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Abstract. Shell models have found wide application in the study of hydrodynamic

turbulence because they are easily solved numerically even at very large Reynolds

numbers. Although bereft of spatial variation, they accurately reproduce the

main statistical properties of fully-developed homogeneous and isotropic turbulence.

Moreover, they enjoy regularity properties which still remain open for the three-

dimensional (3D) Navier–Stokes equations (NSEs). The goal of this study is to make

a rigorous comparison between shell models and the NSEs. It turns out that only

the estimate of the mean energy dissipation rate is the same in both systems. The

estimates of the velocity and its higher-order derivatives display a weaker Reynolds

number dependence for shell models than for the 3D NSEs. Indeed, the velocity-

derivative estimates for shell models are found to be equivalent to those corresponding

to a velocity gradient averaged version of the 3D Navier–Stokes equations (VGA-

NSEs), while the velocity estimates are even milder. Numerical simulations over a

wide range of Reynolds numbers confirm the estimates for shell models.

AMS classification scheme numbers: 37N10, 76F02.
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1. Introduction

Three-dimensional (3D) incompressible turbulent flows are characterized by a cascade

of kinetic energy from the length scales at which the flow is generated to the scales at

which viscous dissipation becomes predominant [1–4]. Kinetic energy is usually injected

at large scale by a body forcing or the boundary conditions, and, on average, it is

transferred at a constant rate to smaller scales by nonlinear interactions between the

Fourier modes of the velocity. The energy is strongly dissipated when the viscous-

dissipation range is reached. The range between the forcing and viscous scales is

known as inertial range and is characterized by a kinetic-energy spectrum that, up

to intermittency corrections, behaves as E(k) ∼ k−5/3, where k is the wavenumber.
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When the viscosity tends to zero while the scale and the magnitude of the large-scale

velocity remain fixed, the energy dissipation rate has a nonzero limit [5, 6], which is

known as the ‘dissipative anomaly’.

A mathematically rigorous description of the generation of small scales in turbulent

3D Navier–Stokes flows can be achieved by considering the L2m-norms of the velocity

derivatives for weak solutions of the Navier–Stokes equations (NSEs) [7–10]. Given a

velocity field u over a periodic cube V = [0, L]3, volume integrals and norms can be

defined as

Hn,m(t) =

∫
V

|∇nu|2m dV . (1)

The well known scaling property of the NSEs u(x, t)→ µ−1u (x/µ, t/µ2) suggests the

definition of a doubly-labelled set of dimensionless, invariant quantities [10]

Fn,m(t) = ν−1L1/αm,mH1/2m
n,m , (2)

for 0 6 n <∞ and 1 6 m 6∞, where ν is the kinematic viscosity and

αn,m =
2m

2m(n+ 1)− 3
. (3)

It was shown in [9, 10] that for 1 6 n < ∞ and 1 6 m 6 ∞, together with n = 0

for 3 < m 6 ∞〈
Fαn,m
n,m

〉
T
6 cn,mRe3 + O

(
T−1

)
(Re � 1) , (4)

where Re is the Reynolds number and the time average up to time T > 0 is defined by

〈·〉T = T−1
∫ T

0

· dt . (5)

Moreover, the set of estimates in (4) encompasses all the known a priori bounds for

weak solutions of the 3D NSEs equations and shows how these bounds arise naturally

from scale invariance [9, 10]. In those references it has been shown that a hierarchy of

spatially averaged length scales `n,m(t) can be constructed from the Fn,m in the following

manner : (
L`−1n,m

)n+1
:= Fn,m . (6)

Higher values of n allow the detection of smaller scales, while higher values of m account

for stronger deviations from the mean. Using (4) and (6), followed by a Hölder inequality,

one finds that〈
L`−1n,m

〉
T
6 cn,mRe

3
(n+1)αn,m (Re � 1) . (7)

As noted in [9], while the estimate for the first in the hierarchy is Re3/4 and is consistent

with the inverse Kolmogorov length, the limit as n, m → ∞ is finite and is consistent

with the fact that viscosity ultimately dissipates the cascade of energy§.

§ Strictly speaking there is a limit to the value of Re beyond which kinetic scales are reached and the

NSEs become invalid.
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The Re dependence of the moments of ∇u has been studied within the multifractal

formalism [1, 11, 12] and in numerical simulations of both the 3D NSE [13] and the

Burgers equation [14]. The calculation of Hn,m for high Re and large values of n and m

nonetheless requires large numerical simulations (see [15] for the n = 1 case). At high

Re, indeed, the injection and viscous-dissipation scales are widely separated, and the

cascade process activates a wide range of length scales : an empirical argument due to

