
particular, about (i) we take into consideration new technical
constraints in the NSDP mathematical formulation such that
flexible splitting can happen within the same slice, hence fully
exploiting the capabilities of forthcoming Open-RAN barriers
to break in the development of Open-Distributed Units and
related Open-Cloud infrastructure extension, described in [28]
as Scenarios E and F. Moreover, in the new model, we consider
and evaluate novel inter-slice split continuity constraints, and
integrate optimized link load aspects.

The remainder is organized as follows. We present in
Section II the state of the art, the entities appearing in new gen-
eration networks, and the main modeling aspects and technical
constraints related to 5G systems and beyond. We formally
state the Network Design Problem in Section III and introduce
its mathematical formulation in Section IV. We present some
variants of the problem in Section V. Section VI presents
the experiments and discusses the results. We conclude in
Section VII. Tab. I summarizes the abbreviations in this paper.

II. BACKGROUND

We first draw the new mapping requirements and the related
taxonomy. Then, we present the requirements rising with 5G
systems in terms of sharing policies and functional splitting
in radio access, meant to stay valid with future generations.

A. 5G System Mapping Requirements

The 3GPP specifications [3], [10], [11] present the different
entities appearing in 5G systems; as we describe in [29],
they are: User Equipment (UE), Communication Service (CS),
Network Slice (NS), Network Slice Subnet (NSS), Network
Function (NF), NF Service (NFS).

TABLE I: Abreviations

Acronym Definition
AMF Access and Mobility Management Function
AN Access Network
BBU Baseband Unit
CP Control-Plane
CN Core Network
C-RAN Centralized Radio Access Network
CS Communication Service
CU Centralized Unit
DP Data-Plane
DU Distributed Unit
MAC Medium Access Control
NF Network Function
NFS Network Function Service
NS Network Slice
NSS Network Slice Subnet
PDCP Packet Data Convergence Protocol
PHY Physical
PNF Physical Network Function
RAN Radio Access Network
RF Radio Frequency
RLC Radio Link Control
RRC Radio Resource Control
RRU Remote Radio Unit
UE User Equipment
VNF Virtual Network Function

Fig. 1: Relationships between 5G entities. Source: [29].

Fig. 1 depicts the relationships between these entities. A
UE can be a smartphone, a robot, or even an autonomous car,
that might be connected to several CSs; e.g., a car connected
to an Autonomous Car Service while broadcasting movies
and music from Streaming Services to its passengers. To
better deal with heterogeneous technical constraints of each
service, each CS might run on one or more customized NSs.
Additionally, each NS might be composed of one or more
NSSs, which might also be composed of lower-layer NSSs.
A simple example of this scenario is given by considering
an NS composed of an access NSS and a core NSS, where
the latter can, in turn, be composed of a control-plane NSS
and a data-plane NSS (data-plane relates to user application
traffic while control-plane traffic involves network and service
signaling functions).

In this nested architecture, each NS or NSS is composed
of one or more NFs attached to the Access Network (AN;
e.g. Scheduler Function and Connection Mobile Control Func-
tion) or to the Core Network (CN; e.g. Session Management
Function and Access and Mobility Management Function),
or representing a Service Function (e.g. Firewall, Proxy, and
Load Balancer). At the lowest level, each virtual NF is
composed of a set of NFSs. This implies that some NFs can
directly communicate with each other by request/response and
subscribe/notify application-level signaling hitting NFS; note
this is meant to be a compulsory behavior in our modeling,
but only a possible NF behavior for both control-plane and
data-plane functions. Example of interactions between NFs
are depicted in Fig. 2; one NF might consume NFSs from
different NFs, and might also offer NFSs to different NFs.
It is also important to notice that an NFS can also provide
and consume services to and from other NFS within the same
function. Finally, note that one NF can be virtualized (VNF)
or physical (PNF).

3GPP technical documents report a non-exhaustive list of
possible interactions between different functions and NF ser-
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Fig. 2: Service-based interactions between network functions.
Source: [29].

vices [10], [30], [31]. Some of those iterations are exemplified
in Table II, where UDM is taken as an example with its non-
exhaustive list of NF services [31]. Note that UDM might
offer the same service to different NF service consumers. In
this example, UDM can subscribe data from AMF, SMF, and
SMSF. It is also important to notice that the same service
might make different operations (e.g. get, subscribe, update,
result confirmation) and they are made by request/response
and subscribe/notify queries.

In this work, we do not differentiate VM-based network
functions (VNFs) from container-based network functions
(CNF). It is worth mentioning, however, that the main dif-
ference between these two types of network functions is
based on how they are built and embedded into the physical
network; while VNFs are deployed as virtual machines that
run on their own operational systems, CNFs are deployed as
containers, which facilitates the scalability and migration of
such entities within cloud-native platforms [32]–[34]. Since
the scope of this work concentrates on a higher abstraction
level for network slice deployment, the actual nature of the
virtualized network function, VM-based or container-based,
does not affect our modeling and algorithms. Hence, we refer
to the generic term VNF as any virtualized network function.

As presented in [29], we can distinguish five mapping levels
for creating a complete virtual environment in 5G systems and
beyond, each of which has its technical requirements. Besides
the UE to CS mapping (a user can use concurrently multiple
CSs), we also have:

1) Mapping NFSs to NFs: this is needed to minimize the
allocation of resources for each NF. Intuitively, the larger the
NF’s set of NFSs is, the more physical resources are required
to install it. Therefore, a solution to this mapping problem
provides the minimum set of NFSs composing each NF.

TABLE II: Example of a NF service decomposition: UDM as
NF service producer

NF Service NF Service
operations

Signaling
semantic

NF Service
consumers

Get Request/Response
Subscribe

Subscriber Data
Management Notification Subscribe/Notify AMF, SMF,

SMSF
Get

UE Context
Management Update NEF, SMSF

UE
Authentication

Result
Confirmation Request/Response AUSF

Parameter
Provision Update Request/Response NEF

2) Mapping NFs to Slices and Slice Subnets: This mapping
level decides the sub-set of NFs that should be present in
each NS as well as the connection between them. Additionally,
since each NF has its traffic processing capacity demand, the
number of each NF instance by type within a slice should be
dimensioned. At this level, NFs are jointly mapped to NSSs.

3) Mapping Slice Subnets to Slices: This level creates NSs
from well-defined NSSs. This can be the case when a Core NS
is created from two NSSs, e.g. one composed of control-plane
NFs and one of data-plane NFs - from the 3GPP’s point of
view, these two sub-sets of functions are considered as NSSs
and the whole virtual environment as an NS.

4) Mapping Slices to Communication Services: Depending
on the heterogeneous needs and the expected data rate through-
put in the service, each CS can be mapped into a subset of
NSs. In this context, matching techniques can be used to better
identify which NSs are the most appropriate to deliver a CS.
Note that this level of mapping can also be done with active
(already deployed) NSs.

We have to stress that the decomposition of NSs into NSSs
and of NFs into NFSs is, on the one hand, motivated by scal-
ability and efficiency reasons and, on the other hand, requires
the network slice design process to take into consideration
continuity constraints. Indeed, one NS can be geographically
deployed in a scalable manner thanks to the segmentation of
a slice into multiple NSSs; and the overall computing demand
can be decreased by allocating resources to NF micro-services
rather than to macro NF units. Moreover, depending on techno-
economic and network management policies, continuity con-
straints on the decomposition may be needed; more precisely,
the slice provider might decide whether all NSSs belonging to
the same higher level NS should undergo the same functional
split setting in the Radio Access Network (RAN).

B. Sharing policies

Given the expected data volume from each UE connected
to each antenna and the treatment capacity of each NF, it is
important to predict how many instances of each function
type should be installed for each network slice. Moreover,
dimensioning strategies have to model how NFs relate to
different slices.

Isolation is a key aspect for network slicing and dedicated
NFs might be necessary to ensure that each NS operates
independently. This approach is important for preventing the
incorrect balance of resources between the served NSs. Ad-
ditionally, security is another crucial point in virtual environ-
ments. To ensure security and data routing control, partially or
completely isolated network slices with dedicated NFs might
be implemented. Hence, isolation constraints might be applied
on the virtual layer; NFs installed in the same physical node
must be dedicated to a virtual network serving a specific client,
thus cannot be shared by two or more NSs. On the other
hand, sharing NFs among different NSs can be an interesting
strategy to simplify the virtual environment implementation
and to reduce redundancies throughout the network [11]. We
assume that an NF can treat data from two or more NSs if
and only if they have an affinity for each other. By affinity,
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we mean allowing a network slice to share one or more NFs
with another NS. It is important to mention that an NS request
might impose isolation constraints only on a specific subset of
network functions that cannot be shared with a specific subset
of NSs; this might be the case for critical NFs or network
slices belonging to the different tenants, for example.