Landau and Lifschitz [16] indicates that the number of degrees of freedom of a turbulent

velocity field grows as Re9/4(see also [1]). For this reason, the direct numerical simulation

of high-Re flows have remained a great challenge [17–21]. In order to study the properties

of fully developed turbulence, simplified models have thus been introduced that retain

some of the properties of the NSEs but are much more tractable both theoretically and

numerically. Among these, shell models of the energy cascade have played a major

role [1, 22–24]. They consist of a system of ordinary differential equations for a set of

complex scalar variables which can be regarded loosely as the amplitudes of the Fourier

components of the velocity field. The structure of the equations mimics that of the

NSEs in Fourier space. The nonlinear part has a form that recalls the vortex-stretching

term, but the interactions between the velocity variables are local. A linear small-scale

dissipation and generally a forcing are also included. Because of their scalar nature,

shell models are unable to provide information on the spatial structure of the velocity

field. However, they successfully reproduce the statistical properties of space-averaged

quantities, such as the kinetic-energy spectrum, the velocity structure functions or the

viscous-dissipation rate in isotropic turbulence. From a mathematical point of view,

stronger results have been proved for shell models than for the 3D NSEs : for instance,

the global regularity of strong solutions and the existence of a finite-dimensional inertial

manifold [25,26] (see [27] for analogous results on stochastic shell models).

Questions still remain, however, over how close the mathematical results of shell-

models are to those for the NSEs. Shell-models are bereft of spatial variation while

the behaviour of solutions of the NSEs equations differ widely depending upon their

dimension. Indeed, although the notion of velocity gradient as a spatio-temporal field

in shell models is not available, it is easy to define the analogue of the volume integral of

powers of the velocity derivatives. For instance, the shell-model analogues of enstrophy

and helicity have been studied extensively [22–24]. Nevertheless, it is not clear where

the exact correspondence lies. The goal of this paper is to investigate the analogue of

Hn,m for shell models, both mathematically and numerically, in relation to the NSEs

equations to see if there is a consistent correspondence between the two.

The paper is organized in the following steps. Section 2 introduces the shell model

and the mathematical framework. We consider the ‘Sabra’ model [28], but the results

are general and, in particular, also hold for the GOY model [29,30], the only difference

being in the constants that appear in the estimates.

The starting point of our study is a bound for the mean energy-dissipation rate,

which corresponds to the m = n = 1 case. This is obtained in section 3 by adapting to
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shell models the methods used by Doering and Foias [31] for the NSEs (see also [32,33] for

the application of the same methods to magnetohydrodynamics and binary mixtures).

The estimate for the dissipation rate coincide, as expected, with that for the 3D NSEs.

In sections 4.1 and 4.2, we keep m = 1 but move to general n, i.e. we study

Hn ≡ Hn,1, the analogue of the L2-norm of the n-th order derivative of the velocity. We

first prove two differential relations connecting Hn and Hn+1, in the spirit of the “ladder”

relations available for the NSEs [34, 35]. Following the strategy applied in [35–37], we

then use these relations together with the bound for the energy dissipation rate to prove

the existence of absorbing balls for all Hn and to estimate the time average

〈
H

2
n+1
n

〉
T

in

terms of Re. This latter result is the counterpart of a bound proved by Foias, Guillopé

and Temam [38] for weak solutions of the 3D NSEs. It is further extended to general n

and m in section 4.3, where it is shown that, in terms of the αn,m defined above in (3)

and (4), the shell-model equivalent is

αn,m =
4

n+ 1
, (8)

which is independent of m.

The form of these bounds and, in particular, their insensitivity to m, raise the

question of how close these results are to the NSEs in any dimension. Comparing (8)

with (3), we find that αn,m is greater for shell models than for the 3D NSEs for all

n > 1 and 1 6 m 6 0. Therefore, the Re dependence of the high-order velocity

derivatives differs in the two systems and, in shell models, is significantly weaker. It

is indeed discovered in section 5 that, as far as the velocity-derivative estimates are

concerned, the real PDE-equivalent of the shell models considered here is not the full

3D NSEs themselves but a version of these that we have called the ‘velocity gradient

averaged Navier–Stokes equations’ (VGA-NSEs). While less specific in its definition as

intermittency in multi-fractal theories [1], intermittent events in solutions of the NSEs

have the property that excursions in ∇u depart strongly from its average ‖∇u‖2,
thereby implying that for very short periods of time

L3/2 ‖∇u‖∞
‖∇u‖2

� 1 , (9)

whereas making the approximation

L3/2 ‖∇u‖∞
‖∇u‖2

= 1 , (10)

has the effect of suppressing strong events in ∇u. The VGA-NSEs are obtained by

using (10) in the differential inequalities for the NSEs. In fact, it can be thought of in

the following way : a Gagliardo–Nirenberg inequality shows that

‖∇u‖∞
‖∇u‖2

6 cnκ
3/2
n , κn =

(
‖∇n+1u‖2
‖∇u‖2

)1/n

. (11)

The wave-number κn(t) behaves as a higher moment of the enstrophy spectrum and has

a lower bound expressed as L−1 ≤ κn(t). (10) occurs when one uses only the minimum
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of the right-hand side of the inequality in (11). One of the main results of this paper

is that for all n > 1 and 1 6 m 6 ∞, the bounds and the exponents in the various

bounded time-averages of VGA-NSEs and the shell models are equivalent.

The velocity estimates for the shell models are even milder than those for the

VGA-NSEs. Indeed, it is shown that for the VGA-NSEs〈
‖u‖2m

〉
T
6 cm ν

2L−
2m−3
m Re3 (m > 1) , (12)

whereas the shell-model analogues of 〈‖u‖2m〉T scale as Re2.

Finally, section 6 concludes the paper by summarizing the estimates for shell models

and comparing them with numerical simulations of the ‘Sabra’ model over a wide range

of values of Re.

2. The ‘Sabra’ shell model

Shell models of turbulence describe the velocity field by means of a sequence of complex

variables uj, j = 1, 2, 3, . . ., which represent its Fourier components. In the ‘Sabra’

model [28], the variables uj satisfy the following equations :

u̇j = i(akj+1u
∗
j+1uj+2 + bkjuj+1u

∗
j−1 − ckj−1uj−1uj−2)− νk2juj + fj , (13)

where kj = k0λ
j (k0 > 0, λ > 1) are logarithmically-spaced wave numbers, ν is the

kinematic viscosity, and the fj are complex and represent the Fourier amplitudes of the

forcing. The ‘boundary conditions’ for the velocity variables are u0 = u−1 = 0, while

k−10 plays the role of the largest spatial scale in the system. The coefficients a, b, c are

real and satisfy

a+ b+ c = 0 . (14)

This condition ensures that the kinetic energy,

E =
∞∑
j=1

|uj|2 , (15)

is conserved when ν = 0 and fj = 0 for all j. In the inviscid, unforced case and

under condition (14), the shell model also possesses a second quadratic invariant, which

for suitable values of a, b, c can be interpreted as either a generalized helicity or a

generalized enstrophy [22]. The parameters of the shell model can also be tuned so as to

generate an inverse cascade of energy from small to large scales, as in two-dimensional

turbulence [39]. In the following, however, we shall not impose any additional constraint

on a, b, c other than (14).

Various forcings have been considered in the literature, such as those that act only

on few low-j shells and mimic the injection of energy at large scales [28,30], those that

impose a constant energy input [40], or those with a power-law ‘spectrum’ [41, 42]. We

consider a constant-in-time deterministic forcing, but the results are easily generalized
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to time-dependent fj. Following [31], we define the forcing in a way as to isolate its

magnitude from its shape. We take

fj = Fφj−jf , (16)

where F is a complex constant, jf > 1, and the shape function φp is such that φp = 0

if p < 0. Thus, kf = k0λ
jf is the characteristic wavenumber of the forcing. We also

assume
∞∑
p=0

|φp|2 <∞ (17)

and
∞∑
p=0

λ−2p|φp|2 = 1 . (18)

The assumption in (17) means that the ‘energy’ of the forcing is finite, while (18) is

a normalization condition on the shape function. In sections 4 and 5, we shall further

require that the forcing has a maximum wavenumber kmax.

Under assumption (17), it was shown in [25] that if the energy E is bounded at

time t = 0, then it stays bounded at any later time. This allows us to define the root

mean square velocity

U = 〈E〉1/2T , (19)

where the time average up to time T has been introduced in (5). In addition, the

time-averaged dissipation rate

ε = ν

〈
∞∑
j=1

k2j |uj|2
〉
T

(20)

is also bounded for all T > 0 [25]. By using U , kf , and |F |, we can then define the

Reynolds and Grashof numbers as

Re =
U

νkf
and Gr =

|F |
ν2k3f

, (21)

respectively. The latter is a dimensionless measure of the forcing, while the former

quantifies the response of the system.

Finally, we note that it is possible to introduce a suitable functional setting for

the study of (13), in which a solution u = (u1, u2 . . .) is regarded as an element

of the sequences space `2 over the field of complex numbers, with scalar product

(u,v) =
∑∞

j=1 ujv
∗
j for any u, v ∈ `2 [25]. Here, however, we follow the physical

notation and work with the variables uj directly.
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3. The time-averaged energy dissipation rate

An estimate of the time-averaged energy dissipation rate ε, defined in (20), is an essential

element of the present study as results on the high-order derivatives of the velocity are

based on this. It was once conventional to write estimates for ε in terms of the Grashof

number Gr until Doering and Foias [31] introduced a method that converted these into

estimates in terms of the Reynolds number Re, which is much more useful for comparison

with other theories of turbulence. The methods used here are adapted from Doering

and Foias [31].

Let us first introduce the constants that will appear in the estimate for ε :

A = |a|λ+ |b|+ |a+ b|λ−1, Bγ = sup
p>0

λ−(2γ−1)p|φp|, Cγ =
∞∑
p=0

λ2γp|φp|2. (22)

A is a function of the parameters of the shell model, while Bγ and Cγ are fixed by

the shape of the forcing. The exponent γ is a real number and must be such that Bγ

and Cγ are finite; in particular, the normalization condition in (18) implies C−1 = 1.