We depict in Fig. 3 six possible NF sharing policies that,
based on our analysis, are possible as of 3GPP specifications;
in this illustration, a DP block can refer to data-plane functions
for both access and core segments. They are as follows:

1) Flat Sharing: all CSs share the same virtual network;
it can be an interesting strategy when different slices
have no isolation constraints and show similar technical
constraints in terms of latency and availability.

2) Hard Isolation: the isolation is complete, each CS has its
own virtual network.

3) Shared Control-Plane: slices share the same Control-
Plane (CP) while having their own and dedicated user
Data-Planes (D-DPs); it may be a solution for NSs
requiring low end-to-end latency, and in this scenario,
DP equipment should be deployed as close as possible
to UEs, which has, therefore, an impact on the level of
functional splitting.

4) Partial Control-Plane Isolation: only a part of the CP,
called common CP (C-CP), is shared by two CSs; a CP
portion and entire DPs of each CS are dedicated.

5) Shared Data-Plane: CSs share the same Data-Plane while
having their own and dedicated Control-Planes (D-CPs).

6) Partial Data-Plane Isolation case: only a part of the DP
is shared by two CSs, named common DP (C-DP); a DP
portion and entire CPs of each CS are dedicated.

According to 3GPP specifications, these settings are in
practice adaptable to multiple CSs [10]). For instance, Un-
structured Data Storage Function (UDSF) can be shared by any
function from the same Public Land Mobile Network (PLMN)
or even be dedicated to a specific NF. Also, for example, in
non-roaming 5G System architecture for concurrent access to
two network slice subnets, a Session Management Function
(SMF) might potentially be shared by their respective User
Plane Function (UPFs). It is interesting to notice that, for this
SMF example, while the SMF may be shared among slices and
related functions based on the 5G systems standard, current

Fig. 3: NF sharing policies.

implementations by major vendors do not encompass SMF
sharing. In addition, regarding the orchestration complexity in-
herent to each sharing policy (e.g., security and route control),
other configurations might be proposed to guarantee Service
Level Agreements.

C. Resource scaling and allocation

Let us describe resource management, scaling, and alloca-
tion practices in network slicing that we model in our work.

1) NF scaling: Scalability is a crucial point in dynamic
environments, such as mobile networks. Authors in [23]
propose an algorithm based on Control Theory in order to
balance the load on instances of a specific core-based NF,
called Access Management Function (AMF). Their algorithm
scales out or in the AMF instance depending on the network
load in order to save both virtual and physical resources. In
the same context, authors in [24] propose another solution
to scale dynamically the 5G NFs; the proposed approach
prevents the latency and avoids overloading the core network.
Authors in [25] propose an online algorithm to minimize
the cost for provisioning NF instances while minimizing the
congestion in a data-center network. Authors in [26], [27]
propose different proactive approaches in order to estimate
the upcoming traffic and adjust NF deployment a priori.
While [27] combine an online learning method with a multi-
period online optimization algorithm, authors in [26] aim to
minimize the error in predicting the service chain demands
for new instance assignment and service chain rerouting.
Moreover, authors in [20] address an NF scaling and sharing
problem in order to minimize the redundancy throughout the
virtual networks; they propose FlexShare, a near-optimal NF-
sharing algorithm capable of ensuring priority and NF sharing
decisions in polynomial time. Authors in [21] propose a
mathematical formulation and a heuristic based on a goodness
function in order to address large-sized network instances; they
show that sharing NFs among network slices can use up to
30% less bandwidth and 45% fewer NF instances, compared
to dedicated-NF approaches. It is important to mention that,
differently from these works, our model also encompasses the
control-plane and data-plane separation and considers different
functional split options for designing NSs; these aspects are
discussed in the following subsections of this paper.

2) Resource allocation constraints: In terms of multi-
resource constraints rising in network slicing [35], we apply
the knee model [36], which gives a linear relationship between
allocated resources and the function processing bitrate: it is
such that by multiplying by a factor the amount of CPU
allocated to an NFS, the traffic processing capacity for this
NFS is also multiplied by the same factor, and this behavior
is restricted by the maximum amount of available CPU. In
this context, applying the knee model, the maximum NFS
traffic processing rate is constrained by the dominant resource
proportionally most demanded by the NFS [35]. Figure 4
depicts an example of resource allocation for an NFS. Since
the initial allocation already took 50% of the available amount
of resource 2 and only 40% and 10% of resources 1 and 3,
respectively, the maximum scaling factor for this NF is 2. In
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Fig. 4: Example of a resource allocation distribution for a NFS.

this example, resource 2 is the dominant one and the final
scenario will allow the NF to treat two times more traffic
compared to the initial scenario. In this work, we consider the
CPU as the critical resource required by all NFS types and
available in any physical node.

D. Routing with bandwidth and latency constraints

On top of mapping NFSs into network functions, we should
provide a physical path connecting each pair of NFs that
must be connected. In this context, each virtual link between
two or more NFs has specific rules that must be ensured
on the physical layer, such as ordering constraints, minimum
bandwidth, and maximum end-to-end delay values. The ob-
jective might be to optimize the length of physical paths
carrying NSs’ flow while respecting the imposed technical
constraints. These restrictions are the combination of technical
constraints imposed by each network slice served by the
given virtual structure. This sub-problem can be seen as a
variant of the well-known multi-commodity flow problem
[37] with additional latency and ordering constraints. Authors
from [38], [39] address different aspects of this problem and
propose mathematical models applied to 5G networks. In
[38], the authors propose a framework that exploits the traffic
information and topology of both backhaul and core networks
for 5G systems; they propose a linear programming relaxation
method and a heuristic method in order to better manage
network load balancing, achieving close-optimal solutions
with low computational complexity. Authors in [39], in turn,
aim at integrating backhaul and fronthaul traffic over the same
transport layer; a routing optimization framework is proposed,
taking into account delay and path constraints, as well as a
heuristic to reduce the computational complexity and apply it
to production-level networks.

E. Functional Splitting in the Radio Access Network

Flexible Radio Access Network splitting [19] is a technique
meant to increase network efficiency leveraging NFV flexibil-
ity. In 1G and 2G RANs, all entities responsible for radio
and baseband processing were distributed and integrated into
each base station. To minimize costs and facilitate network
deployment, it was proposed to split the base station into
Remote Radio Unit (RRU, also called Remote Radio Head
and Radio Unit) and Baseband Unit (BBU) (also called Data
Unit). In this context, the RRU is responsible for Physical
Layer functionalities, while the BBU is responsible for Data
Link Layer functionalities [40]; the distance between these

two entities could be up to 40 kilometers. However, there is
still redundancy in the network: all RAN functionalities are
replicated for each pair of BBU and RRU. To overcome this,
centralized RAN (C-RAN) was first introduced in 2011 [41];
pools of BBUs with large capacity, now called Centralized
Units (CUs), are proposed to treat traffic from a sub-set of
RRUs, now named Distributed Units (DUs). Hence, one of
the first tasks is to define the functionalities enabled locally
at the DU, and those installed centrally at the CU and thus
shared among a subset of DUs. Figure 5 illustrates different
functional split options on the 4G stack, as the 5G RAN
split options have not yet been specified. Let’s take option 3
as an example: all functions from Radio Frequency (RF) to
Low Radio Link Control (RLC) blocks are locally installed,
while high RLC, Packet Data Convergence Protocol (PDCP)
and Radio Resource Control (RRC) functions are centrally
installed. Equivalently, with option 7 on the uplink direction,
all functionalities after the low Physical (PHY) block are
installed at a CU, while with option 5 all entities before the
low Media Access Control (MAC) block are installed at DUs.

Since the functional split was originally meant to be made
a priori (i.e., before deploying the network) choosing the
best split [42] for each scenario is not trivial. Defining the
distributed and centralized functionalities should take into
account end-to-end delay and total bandwidth constraints on
each physical path connecting DUs and CUs while optimizing
the resource allocation. It is important to mention that all
distributed functionalities should be installed in each DU to
support any type of split. Complementary, centralized func-
tionalities have few instances that are installed in CUs and are
shared by a specific sub-set of DUs. The dependency factors
such as varying network latency and capacity has recently
motivated experimenting dynamic functional splitting, where
the split decision can be reconfigured on a short time scale for
one or a few split options [43].

Table III depicts different fronthaul (FH) bitrates and latency
indicators for each functional split. The bitrates are calculated
as in [42] for a scenario using 100 MHz bandwidth and 32
antenna ports, while the maximum accepted one-way latency
through FH is proposed by 3GPP [40]. Note first that highest
bitrates and lowest latency are imposed by option 8. However,
one of the advantages of choosing this split would be in
reducing the number of NFs throughout the access network,
as they would be installed centrally and shared by different
DUs. Contrarily, option 1 requests low bitrates and admits
higher latency; the disadvantage of this option is that almost all

Fig. 5: Different functional split options.
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TABLE III: Front-haul bitrate and latency in functional split.

Functional Split DL Bitrate UP Bitrate FH Latency
Option 1: RRC-PDCP 4 Gbps 3 Gbps 10 ms
Option 2: PDCP-hRLC 4 Gbps 3 Gbps 1.5-10 ms
Option 3: hRLC-lRLC 4 Gbps 3 Gbps 1.5-10 ms
Option 4: lRLC-hMAC 5.2 Gbps 4.5 Gbps 0.1-1.0 ms
Option 5: hMAC-lMAC 5.6 Gbps 7.1 Gbps 0.1-1.0 ms
Option 6: lMAC-hPHY 5.6 Gbps 7.1 Gbps 0.25 ms
Option 7: hPHY-lPHY 9.2 Gbps 60.4 Gbps 0.25 ms
Option 8: lPHY-RF 157.3 Gbps 157.3 Gbps 0.25 ms

NFs would be installed locally - this scenario demands higher
computational power on each DU, which could be impractical
given the number of expected DUs in mobile systems. It is
also important to point out the difference between downlink
(DL) and uplink (UP) bitrates, due to physical layer operations
(e.g., transformations between transport blocks and in-phase
and quadrature symbols in each direction of the data flow).

Figure 6 represents a scenario with different split options
with two operators and a RAN function chain composed of
four NFs. In this example, the split between NF 1 and NF 2 is
applied to treat the flow from DU 3 and DU 4. These two DUs
have only NF 1 installed locally and send their flow to CU 2,
which has NF 2, NF 3, and NF 4. Note that these functions
in CU 2 are shared by both DU 3 and DU 4.

SDN and NFV technologies can be used together with C-
RAN to offer flexibility to split RAN slice subnets [3], [40].
To this propose, two classes of RAN functions are proposed
by [44]: asynchronous network functions and synchronous net-
work functions; the former refers to network functions that pro-
cess data asynchronously with the radio interface and demand
low data rates. State transition and handover preparation are
functionalities from RRC and PDCP blocks that are candidates
to be virtualized, centralized into CUs pools, and shared by
a sub-set of DUs. However, time-synchronous functions, such
as interference coordination, scheduling, and power control
from PHY and MAC blocks, process data synchronously with
the radio interface, requiring low latency and high data rate.
Hence, the related NFs might need some hardware acceler-
ation, which implies that they are good candidates to either
be implemented as dedicated machines or installed on a path
that assures low latency and high bandwidth. According to
[45], strict timing dependency between protocol layers must be
avoided, using instead asynchronous NFs as much as possible
to grant more flexibility to RAN slicing.

Being consistent with [3], [40], [45], we incorporate flexible
RAN splitting in order to design end-to-end network slices.

Fig. 6: Functional split example with four RAN NFs.

This approach can better deal with the heterogeneous require-
ments of each NS request while decreasing the redundancy
in the network, that is, minimizing the number of virtual
AN-based functions installed throughout the physical network.
[17]–[19] address the challenges of flexible functional split
schemes in order to optimize the allocation of physical and
virtual resources. [19], for example, proposes a new archi-
tecture that introduces a flexible split of RAN functionalities
between the Cloud-RRH, an edge cloud, and the central cloud.
[18], in turn, analyze the technical features of the network
in order to find the optimal split for different scenarios; the
authors considered the configuration of the base stations, the
fiber ownership, and the data transmission direction. They
demonstrated that a lower total cost of ownership can be
achieved with optimal functional split compared to classical
radio access networks. The required backhaul capacities for
uplink traffic in terms of minimum bandwidth and maximum
latency for different split options are analyzed in [17].

Even though there are several works in the literature ad-
dressing functional split mode selection and network slicing
problems with NF sharing and NF scaling, no attention has
been given to jointly address the complete problem in order to
design end-to-end network slices including functional splitting
for the radio access functions and different schemes for
dimensioning and sharing NFs.

III. PROBLEM DEFINITION

We provide a network slice design problem statement,
taking into account the presented requirements. Table IV
summarizes the used notations.

A. Physical layer model

We associate with the physical layer a directed graph
Gp = (Vp, Ap) where Vp is the set of nodes and Ap the
set of arcs. Vp is composed of disjoint sub-sets, V dup , V acp ,
and V app , containing the distributed unities, aggregation and
core servers, and application nodes, respectively, in such
a way that V dup ∪ V acp ∪ V app = Vp and V dup ∩ V acp =
V dup ∩ V app = V acp ∩ V app = ∅ hold. Every node u ∈ Vp is
associated with a number of available CPU cu. Moreover, an
arc a = (u, v) ∈ Ap corresponds to a physical link connecting
nodes u and v ∈ Vp. We denote by δ+(u) (resp. δ−(u)) the
sub-set of arcs going from (resp. to) node u ∈ Vp. Finally,
each arc a ∈ Ap has a bandwidth capacity denoted ba, and
a latency value da expressing the time needed by a flow to
traverse a.
B. Virtual layer model

The virtual layer is modeled as a set of directed graphs
corresponding to network slices. Every NS is composed of
one or more network slice subnets with different network
functions, which, in turn, are composed of a specific set of
NFSs. In this work, we define an NSS as any sub-set of
network functions shared among the same group of slices.

1) Network Function Services: We denote by F the set
of different NFS types. F is composed of the sub-set F d

of data-plane NFSs, the sub-set F c of control-plane NFSs,
and an auxiliary dummy function f0, in such a way that
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TABLE IV: Notation

Set
Vp Set of all nodes.
V du
p Set of all access nodes.
V ac
p Set of all non-access nodes.
V ap
p Set of all applications server nodes.
Ap Set of all arcs.
δ+(u) Set of all arcs going from node u.
δ−(u) Set of all arcs going to node u.
F Set of all NFS types.
F d Set of all data-plane NFS types.
F c Set of all control-plane NFS types.
S Set of all network slice requests.

F (s) Set of all CP NFS pairs that must be connected in slice s.
G(s) Set of all pairs of NFSs from different type sets that must

be connected to each other in slice s.
K(s) Set of all demands of slice request s.
O(s) Set of origin nodes of all traffic demand from slice s.
N Set of all NFs.

Parameter
cu number of available CPUs on node u.
ba bandwidth value on arc a.
da delay value on arc a.
cf number of CPU required by NFS f .

cap(f) traffic processing capacity of NFS f .
bfg total amount of traffic generated between NFSs f and g by

an UE.
bf expected data rate of NFS f given one UE.
dfg the maximum accepted delay between NFSs f and g.
λf compression coefficient of NFS f .
αs
f equals to 1 if a NFS type f must be present in slice s; 0

otherwise.
qstfg equals to 1 if slice request s admits sharing a NFS of type

f with a NFS of type g of slice t; 0 otherwise.
ηs expected number of UEs connected to slice s
ds maximum accepted delay on data plane of slice s.
ok origin node of demand k
tk target node of demand k
bk expected volume of data between sent by origin node of

demand k.