It is important to stress that Bγ and Cγ depend neither on the amplitude nor on the

characteristic wavenumber of the forcing. We shall also make use of the following result :

Lemma 1. For any γ ∈ R such that Cγ is finite,
∞∑
j=1

k2γj |fj|2 = Cγk
2γ
f |F |

2 . (23)

Proof. By using the definition of the forcing in (16) and rearranging the terms in the

sum, we obtain :
∞∑
j=1

k2γj |fj|2 = |F |2
∞∑
j=jf

k2γj |φj−jf |
2 = |F |2

∞∑
p=0

k2γp+jf |φp|
2 (24)

= |F |2
∞∑
p=0

k2γ0 λ
2γ(p+jf )|φp|2 = |F |2(k0λjf )2γ

∞∑
p=0

λ2pγ|φp|2. (25)

Replacing the definitions of kf and Cγ in (25) yields the result.

As discussed above at the beginning of this section we now use the method of

Doering and Foias [31] to estimate the time-averaged dissipation rate ε.

Theorem 1. Let the forcing (f1, f2, . . .) be as in Sect. 2 and the initial energy E(0) be

bounded. Then the time-averaged energy dissipation rate satisfies

ε 6 ν3k4f
(
c1Re2 + c2Re3

)
+ O(T−1) , (26)

where the constants

c1 =

√
C0C2(1−γ)

C−γ
, c2 = A

√
C0Bγ

C−γ
, (27)

depend on the parameters a, b, λ of the shell model and on the shape of the forcing

(φ1, φ2, . . .), but are uniform in ν, k0, kf , |F |. The value of γ ∈ R may be chosen in a
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way as to minimize c1 and c2, but it must nonetheless be such that C−γ, C2(1−γ), Bγ are

finite.

Remark 1. The switch from Re2 to Re3 behaviour in (26) is observed in the numerical

computations displayed in Fig. 1.

Proof. We begin by writing the evolution equation for the energy. Towards this end,

we multiply (13) by u∗j and the complex conjugate of (13) by uj. We then add the two

resulting equations and sum over j :

dE

dt
= −2ν

∞∑
j=1

k2j |uj|2 +
∞∑
j=1

(fju
∗
j + f ∗j uj) . (28)

By integrating over time and using the Cauchy–Schwarz inequality twice on the last

term, we obtain :

E(T ) + 2ν

∫ T

0

(
∞∑
j=1

k2j |uj(t)|2
)

dt 6 E(0) + 2
√
C0 U |F |T , (29)

whence

ε 6
√
C0 U |F |+

E(0)

2T
. (30)

To express this bound in terms of Re, we need to estimate |F | in terms of U and kf .

We multiply (13) by k−2γj f ∗j , sum over j, and average over time :〈
∞∑
j=1

k−2γj f ∗j u̇j

〉
T

=
∞∑
j=1

k−2γj |fj|2 −

〈
ν
∞∑
j=1

k2−2γj ujf
∗
j

〉
T

+

〈
i
∞∑
j=1

k−2γj f ∗j
(
akj+1u

∗
j+1uj+2 + bkjuj+1u

∗
j−1 − ckj−1uj−1uj−2

)〉
T

. (31)

From (28), it is easy to see that E(t) is bounded by a time-independent constant [25].

This follows from using kj < k1 for all j > 1 in the viscous term, the Cauchy–Schwarz

inequality on the forcing term, and then Gronwall’s inequality. As a consequence, the

left-hand side of (31) is O (T−1).

The first term on the right-hand side is calculated from Lemma 1 as :
∞∑
j=1

k−2γj |fj|2 = C−γk
−2γ
f |F |2 . (32)

The second term is estimated by using the Cauchy–Schwarz inequality :∣∣∣∣∣∣
〈
ν
∞∑
j=1

(k2−2γj f ∗j )uj

〉
T

∣∣∣∣∣∣ 6
√
C2−2γ νUk

2−2γ
f |F | . (33)
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We estimate the third term by moving the forcing out of the sum and using again the

Cauchy–Schwarz inequality :∣∣∣∣∣∣
〈

i
∞∑
j=1

k−2γj f ∗j
(
akj+1u

∗
j+1uj+2 + bkjuj+1u

∗
j−1 − ckj−1uj−1uj−2

)〉
T

∣∣∣∣∣∣
6 k−2γ+1

f |F |

∣∣∣∣∣
〈
∞∑
j=1

λ−(j−jf )(2γ−1)φj−jf (aλu
∗
j+1uj+2

+ buj+1u
∗
j−1 + (a+ b)λ−1uj−1uj−2)

〉
T

∣∣∣∣∣∣
6 ABγU

2k−2γ+1
f |F | . (34)

We now combine (32) with (33) and (34) and find :

|F | 6
√
C2−2γ

C−γ
νUk2f + A

Bγ

C−γ
U2kf + O

(
T−1

)
. (35)

Inserting (35) into (30) and rearranging finally yields the estimate for ε.