F d ∪ F c ∪ {f0} = F and F d ∩ F c ∩ {f0} = ∅ hold1.
Regarding the uplink direction, F d is an ordered set composed
of data-plane NFSs from both access and core networks. Every
network function service f ∈ F requires the minimum number
of CPUs cf needed to be packed into a NF. Also, every NFS
f ∈ F is associated with a traffic processing capacity cap(f),
expressed in Mbps, and an expected data rate bf within a
physical node given one UE connected to the related slice.
We denote by bfg > 0 the total amount of traffic generated
between NFSs f and g given one UE connected to the related
NS. Additionally, we denote by dfg the maximum accepted
delay2 between NFSs f and g. Finally, for every f ∈ F d, we
denote by λf the compression coefficient on the DP traffic
flow related to the initial volume sent by any traffic request’s
origin node. Lastly, all aforementioned parameters related to
the auxiliary dummy function f0 are set to 0, except the
compression coefficient λf0 , which is equal to 1.

2) Network Functions: We denote by N the set of network
functions available to pack NFS copies. An NF n ∈ N might
gather several NFS copies3, potentially of different types, and

1Note we do not consider any service function (e.g. Firewall and Proxy),
which can be easily added in model extensions.

2This is important, for example, when flexible functional splitting is applied
on the radio access; the selected split must respect the maximum fronthaul
latency proposed by standards organizations.

3We assume that every NF already contains an intelligent entity responsible
for directing the incoming flow to the right hosted NFS copy.

are uncapacitated entities with no resource requirements other
than those demanded by the hosted NFSs.

3) Network Slice Requests: The set of network slice re-
quests is denoted by S. Each request s ∈ S is associated with
a binary parameter αsf that takes value 1 (resp. 0) if an NFS
type f ∈ F is (resp. is not) required to be present in the final
associated virtual network. We denote by Gs = (Vs, As) the
final directed graph associated with s ∈ S, with Vs being the
set of virtual nodes representing the sub-set of NFs (and the
hosted NFSs) serving the given slice, and As being the set of
arcs connecting two nodes from Vs. For the control plane, we
denote by F (s) ⊆ As the set of arcs between CP NFSs such
that for any pair (f, g) ∈ F (s), (f ∈ F c) ∧ (g ∈ F c) holds.
Additionally, we denote by G(s) ⊆ As the set of arcs between
NFSs from different sub-sets of NFS types such that for any
pair (f, g) ∈ G(s), (f ∈ F c) ⊕ (g ∈ F c) holds. To represent
the isolation requirements on the virtual layer, we denote by
qstfg the binary parameter that takes value 1 (resp. 0) if slice
request s ∈ S admits (resp. does not admit) packing an NFS
of type f ∈ F with an NFS g from slice request t ∈ S in the
same NF. In addition, every request s ∈ S is also associated
with a set K(s) of traffic demands to be routed in the physical
layer. Each demand k ∈ K(s) is defined by a pair (ok, tk),
being the identifiers of the origin and the destination physical
nodes of traffic demand k. For any k, ok ∈ V dup and tk ∈ V app .
We denote by O(s) the set of origin nodes of all traffic demand
from K(s). Also, we denote by bk the initial data rate sent by
node ok, in Mbps, and ds the maximum end-to-end latency
for all traffic demands in K(s). Finally, we denote by ns the
expected number of UEs that are to be connected to slice s. In
this work, we assume that uplink and downlink flows follow
the same physical path and are treated by the same DP NFSs,
in a reverse order related to each other. Due to this assumption
and for the sake of simplicity, we take into consideration only
the uplink direction on the data-plane flow.

C. Problem Statement

We define our Network Slice Design Problem (NSDP) as
follows. Given a directed graph Gp representing the physical
network, a set of slice requests S, a directed graph Gs, a set of
traffic demands K(s) associated with each request s ∈ S, and
a set of available NFS types denoted F , the NSDP consists
in determining the number of NFSs to install on the nodes of
Gs for each s ∈ S and the size of NF hosting them, so that:
• K(s) traffic demands can be routed in Gs using these NFs

and respecting the selected functional split setting on the
data-plane,

• the NFSs installed on Gs can be packed into the NFs,
while satisfying the isolation constraints,

• a path in Gp is associated with each pair of NFs installed,
• the total cost is minimum,
• all technical constraints imposed by both physical and

virtual layers are respected.

D. Example

Fig. 7 depicts an example of solution for an in-
stance with 2 NS requests, 5 demands (e.g., K(s2) =
{(u23, u16), (u2, u16)}), 7 NFS types (3 for data-plane and 4
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Fig. 7: Example of a solution for a NSDP instance.

for control-plane), 8 NFs, 3 NSSs, and a physical network with
23 nodes (6 DUs, 12 aggregation/core nodes, and 5 application
nodes). Note first that a different number of copies of the same
NFS type is required to be installed for each slice (e.g. NFS 2).
In addition, copies of NFS 1 from slice 1 are installed locally,
while all other NFSs are centralized. Also, copies of NFS 5 are
packed into NF6 and shared by both network slices. Finally,
the traffic flow from each slice request is routed through the
related NSSs and then in the physical network: regarding the
traffic demand (u3, u7) of slice 1, its virtual DP flow is routed
through the virtual link (NF1,NF4), while the related physical
path is made on physical links (u3, u6) and (u6, u7). It is
worth mentioning that, since the sub-sets of NFs shared among
different slices are not known in advance, each NSS is an
abstraction made in post-processing.

IV. MATHEMATICAL PROGRAMMING FORMULATION

We now introduce the mathematical model addressing the
Network Slice Design Problem.
A. Decision variables

The binary variable zsf takes value 1 if NFS f is centralized,
and 0 otherwise. xsfnu is a binary variable that takes value 1
if NFS f , installed on node u, is packed into NF n serving
slice s, and 0 otherwise. The variable wsfnu is the amount of
NFS f serving slice s packed in NF n and installed on node u.
The variable yfnu is the total number of NFSs of type f packed
into NF n and installed on node u. γkafg is a binary variable that
takes value 1 if arc a is used to route the flow between NFSs f
and g for demand k, and 0 otherwise. Table V summarizes all
decision variables used in this model.
B. Constraints

1) Split Selection: Inequalities (1) decide whether a NFS f
serving a slice s is installed locally or centrally. Since the

TABLE V: Decision variables

Variable Type
zsf 1, if function f from slice s is centralized; 0

otherwise.
Binary

xsfnu 1, if NFS f from slice s is packed into NF n
and installed on physical node u; 0 otherwise.

Binary

wsf
nu amount of NFS f serving slice s, packed in

NF n and installed on physical node u.
Real

yfnu total number NFSs of type f packed into NF n
and installed on physical node u.

Integer

γkafg 1, the traffic demand k uses arc a to route the
flow between NFSs f and g; 0 otherwise.

Binary

RAN NFSs are chained in a specific order, all NFSs on the
same side of the selected split must be installed in the same
way, that is, either locally or centrally. This ordering constraint
is also represented by inequalities (1). Note that we need to
consider only the uplink direction of the flow.

zsf ≤ zsf+1 ,∀s ∈ S, ∀f ∈ F d\{f|Fd|} (1)

ensure that all distributed NFSs will be installed on all
related origin nodes; we assume that NFSs from CP cannot
be installed in a distributed manner. Constraints (3), in turn,
ensure that all copies of the same centralized NFSs type will
be installed in the same physical node. Note, however, that
two NFs of different types (e.g., AMF and SMF) with their
own sub-sets of NFSs might still potentially be installed on
different physical nodes.

2) NFS Placement: Given a set K(s), constraints (2) ensure
that all distributed NFSs will be installed on all related origin
nodes; we assume that NFSs from CP cannot be installed in
a distributed manner. Constraints (3), ensure that all copies of
the same centralized NFSs type will be installed in the same
physical node. Note, however, that two NFs of different types
(e.g., AMF and SMF) with their own sub-sets of NFSs might
still potentially be installed on different physical nodes.∑
n∈N

xsfnu =

{
1− zsf , if f ∈ F d, u ∈ O(s);

0 , otherwise.

, s ∈ S, ∀f ∈ F, u ∈ V dup (2)∑
n∈N

∑
u∈Vp\V du

p

xsfnu =

{
zsf , if f ∈ F d;
αsf , otherwise.

s ∈ S,∀f ∈ F (3)

3) NF dimensioning: (4) calculate the exact amount of
distributed and centralized NFSs for each NS request. It is
important to mention that, to minimize the residual virtual
resources from each NFS, this amount might be a fractional
value; regarding the sharing possibilities, these values are
rounding up with inequalities related to packing and capacity
constraints.

cap(f)wsfnu =


∑

k∈K(s)|u=ok
λf−1b

kxsfnu , if f ∈ F d;

nsbfx
sf
nu , if f ∈ F c;∑

k∈K(s)

λf−1bkx
sf
nu , if f ∈ F d, u ∈ V ac.

,∀s ∈ S, ∀f ∈ F,∀n ∈ N, ∀u ∈ Vp (4)

4) NFS Packing: (5) represent the isolation constraints on
the virtual layer. These constraints are responsible for applying
different sharing policies imposed by each NS demand type.
Constraints (6), in turn, ensure that an NF will not be present
in more than one physical node.

xsfnu + xtgnu ≤ 1 + qstfgq
ts
gf ,∀s, t ∈ S, u ∈ Vp, n ∈ N, f, g ∈ F

(5)
xsfnu + xtgnv ≤ 1,∀s, t ∈ S, f, g ∈ F, n ∈ N, u, v ∈ Vp : v 6= u

(6)∑
s∈S

wsfnu ≤ yfnu ,∀n ∈ N, ∀u ∈ Vp,∀f ∈ F (7)
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Let us explain in detail the inequalities (7) with some
examples. Suppose that NFSs of type f from s and t cannot be
packed together (∀n ∈ N, xsfnu⊕ xtfnu). Hence, all copies of f
installed on node u and serving s are not shared with t. In this
way, if (4) set wsfmu to 4.60 and wtfnu to 1.25, for example, we
must install at least seven (d4.60e + d1.25e) NFSs of type f
on the node u using two different NFs. Now, let s and t be
two slices with no isolation constraints and using the same NF
for a given NFS f (xsfnu∧xtfnu). Suppose that (4) have set wsfbu
and wtfnu equal to 4.60 and 1.25, respectively. Since both s
and t accept NFS sharing with each other (qstff∧qtsff ), we need
to install only six (d4.60 + 1.25e) NFSs of type f on node u
instead of seven of them. Using this approach on residual
capacities, this saving can be even greater if we have a bigger
sub-set of slices having qstfg = 1 for a given tuple (s, t, f, g).

5) Physical node capacity: (8) ensure that there will not
be more installed NFs than a node can support. Note that the
capacity constraints on physical nodes are considered at the
NF level, which dependents directly on the physical capacity
required by the inner NFSs of each NF.∑

n∈N

∑
f∈F

cfy
f
nu ≤ cu ,∀u ∈ Vp (8)

6) Routing: Constraints (9) represent the conservation flow
constraints on both control-plane and data-plane traffics. Note
that, since there can be only one virtual control-plane for each
slice request, γ variables related to the set F (s) can be indexed
to only one k; we chose the first traffic demand to represent
the whole control-plane on each slice. These constraints also
represent the conservation flow constraints on the data-plane
for each traffic demand k; they provide a path between each
pair NFSs from DP, from the origin node of each traffic
demand k to the first related data-plane NFS, and between
the last data-plane NFS and the target node for each traffic
demand k. Note that we use the dummy function f0 in order
to find a physical path between it and the data-plane chain if
and only if its first NFS is installed centrally.∑

a∈δ+(u)

γkafg −
∑

a∈δ−(u)

γkafg =

zsf − 1 , if (f, g) ∈ G(s), f ∈ F c, u = ok,

1− zsf , if , u = ok, (f, g) ∈ G(s), f ∈ F d
or if u = ok, f = f|Fd|, g = f0;

−
∑
n∈N

xsgnu , if u ∈ V \V du, f = f0, g = f1

zsg , if u = ok, f = f0, g = f1
−1 , if u = tk, f = f|Fd|, g = f0∑
n∈N

xsfnu , if u ∈ V \V du, f = f|Fd|, g = f0

zsg − zsf , if u = ok,∀f, g ∈ F d|g = f + 1∑
n∈N

xsfnu −
∑
m∈N

xsgmu , otherwise.

∀k ∈ K(s) : s ∈ S, ∀f, g ∈ F,∀u ∈ V (9)

7) Latency: Inequalities (10) ensure that the maximum
end-to-end latency imposed by each slice request s will be
respected on the path between ok and tk for every traffic
demand k. Note that these technical constraints are applied
only on the data-plane and only on the uplink direction as

discussed before; we assume an arc has the same latency
constant value da in both directions. Inequalities (11) ensure
that the maximum latency between NFSs f and g will be
respected on both data and control planes, these constraints
are applied in both control and data planes.∑
a∈Ap

da(γkaf|Fd|f0
+

∑
f∈{f0}∪Fd\{f|Fd|}

γkaff+1) ≤ ds

,∀k ∈ K(s) : s ∈ S (10)∑
a∈Ap

daγ
ka
fg ≤ dfg ,∀k ∈ K(s) : s ∈ S, ∀f, g ∈ F (11)

8) Physical link capacity: Inequalities (12) ensure that an
arc will not carry more data than it can support. Note that
comprehension coefficients are considered in these constraints.∑
s∈S

∑
k∈K(s)

bk(λf|Fd|
γkaf|Fd|f0

+
∑

f∈{f0}∪Fd\{f|Fd|}

λfγ
ka
ff+1)]

+
∑
s∈S

ns(
∑

(f,g)∈F (s)

bfgγ
ksa
fg +

∑
(f,g)∈G(s)

∑
k∈K(s)

bfgγ
ka
fg

|K(s)|
) ≤ ba

,∀a ∈ Ap (12)

C. Formulation

We minimize the total cost of deploying all network slice
requests. To this end, the objective is to share as many NFSs
as possible while respecting physical capacity constraints and
assuring QoS imposed by each slice request. Being Ω the
scaling coefficient related to link utilization, the NSDP is then
equivalent to the following formulation:

min
∑
f∈F

∑
n∈N

∑
u∈Vp

yfnu + Ω
∑
a∈Ap

∑
s∈S

∑
k∈K(s)

∑
f,g∈F

γkafg (13)

subject to (1)-(12) and

yfnu ≥ 0 ∈ Z (14)

xsfmu, z
s
f , γ

ka
fg ∈ {0, 1} (15)

wsuf ≥ 0 ∈ R (16)

While the first term in (13) is related to the number of
installed functions, the second term in (13) multiplied by
Ω is inserted to mechanically avoid loops, with a negligible
qualitative impact on the network solution. An alternative way
to the second term would be to add loop avoidance constraints,
however increasing the complexity. Network designers may
want to tune the factor Ω to drive the solution toward the
desired outcome (e.g., to emphasize the number of NFSs over
the number of links).

V. VARIANTS AND EXTENSIONS FOR THE NSDP

In the following, we present a few relevant variants of the
Network Slice Design Problem.
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A. NDSP with intra-slice flexible splitting

With this variant of the problem, different split settings can
be selected within the same slice. In other words, flexible
splitting is applied independently to each DU related to a
given slice. For this purpose, we apply a pre-processing to
transform each traffic demand into a slice request4. Hence,
any NS request is now composed of only one traffic demand
(i.e., representing a unique traffic demand of the initial NS
request). In order to impose a shared control-plane to all DU
related to the same initial NS (i.e., before the pre-processing),
we introduce βst, a binary parameter generated during the
pre-processing: it holds 1 if the new slices s and t come from
the same initial NS request (i.e., before the decomposition);
0 otherwise. Finally, in order to reduce the management
complexity, we add the new constraints (17): they impose that
requests from the same NS must share the same control-plane
NFSs. Note that the single requests from the same original
slice can have their own data-plane. We refer to this variant
by NSDP with intra-slice flexible splitting (NSDP-ISFS).

βst − 1 ≤ xsfnu − xtfnu ≤ 1− βst
,∀s, t ∈ S, f ∈ F c, n ∈ N, u ∈ Vac (17)

Note that, constraints (17) impose the binary variables x to
have the same value (i.e., either 1 or 0) if and only if the
related parameter β holds 1; otherwise, these inequalities are
implicitly relaxed. After applying the described pre-processing
on the initial input, the original formulation of NSDP (1)-(16)
can be directly applied along with the new constraints (17).

B. NDSP with inter-slice split continuity

We propose this variant in order to represent the scenarios
with strict split setting constraints on each DU. In fact, impos-
ing the same split selection for any traffic demand traversing
a given DU might be necessary to reduce the management
complexity. Complementary to Ineq. (17), we add the new
constraints (18), where ρst is a binary parameter generated
during the pre-processing; it holds 1 if the new slices s and
t have the same origin DU node as their traffic demands; 0
otherwise.