The implications of (26) for turbulent flows have been discussed thoroughly in [31]

within the context of the 3D NSEs (see also [43]). Here we briefly mention the shell-

model counterpart of the main points :

(i) The bound on ε can be rewritten as
ε

U3kf
6

c1
Re

+ c2 + O(T−1) . (36)

Thus, in the high-Re limit the saturation of the bound recovers the empirical

prediction ε ∼ U3kf [1].

(ii) The estimate of ε can be converted into bounds for the Kolmogorov dissipation

wavenumber kη = (ε/ν3)1/4, the Taylor microscale kT = (ε/νU2)1/2, and the Taylor-

microscale Reynolds number, Reλ = U/νkT . The saturation of these bounds for

Re → ∞ is consistent with the empirical predictions kη ∼ Re3/4, kT ∼ Re1/2,

Reλ ∼ Re1/2 for 3D homogeneous and isotropic turbulence [1].

(iii) A lower bound for the time-averaged dissipation rate can also be derived by using

the shell-model version of the Poincaré inequality :

ε > νk21

〈
∞∑
j=1

|uj|2
〉
T

= νk21U
2 , (37)

where we have used k1 > kj for all j > 1. The latter bound can be rewritten as

ε

U3kf
>

(
k1
kf

)2

Re−1 . (38)

Therefore, the small-Re scaling in (36) is sharp. Moreover, if we take jf = 1 and

φp = δp,0, then kf = k1 and c1 = 1. As a consequence, the upper and lower bounds

on ε coincide for Re → 0, i.e. ε behaves as ε/U3kf = Re−1. This means that the

lower bound on ε is also optimal.
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(iv) Dividing (35) by ν2k3f yields :

Gr 6 c′1Re + c′2Re2 (39)

with c′1 = c1/
√
C0 and c′2 = c2/

√
C0. This bound establishes a relation between the

forcing (represented by Gr) and the response of the system (represented by Re).

As mentioned earlier, the proof of Theorem 1 parallels that of Doering and Foias [31]

for the NSEs. By using the same approach, it is possible to obtain estimates of ε in

terms of Gr analogous to those available for the NSEs. It can indeed be shown that

for Gr → 0 the lower and upper bounds on ε coincide, and hence the time-averaged

dissipation rate behaves as ε = ν3k4fGr 2, while for Gr →∞ it satisfies the lower bound

ε > c3ν
3k21k

2
fGr , where the constant c3 is uniform in ν, k0, |F |, and kf .

4. High-order velocity derivatives

To investigate higher-order derivatives of the velocity, we now consider the sequence of

infinite sums

Hn =
∞∑
j=1

k2nj |uj|2 , n > 0 , (40)

which represent the shell-model analogues of the L2-norms ‖∇nu‖2L2 . Note that H0 is

the energy E, while the time average of H1 is proportional to ε :

ε = ν 〈H1〉T . (41)

We also denote the equivalent sums for the forcing variables as

Φn =
∞∑
j=1

k2nj |fj|2 , n > 0 . (42)

Recall from Lemma 1 that Φn = Cnk
2n
f |F |2 .

4.1. Ladder inequalities and absorbing balls for Hn

The following theorem shows that there exist two ladders of differential inequalities

that connect Hn and Hn+1 and reproduce the analogous ladder inequalities for the

NSEs [34,35].

Theorem 2. Let n > 0 and assume that the forcing (f1, f2, . . .) is such that Φn < ∞ .

Then Hn satisfies

1

2
Ḣn 6 −νHn+1 + cnHn sup

j>1
kj|uj|+H

1
2
n Φ

1
2
n (43a)

and
1

2
Ḣn 6 −ν

2
Hn+1 +

dn
ν
Hn sup

j>1
|uj|2 +H

1
2
n Φ

1
2
n (43b)

with

cn = λ−n+1
(
|a|λ−2n + |b|+ |a+ b|λ2n

)
, dn =

c2n
2λ4

. (44)
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Proof. We multiply (13) by k2nj u
∗
j and the complex conjugate of (13) by k2nj uj. We then

sum to obtain

Ḣn = − 2νHn+1

+
∞∑
j=1

k2nj
[
iu∗j(akj+1u

∗
j+1uj+2 + bkjuj+1u

∗
j−1 − ckj−1uj−1uj−2 + fj) + c.c.