ρst − 1 ≤ zsf − ztf ≤ 1− ρst ,∀s, t ∈ S,∀f ∈ F d (18)

Note that these inequalities can only be applied to instances
whose slice requests have only one traffic demand (i.e., after
pre-processing). We refer to this variant by NSDP with inter-
slice split continuity (NSDP-ISSC).

C. NSDP with optimized link load

In order to minimize the traffic volume throughout the
network, we introduce U , a continuous variable that represents
the maximal load among physical links. We then replace
constraints (12) by Ineq. (19) and (20) and add the new
constraints (21) in order to impose upper bounds to y variables;
these inequalities are important to this NSDP variant since we
no longer have the related component within the new objective
function (22).

4Following the taxonomy presented in this work, these new pos-processed
requests can be seen as network slice subnets.

∑
s∈S

∑
k∈K(s)

bk(λf|Fd|
γkaf|Fd|f0

+
∑

f∈{f0}∪Fd\{f|Fd|}

λfγ
ka
ff+1)]+

∑
s∈S

ns(
∑

(f,g)∈F (s)

bfgγ
ksa
fg +

∑
(f,g)∈G(s)

∑
k∈K(s)

bfgγ
ka
fg

|K(s)|
) ≤ baU

,∀a ∈ Ap (19)
0 ≤ U ≤ 1 (20)

yfnu < 1 +
∑
s∈S

wsfnu ,∀n ∈ N, ∀v ∈ Vp,∀f ∈ F (21)

The new objective function is then formulated as following:

min U (22)

This formulation can be applied to any NSDP variant and
a similar model can be generated in order to minimize the
maximal load on physical nodes.

VI. NUMERICAL RESULTS

We detail the simulation setting and then expose the results.

A. Test setup

The simulated scenarios represent realistic areas, such as
small cities and dense zones to scale with the complexity
of the formulation while stressing the impact of functional
splitting on the placement of network functions services.
Each simulated parameter follows those proposed in related
technical documents [3], [46] in order to provide scenarios
that are as realistic as possible.

1) Physical topologies: We simulated different physical
networks with different features. Inspired by common access
networks structure, we first propose a specific topology called
Mandala (Fig. 8a) with the following structure: given n DU
nodes, we have n/4 aggregation nodes, n/4 core nodes, and
n/8 application nodes. Note that n must be equal or multiple
of 8. Each DU node is connected to two aggregation nodes,
which, in turn, are connected to two inner-level core nodes.
Each core node is additionally connected to two application
nodes, where demands are served. Finally, given two different
nodes u and v, there exists one arc (v, u) for each arc (u, v).
Fig. 8a shows this topology where n is equal to 16. For sake
of clarity, each pair of arcs between two nodes is represented
by an edge.

In our simulation, while application nodes have no capacity
constraint (they are considered as sink nodes), each one of
DU, aggregation, and core nodes provides 30 servers, each
of which with 16 CPUs; this capacity corresponds to 12.5%

Fig. 8: Physical network structures: examples with 16 DUs.
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TABLE VI: Simulated slice demand setting

Slice Service required Aditional CP NFSs Max E2E latency ds UE data rate UE per DU
1 Broadband access in dense areas NFS10, NFS11 10ms 300Mbps 600
2 Ultra-low cost broadband - 10ms 10Mbps 600
3 Real-time communication NFS11, NFS12, NFS13 1ms 25Mbps 180
4 Video broadcast NFS10, NFS11 100ms 200Mbps 60

of the global generated CPU computing demand (i.e., with
no function sharing) and enables to test all split settings and
sharing policies. In addition, fronthaul links (i.e., between
DUs and aggregation nodes), backhaul links (i.e., between
aggregation and core nodes), and core links (i.e., between
core and application nodes) have link capacities ba set to
respectively 100%, 200% and 300% of the maximum flow
sent by a single DU at the split setting with the highest bitrate.
Finally, to simulate a small region, the latency da in each arc
randomly takes a value between: 50µs and 100µs for fronthaul
links, 200µs and 300µs for backhaul links, and 400µs and
600µs for core links5.

We also run our tests on two different physical topologies:
one binary tree-based structure (hereinafter referred to as
Tree; Fig. 8b) with 31 nodes and 60 arcs, and Sun from
SNDlib [47] composed of 27 nodes and 102 arcs (Fig. 8c). We
mapped the 16 DUs to all 16 leaves and the nodes composing
the external ring path in the former and latter structures,
respectively; aggregation, core, and application nodes were
randomly mapped in both topologies. While the capacities on
physical nodes follow the same parameter values in Mandala,
the bandwidth on links from the Tree structure was set to
500% of the maximum flow sent by a single DU at the split
setting with the highest bitrate; the latency is between 50µs
and 100µs. For the Sun topology, these values were randomly
chosen between 50µs and 600µs for the latency whereas the
bandwidth values were set between 100% and 300% of the
maximum flow sent by a single DU.

In order to represent the virtual RAN for each slice, we set
F d with five data-plane NFS types: NFS1 represents functions
of the MAC bloc; NFS2 represents functions of the RLC
block; NFS3 represents functions from PDCP block; NFS4
represents functions from RRC block; NFS5 represents DP
functions from the core network.

2) Virtual layer: In order to represent the virtual RAN
for each slice, we set F d with five data-plane NFS types:
NFS1 represents functions of the MAC bloc; NFS2 represents
functions of the RLC block; NFS3 represents functions from
PDCP block; NFS4 represents functions from RRC block;
NFS5 represents DP functions from the core network6. In
addition, there are four mandatory control-plane NFS types

5Note that the end-to-end latency along the shortest path between any DU
and application node is at most 1ms. This value is commonly used as a
threshold to strict latency constrained 5G services [46].

6Since RF and PHY blocs have synchronous network functionalities that
pose extremely strict latency requirements, we assume they are PNFs inte-
grated to each DU. Hence, they are not considered in our virtual DP chains.
In addition, We take into consideration only splits between the macro-blocs
(e.g., PHY-MAC and RLC-PDCP). However, our model is flexible enough
to consider any sub-split proposed by 3GPP. In fact, it depends only on
how the input instance is defined: since our model considers the data-plane
functions individually, one can describe the DP chain as a set of ordered inner
functionalities from each bloc.

TABLE VII: Scenarions: split settings and sharing policies

Split Setting Description
Setting 1 all DP NFS are installed locally for all NS requests.
Setting 2 for each slice, only NFS5 is installed centrally.
Setting 3 for each slice, only NFS4 and NFS5 are installed

centrally. It correspond to 3GPP’s split 1 in Fig. 5.
Setting 4 for each slice, only NFS1 and NFS2 are distributed;

it corresponds to 3GPP’s split 2 in Fig. 5.
Setting 5 for each slice, only NFS1 is installed locally. It

corresponds to 3GPP’s split 4 in Fig. 5.
Setting 6 all DP NFSs are installed centrally for all NS

requests. It corresponds to 3GPP’s split 6 in Fig. 5
Flexible free functional split selection for each NS request.
Policy Description

Hard Isolation NS requests do not accept sharing any NFS.
Shared DP only DP NFSs can be shared among slices.
Shared CP only CP NFSs can be shared among slices.

Partial DP Isol. only NFS1, NFS2, and NFS3 can be shared.
Partial CP Isol. only mandatory CP NFSs can be shared among NSs.

Flat Sharing NS requests do not impose any isolation constraint.

(labeled NFS6..NFS9) and other four optional CP NFS types
(labeled NFS10..NFS13; examples of mandatory and optional
5G core NFs are presented in [29]). Each NFS has a processing
capacity cap(f) set to 100% of the average volume sent by
all DUs. Furthermore, the resource cf required to install each
copy of them is set to roughly 5% of the average capacity
available on physical nodes. Also, the traffic generated from
or to any CP NFS was set to 1 kbps per UE. According to the
4G functional split levels reported in Table III and considering
the uplink direction, we set similar compression coefficients
λf related to initial volume sent by a traffic demand: 65%
for NFS1 and 40% for the other DP NFSs. Additionally, the
acceptable latency dfg between two DP NFSs from F d also
follows those in Table III, taking the upper bound when an
interval is proposed. Finally, the latency dfg involving any
CP NFS is set to 500µs; this value corresponds to 5% of the
total CP latency proposed by 3GPP [3].