]
, (45)

where ‘c.c.’ stands for ‘complex conjugate’. The forcing term is estimated by using the

Cauchy–Schwarz inequality :∣∣∣∣∣
∞∑
j=1

k2nj u
∗
jfj

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
j=1

(knj u
∗
j)(k

n
j fj)

∣∣∣∣∣ 6 H
1
2
n Φ

1
2
n . (46)

Consider then the nonlinear term with coefficient a. We have∣∣∣∣∣a
∞∑
n=1

k2nj kj+1u
∗
ju
∗
j+1uj+2

∣∣∣∣∣ 6 |a|λ−3n+1 sup
j>1

(kj|uj|)

∣∣∣∣∣
∞∑
j=1

(knj+1u
∗
j+1)(k

n
j+2uj+2)

∣∣∣∣∣ (47)

6 |a|λ−3n+1Hn sup
j>1

(kj|uj|) , (48)

where we have used knj = λ−npknj+p and the Cauchy–Schwarz inequality. The terms

with coefficients b and c = −(a + b) are treated in a similar manner. The first ladder

inequality is thus proved by using (46) and the estimates for the nonlinear terms in (45).

To prove (43b), we start again from (45). The forcing term is estimated as above.

The term with coefficient a is now manipulated as follows :∣∣∣∣∣a
∞∑
j=1

k2nj kj+1u
∗
ju
∗
j+1uj+2

∣∣∣∣∣ 6 |a|λ sup
j>1
|uj|

∣∣∣∣∣
∞∑
j=1

(
knj u

∗
j+1

) (
kn+1
j uj+2

)∣∣∣∣∣ (49)

6 |a|λ−3n−1H
1
2
nH

1
2
n+1 sup

j>1
|uj| , (50)

where we have used the Cauchy–Schwarz inequality. We then estimate the terms with

coefficient b and c in a similar way and use Young’s inequality to find∣∣∣∣∣
∞∑
j=1

k2nj u
∗
j

[
(akj+1u

∗
j+1uj+2 + bkjuj+1u

∗
j−1 − ckj−1uj−1uj−2) + c.c.

]∣∣∣∣∣ (51)

6 2
√

2dnH
1
2
nH

1
2
n+1 sup

j>1
|uj| 6 νHn+1 +

2dn
ν

Hn sup
j>1
|uj|2 , (52)

where dn is defined in (44). Finally, we combine the first term on the right-hand side

of (52) with the viscous term in (45) and add the estimate of the forcing term to get

(43b).

The structure of the ladder inequalities makes it evident that control over a low-n

rung of the ladder automatically yields control over all the higher-order rungs [34, 35].

Since supj>1 |uj|2 6 H0 and H0 is bounded [25], inequality (61b) can be used to prove

that there are absorbing balls for all the Hn. The existence of absorbing balls was proved

in [25] by using different methods. Here we show how this result follows immediately



Shell models and the Navier–Stokes equations 12

from the ladder inequalities and, in addition, we estimate the radius of the absorbing

ball for Hn under the assumption that Φn is finite.

Corollary 1. Let n > 0 and assume the forcing is such that Φn <∞, then

lim sup
t→∞

Hn 6 ν2k
2(n+1)
f

[
d̃n ρ

4(n+1)Gr2(n+1) + C̃n ρ
8

n+2Gr2
]
, (53)

where ρ = kf/k1 and

d̃n = 2ndnn , C̃n = 2
2n
n+2C

n
n+2
n . (54)

Proof. By using supj>1 |uj|2 6 H0 and the inequality (see the Appendix for the proof)

Hn 6 H
1

n+1

0 H
n
n+1

n+1 , (55)

we rewrite (61b) as

Ḣn 6 −Hn

[
ν
H

1
n
n

H
1
n
0

− 2dn
ν

H0 − 2
Φ

1
2
n

H
1
2
n

]
. (56)

It follows that

lim sup
t→∞

Hn 6 2ndnnν
−2n lim sup

t→∞
Hn+1

0 + 2
2n
n+2ν−

2n
n+2 Φ

n
n+2
n lim sup

t→∞
H

2
n+2

0 . (57)

From Lemma 1, we have

Φn = Cnk
2n
f |F |2 = Cnν

4k2n+6
f Gr 2 . (58)

In addition, it was shown in [25] that

lim sup
t→∞

H0 6 ν2
(
kf
k1

)4

k2fGr 2 . (59)

Inserting (58) and (59) into (57) yields the advertised result.

It is also useful to reformulate the ladder inequalities in terms of the quantities

Kn = Hn + τ 2Φn with τ = ν−1k−20 , (60)

which incorporate the contribution of the forcing. This can be achieved under the

additional assumption that the forcing has a cutoff in the spectrum, i.e. there exists a

maximum wavenumber kmax = k0λ
jmax such that fj = 0 for j > jmax.

Corollary 2. If n > 0 and the forcing has a maximum wavenumber kmax and is such

that Φn <∞, then Kn satisfies

1

2
K̇n 6 −νKn+1 + cnKn sup

j>1
kj|uj|+ ν

(
k20 + k2max

)
Kn (61a)

and

1

2
K̇n 6 −ν

2
Kn+1 +

dn
ν
Kn sup

j>1
|uj|2 + ν

(
k20 + k2max

)
Kn . (61b)
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Proof. The strategy for deriving (43a) from (61a) is the same as for the NSEs [7, 35].