3) Slice requests: We tested instances with four NS re-
quests, each with four traffic demands with random origin-
destination pairs; for each k ∈ K(s), origin ok is a DU while
destination tk is an application node as previously discussed.
Additionally, all network slices must contain all data-plane
NFSs, four mandatory control-plane NFSs, and a different
set of additional NFSs that can be required (see Table VI).
We assume that all CP NFSs are connected to each other.
Furthermore, to simulate the communication between data and
control planes, there exists an expected traffic volume between
CP NFSs and DP ones on each related network slice; we
create such traffic from CP NFS6 only (e.g., corresponding to
the Access and Mobility Management Function, AMF, in 5G
core [29]) to all DP NFSs (NFS1..NFS5). To also observe
the impact of different sharing policies on the number of
distributed NFSs, 25% of available DUs are set to be an
origin node of all NS requests; application nodes are evenly
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distributed as target nodes. Finally, each slice request imposes
different technical constraints related to end-to-end latency ds,
demands for optional CP NFSs, and expected user-experienced
data rate. As depicted in Table VI, we applied the assumptions
proposed by [46] for each aforementioned requirements. In our
simulations, slice request 1 represents an eMBB application
with an important traffic volume, which impacts both virtual
and physical capacities. Slice request 3, in turn, represents an
URLLC application, imposing a strict end-to-end latency on
the data-plane, which restrains the placement possibilities of
the related NFSs. The other two slice requests are intermediate
regarding both aforementioned parameters; request 2 can be
seen as an mMTC application. Finally, being an origin of one
of some slice’s traffic demands, each DU is associated with a
flow rate equal to the product between the expected number
of UE per DU and their related data rate in such NS.

4) Scenarios: Following Fig. 5, each scenario represents
one combination of functional split setting and sharing policy
applied to all slices. While different sharing policies are
those previously presented (see Fig. 3), the split settings
impose different sets of distributed and centralized DP NFSs.
Table VII summarizes the tested scenarios.

B. Numerical results
The analyses made in the following sub-sections 1 and 2 are

related to the formulation (1)-(26) and present the numerical
experiments of each variant of the problem on sub-section 3.
We implemented our model in a Julia-JuMP environment using
ILOG CPLEX 12.8 as the linear solver. We set Ω to an enough
small value (i.e., 10−3) on the objective function (13) only
to prioritize elementary paths to carry traffic demands and to
emphasize the number of NFSs over the number of links in the
optimization process. Finally, our tests were run on a Linux
server with an Intel Xeon E5-2650 CPU and 256GB RAM.
The data-set and the source code are available on [48].

1) Execution time: Before discussing the results related
to the simulation setting as previously detailed, we present
the performance of our model on different instance sizes: we
varied the number of NFSs available (from 3 up to 24), the
number of traffic demands per slice request (from 1 up to
16), and the physical topology size (13, 26, and 52 physical
nodes with random connection and average degree equals to
10). Finally, all instances had 4 NS requests. We run 30 tests
of each instance size, varying both origin and target nodes of
each traffic demand. Finally, we set the maximal number of
parallel threads that could be invoked by the solver to 1 and
the time limit to 10 800 seconds (three hours).

Fig. 9: Runtime on different NSDP instance sizes.

As shown in Fig. 9, the time needed to achieve the best
solution increases exponentially with the size of the instance.
In particular, the number of NFSs available has the worst
impact on the model. Even with small topologies (13 nodes),
the problem with 24 NFSs could not be solved within 3
hours. Due to the different levels of packing problems within
the model, this time limit is also reached with the biggest
topologies (52 nodes) and only 12 NFSs. The execution time
also increases as the number of traffic demands increases.
Due to the related routing sub-problems, the limit of three
hours is also reached with any number of demands and 12
NFSs on large topologies. It is worthwhile to mention that,
for those instances with 13 (resp. 52) nodes that reached the
time limit and could not be solved to optimality by the solver,
the average relative gap was roughly 7% (resp. 43%) with
standard deviation equals to approximately 2% (resp. 8%).

2) Functional split and NF sharing: We now discuss the re-
sults depending on the presented network settings. We applied
additional constraints to impose the desired split setting to all
slice demands. Additionally, sharing policies were imposed
by changing the qstfg parameters values used in Ineq. (5).
All instances were generated using Mandala, Sun and Tree
topologies with 16 DUs (see Fig. 8). Finally, we run 10 tests
on each physical network varying both traffic demands’ origin
and destination nodes. The goal of the following numerical
analysis is to assess the impact of novel mapping, splitting,
and sharing policies on the network design.

Fig. 10 reports the average number of distributed and
centralized NFSs on different sharing policies and split strate-
gies for the three aforementioned physical topologies merged
together (i.e., in the same results set here). While distributed
entities are only NFSs from DP, centralized ones also aggre-
gate NFSs from CP; translucent bars show the total number
of installed NFSs. Note first that the generated instances’
characteristics are such that:
• The minimum (resp. maximum) number of NFSs required

to serve all NS requests is equal to 101 (resp. 227);
• Since all NFSs are installed on all DUs related to each

slice request, split setting 1 requires the largest number
of NFS copies in all proposed sharing policies;

• Since each (resp. no) NFS copy is dedicated to a single
NS, Hard (resp. Flat) Isolation has the greatest (resp.
smallest) number of NFSs copies on all split settings,
including the flexible one.

In our simulations, having isolation constraints on different
sets of NFS types led to different impacts on the network slice
design. Regarding the five first split settings, Shared DP and
Partial DP policies provided a mean decrease (resp. increase)
of 28% (resp. 42%) on the number of distributed (resp.
centralized) NFSs compared to Shared CP and Partial CP;
the total number of NFSs when using shared policies (i.e., CP
Shared and DP Shared) was always smaller than when using
partial policies (i.e., Partial CP and Partial DP). Also, flexible
splitting proves to be an interesting strategy even for scenarios
that have strong isolation restrictions. With roughly 56% as
overall reduction, this approach has the smallest number of
NFSs in all mapping scenarios; regarding each sharing policy,
the average reduction was roughly 38% (standard deviation
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Fig. 10: Number of NFSs on different scenarios.

equals to approximately 10%) compared to split setting 1. It
is important to note that, since we minimize the total number
of NFSs, flexible split always had the same number of NFS
copies as split setting 6, which provided the greatest number
of centralized NFSs. This behavior might differ if the NS
provider is interested in optimizing other parameters, such as
the load on physical arcs.

In Fig. 11 we show that applying different sharing policies
and split settings has also an important impact on the physical
network. It is worth mentioning that we excluded from the
computation of the average load the unused links and nodes,
and for sake of readability, the standard deviations are not
depicted; the observed ratios of the standard deviation to the
mean were always less than 14%. First, we observe that split
settings 6 and Flexible have the worst impact on link load in all
sharing policies, requiring up to 100% of the capacity on the
most loaded link (see Fig. 11e); the average load on backhaul
and core (resp. fronthaul) links was equal to 52% (resp. 40%)
applying Flat (resp. Shared DP) sharing policy and split setting
6 (see Figures 11c and 11d). This behavior is expected since all
NFSs are installed centrally and the data volume sent by each
traffic demand is completely decompressed before traversing
the fronthaul links. Conversely, split setting 1 benefits from the
impact of the compressed data and demands the least amount
of capacity on the links in all mapping approaches, requiring at
most 60% of the capacity on the link on average (see Fig. 11e).
However, as shown in Fig. 11a, this split is one of the settings
that require the largest number of links (between 77% and
82%) since the NFSs from CPs and DPs are further from each
other. Besides, CP NFS6 must be connected to all distributed
DP NFSs of the related NS.

We also note a strong impact of different scenarios on phys-
ical nodes. Since there exist at least one NFS type installed
locally, the first five functional splits had the largest number of
physical nodes hosting at least one NF (see Fig. 11f). We also
observe a decrease of the average load on physical nodes (see
Fig. 11g), in particular on DU nodes (see Fig. 11h), on all shar-
ing policies. However, due to the completely decompressed
data arriving in the centralized DP chain, a shift of behavior is

observed when split setting 6 is applied (see Fig. 11g). Unlike
physical links and aggregation and core nodes (see Fig. 11b
and Fig. 11i, respectively), DU nodes benefit from functional
splits where a greater number of NFSs is installed centrally.
The average load on DU (resp. aggregation and core) nodes
decreased (resp. increased) from roughly 43% (resp. 21%)
applying split setting 1 along with Partial CP (resp. Shared
CP) sharing policy to approximately 8% (resp. 75%) applying
split setting 5 jointly with Flat sharing policy; the most loaded
physical node (see Fig. 11j) provided 98% (resp. 43%) on
average of its available resource applying split setting 6 (resp.
setting 1) and Partial DP (resp. Flat) sharing policy. Note that,
applying Hard, Shared CP, and Partial CP isolation policies,
all distributed NFSs can serve only one slice. Hence, they will
always demand the same capacity from DU nodes when the
same split setting is applied (see

Even with a negative impact on the number of installed
NFSs, mapped links, and nodes (see Figures 10, 11a, 11f,
respectively), Hard Isolation could partially unload the phys-
ical network. In fact, due to strong isolation constraints, this
sharing policy demanded less physical capacity from links
(see Fig. 11b) and from aggregation and core nodes (see
Fig. 11i) in some split settings. Consequently, a short physical
path for each traffic demand was prioritized, leading to the
use of physical nodes and links not mapped to other traffic
demands. Also, let us recall that the final solutions prioritized
minimizing the number of NFSs, even if this approach harms
the load of the physical network; to bring the final solution
closer to its economic strategy, the NS provider can simply
modify the objective function (13) to a more suitable one. It is
also worth mentioning that, in order to test feasible instances
of all functional split settings, we set a low enough latency
for each physical link; otherwise, some split settings (e.g.
settings 5) could be impossible. Finally, since we imposed
the same scenario (see Table VII) to all slice requests, we
did not observe a significant difference in the results using
distinct physical topologies. For instance, comparing the three
proposed topologies, the difference in the number of physical
nodes hosting an NF, the ratio of active links, and the number
of NFS copies were always less than 7%, 11%, and 1%,
respectively. This behavior might be different in real scenarios
since NS requests are likely to impose different isolation
constraints and physical networks might not have enough
capacity to allow all split settings (due to the relation between
the fronthaul capacity and the NFSs’ compression coefficient).
This, therefore, reinforces the importance of applying flexible
functional splitting while considering different sharing policies
in virtual environments.

3) NSDP and variants: We now present the impact of the
proposed variants of the presented problem on the physical
network. Henceforth, we refer by NSDP the original formu-
lation (1)-(16); the other two variants refer to the proposed
formulations as previously discussed. Since we set Ω to
10−3 in (13), we refer by minNFS this objective function
while minLinkLoad refers to (22); as aforesaid, this objective
function is implemented along with inequalities (19)-(21).
Also, the sharing policy was randomly chosen for each pair of
slices while we applied the Flexible Split setting along with the
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Fig. 11: Impact of different split settings and sharing policies on the physical network.

same parameters related to both physical and virtual layers as
previously presented in this section. Finally, we run 10 tests on
each combination of objective function, variant, and physical
topology, varying both origin and target nodes of each traffic
demand; for NSDP-ISFS and NSDP-ISSC variants, the pre-
processing described in the previous section was applied on
the NSDP instances.

Figure 12 shows the mean and the standard deviation of
each depicted parameter. Minimizing the load on physical links
generally increased the number of NFSs installed throughout
the network (see Figures 12a and 12b) and the number of
physical nodes hosting an NF (see Fig. 12h); regarding all
variants, the average increase in terms of both numbers of
NFSs and hosting nodes was roughly 400%. This is due to
the impact of the compression coefficient related to data-
plane NFSs; when installed locally, they can compress the
data before leaving the origin node of each traffic demand.
However, as seen in Fig. 12j, this strategy is limited by the
available resources on DU nodes, which impose to install some
DP NFSs centrally whenever the related physical capacities
are reached (see Fig. 12k and Fig. 12l). Moreover, since the
data flow is spread over as many physical links as possible,
minimizing the load on physical links also increased the end-
to-end DP latency (i.e., the latency between traffic requests’
origin and target physical nodes); this increase was approxi-
mately 100% on all NSDP variants (see Fig. 12c).

Fig. 11h).
Applying different variants has also an important impact

on the physical network. Since NSDP-ISFS and NSDP-ISSC
variants allow sharing data-plane NFSs with other slices rather
than the ones from the same initial slice request (which gives
more flexibility to NFS placement decisions), different objec-
tive functions had opposite impacts on the physical network.
Indeed, the NSDP approach demanded up to 40% more (resp.
50% less) bandwidth compared to the other variants when
the number of NFSs (resp. load on the physical links) is
minimized (see Figures 12d,12e, and 12f). Also, comparing
the two objective functions, the load on physical links could
be reduced by a factor of 3, and the most loaded physical
link provided roughly 97% (resp. 34%) of its capacity when

NSDP-ISSC (resp. NSDP) is applied along with minNFS
(resp. minLinkLoad) objective function (see Fig. 12g). This
behavior is explained by the concentration of NFSs on few
physical nodes when the minNFS objective function is applied,
hence stressing the related incoming links; applying the split
setting 6 whenever is possible, this concentration is due to
the greater number of centralized DP functions to be installed.
Moreover, the NSDP-ISSC variant had a relevant impact on the
physical nodes (see Fig. 12i); comparing this variant to NSDP
and regarding the minNFS formulation, the load on physical
nodes could be decreased from 85% to 65% on average.

NFSs’ compression coefficients also play an important role
in the final solution. Indeed, depending on the parameter to be
optimized, different split settings are prioritized. For instance,
when the load on the physical links is minimized, split setting
1 is always selected when it is admissible by DUs’ capacity
(see Fig. 12j); this functional split places all DP NFSs locally
and therefore completely compresses the traffic demands’ flow
before sending it through fronthaul links (see Fig. 12e).

It is worth mentioning that, regarding the three proposed
physical topologies, we observed an important difference only
on the end-to-end DP latency and on the fronthaul links’ load.
In our simulations, while the average end-to-end DP latency
was 2.50 ms on the Tree structure, these values increased
to 4.20 ms and 6.60 ms on Sun and Mandala topologies,
respectively. Let us recall that, since there is only one possible
elementary path to connect any pair of physical nodes on
the Tree topology and slice request 3 imposes a strict DP
latency (see Tab. VI), the latency on the related physical links
is lower than those found on Sun and Mandala structures;
otherwise, some instances would be infeasible. For the same
reason and in order to carry the flow from slice request
1, the links’ capacity on Tree topology is greater than on
the other two structures. Hence, when the number of NFS
copies was minimized, the average load on fronthaul links on
Tree, Sun, and Mandala was respectively 12.50%, 30%, and
40%. However, running the same instance on each of these
topologies, we observed no difference in the selected split
setting on the final solutions. However, this behavior might
not be observed in real scenarios since physical networks are
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Fig. 12: Impact of different NSDP variants on the physical network.

unlikely to have enough capacity to allow any split setting
and hence be able to allocate resources to all slice requests.
This, therefore, reinforces the importance of applying flexible
functional splitting in future 5G systems and beyond.

VII. CONCLUDING REMARKS

In this paper, we modeled the network slice provisioning
as an optimization problem including novel mapping and
provisioning requirements. In particular, we considered novel
mapping dimensions appearing with 5G systems, modeling the
relationship between flexible radio access functional splitting,
control-plane and data-plane function separation, and sharing
policies. Different variants of the problem were also proposed
and the related models are compliant with running standards.
We demonstrated by simulation the impact of taking into
full and partial consideration of the peculiar constraints rising
from the standards. For instance, we reported numerical results
showing that flexible splitting appears as a key factor to deal
with heterogeneous requirements to deploy distinct commu-
nication services, leading to considerable network slice cost
decrease. In our simulations, the number of NFSs needed to
deploy the virtual networks could be reduced by up to 56%
depending on which of the six proposed sharing policies is
applied to each network slice. We also observed that different
variants related to the flexible splitting have an important
impact on the physical network; depending on the selected
approach, the average load on physical links could be reduced
by a factor of 3.

Regarding the execution time performance on large in-
stances and to attain (near-)optimal solutions in a competi-
tive runtime, future works can focus on different exact and
heuristic approaches applied to the problem addressed in this
work. Also, other variants of the problem can be studied
(e.g., applying Multi-access Edge Computing) and different
parameters (e.g., latency) might alternatively be optimized.
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