Note first that Ḣn = K̇n. Then, add and substract ντ 2Φn+1 to the right-hand side

of (43a) to obtain the negative definite term in (61a). The remaining two terms of

the Hn inequality are expressed in terms of Kn via the obvious bounds Hn 6 Kn and

Φn 6 τ−2Kn. Finally, we are left with the term ντ 2Φn+1, which is estimated by using

τ 2Φn+1 6 Φn+1Kn/Φn 6 k2maxKn.

Inequality (61b) is proved in exactly the same manner.

4.2. A bound for the time average

〈
H

2
n+1
n

〉
T

We now make use of the first ladder inequality and the estimate for ε to prove the shell-

model analogue of a Navier–Stokes result of Foias, Guillopé and Temam [38]. It ought

to be noted that the exponent of Hn in the bound below is greater than that found for

the 3D NSEs. The reason for this difference between the shell model and the 3D NSEs

is discussed in Sect. 5.

Theorem 3. Let n > 1 and E(0) < ∞ and assume that the forcing (f1, f2, . . .) has a

maximum wavenumber kmax and is such that Φn <∞. Then, for Re � 1,〈
H

2
n+1
n

〉
T

6 ĉn ν
4

n+1k4f Re3 + O
(
T−1

)
, (62)

where the dimensionless positive constant ĉn depends on a, b, λ, n but is uniform in ν,

k0, kf , kmax, |F |.

Proof. By noting that

sup
j>1

kj|uj| =
(

sup
j>1

k2j |uj|2
)1/2

6 H
1/2
1 , (63)

we turn (61a) into

1

2
K̇n 6 −νKn+1 + cnĤ

1/2
1 Kn , (64)

where we have denoted Ĥ
1/2
1 = H

1/2
1 + 2νk2max and have used k0 < kmax. We shall see

that the additive constant in Ĥ
1/2
1 gives a negligible contribution at large Re.

We then divide (64) by K
n
n+1
n and time average. The time-derivative term can be

simplified as follows :〈
K
− n
n+1

n K̇n

〉
T

= (n+ 1)

〈
d

dt
K

1
n+1
n

〉
T

=
n+ 1

T

[
K

1
n+1
n (T )−K

1
n+1
n (0)

]
. (65)

The first term on the right-hand side is bounded below by (n + 1) (τ 2Φn)
1

n+1 /T > 0,

while the second one is O (T−1). We are therefore left with〈
Kn+1

K
n
n+1
n

〉
T

6
cn
ν

〈
K

1
n+1
n Ĥ

1
2
1

〉
T

+ O
(
T−1

)
6
cn
ν

〈
K

2
n+1
n

〉 1
2

T

〈
Ĥ1

〉 1
2

T
+ O

(
T−1

)
. (66)



Shell models and the Navier–Stokes equations 14

We now estimate the time average of K
2

n+2

n+1 by using (66) and Hölder’s inequality :〈
K

2
n+2

n+1

〉
T

=

〈(
Kn+1

K
n
n+1
n

) 2
n+2

K
2n

(n+1)(n+2)
n

〉
T

6

〈
Kn+1

K
n
n+1
n

〉 2
n+2

T

〈
K

2
(n+1)
n

〉 n
n+2

T

(67)

6 c′nν
− 2
n+2

〈
K

2
(n+1)
n

〉n+1
n+2

T

〈
Ĥ1

〉 1
n+2

T
+ O

(
T−1

)
(68)

with c′n = c
2

n+2
n . Define now the dimensionless quantities

A1 = ν−2k−4f

〈
Ĥ1

〉
T

and An = ν−
4

n+1k−4f

〈
K

2
(n+1)
n

〉
T

(69)

for n > 2. The bound in (68) then takes the form

〈An+1〉T 6 c′n 〈An〉
n+1
n+2

T 〈A1〉
1

n+2

T + O
(
T−1

)
(70)

and, after the use of Young’s inequality,

〈An+1〉T 6
c′n(n+ 1)

n+ 2
〈An〉T +

c′n
n+ 2

〈A1〉T + O
(
T−1

)
. (71)

To estimate A1, we invoke Jensen’s inequality, (41), and Theorem 1 for Re � 1 :

〈A1〉T 6 ν−2k−4f 〈H1〉T + 4ν−1k−4f k2max 〈H1〉1/2T + 4k−4f k4max 6 ĉ1 Re3 + O
(
T−1

)
. (72)

Here ĉ1 is a dimensionless constant that depends on a, b, λ and is uniform in ν, k0,

kf , kmax, |F |. We now use (72) in (71) for n = 1 to estimate 〈A2〉T and then proceed

iteratively to find

〈An〉T 6 ĉnRe3 + O
(
T−1

)
. (73)

We obtain the final result by writing the latter bound in dimensional form and recalling

that Hn 6 Kn.

4.3. High-order moments of the velocity derivatives

For Navier–Stokes flows, the deviations of the velocity and its derivatives from their

mean values are captured by the norms ‖∇nu‖L2m , where 0 6 n and 1 6 m 6∞ [10].

For m <∞, the shell-model analogues of ‖∇nu‖2mL2m are

Hn,m =
∞∑
j=1

k2nmj |uj|2m , (74)

which reduce to Hn when m = 1. Instead, the analogue of ‖∇nu‖L∞ is supj>1 k
n
j |uj|.

By building on the results of the previous sections, we can generalize Theorem 3 to

Hn,m. Note once again that the exponent of Hn,m in the time average differs from that

found for weak solutions of the 3D NSEs [10].
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Theorem 4. Under the same assumptions as in Theorem 3 and for Re � 1, Hn,m

satisfies 〈
H

2
m(n+1)
n,m

〉
T

6 ĉn ν
4

(n+1)k4f Re3 + O
(
T−1

)
(75)

if 1 6 n, 1 6 m <∞, and〈
H

1
m
0,m

〉
T
6 ν2k2f Re2 (76)

if n = 0 and 1 6 m <∞. In addition, for n > 1〈(
sup
j>1

knj |uj|
) 4
n+1

〉
T

6 ĉn ν
4

(n+1)k4f Re3 + O
(
T−1

)
, (77)

while for n = 0〈(
sup
j>1
|uj|
)2〉

T

6 ν2k2f Re2. (78)

The constants ĉn depend on a, b, λ, n, but are uniform in ν, k0, kf , kmax, |F |.

Proof. The case m = 1 was proved in Theorem 3. For 1 < m <∞, we use the inequality

∞∑
j=1

Xj 6

(
∞∑
j=1

X
1/p
j

)p

, (79)

where p > 1 and Xj > 0 for all j. When applied to Hn,m, this inequality yields

Hn,m 6 Hm
n . (80)

If n > 1, the result follows from raising both sides of (80) to the power 2/m(n+ 1) and

invoking Theorem 3. For n = 0, it is proved by raising both sides of (80) to the power

1/m and using H0 = ν2k2fRe.

Finally, (77) is proved by noting that(
sup
j>1

knj |uj|
) 4

n+1

=

(
sup
j>1

k2nj |uj|2
) 2

n+1

6 H
2

n+1
n (81)

and using Theorem 3, while (78) follows from supj>1 |uj|2 6 H0.

5. Comparison with the velocity gradient averaged Navier–Stokes equations

The issue in this section concerns how the velocity derivative estimates displayed in

Theorem 4 compare with those for the NSEs. It is not clear that there necessarily

should be a positive comparison, given that the 3D NSEs are not known to be regular

and their corresponding scaling exponents defined in (2) and (4) are different, namely :

αn,m =
2m

2m(n+ 1)− 3
(NSE) αn,m =

4

n+ 1
(Shell) . (82)

As we will now show, the real comparison lies with what we have called the “velocity

gradient averaged Navier–Stokes equations” (VGA-NSEs). To explain the origin of this
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name, let us return to the first ladder inequality for Hn displayed in (43a), which for

the NSEs is written in the form‖
1

2
Ḣn 6 −νHn+1 + cn‖∇u‖∞Hn , (83)

where for simplicity, we have ignored the forcing term [34, 35]. As explained in (9) in

§1, the approximation where the L∞-norm is replaced by its spatial average

‖∇u‖∞ ≈ c L−3/2‖∇u‖2 (84)

has the effect of suppressing intermittent events in ∇u. Thus we are not dealing with

a modified PDE but with an averaging of its solutions reflected in the behaviour of

‖∇u‖∞. In terms of the Hn-ladder we are dealing with

1

2
Ḣn 6 −νHn+1 + cnL

−3/2‖∇u‖2Hn (85)

which yields the exact equivalent of Theorem 3 :

Theorem 5. For n > 1, the Hn for the 3D VGA-NSEs obey the bounds〈
H

2
n+1
n

〉
T

6 cnL
− 2(2n−1)

n+1 ν
4

n+1 Re3 . (86)

Remark 2. Bounds for Hn,m follow in the same manner as in Theorem 4, as can be

easily seen by using approximation (10) in the proof of Theorem 1 of [9]. The relaxation

of the L∞ to the L2-norm in (10) accounts for the insensitivity of the exponents to the

value of m.

Proof. To mimic the FGT-analysis of Theorem 3, and suppressing the multiplicative

factors of L and ν, we divide (85) by H
n
n+1
n to obtain〈

Hn+1

H
n
n+1
n

〉
T

6

〈
H

1/2
1 H

1
n+1
n

〉
T

6 〈H1〉1/2T

〈
H

2
n+1
n

〉1/2

T

(87)

Moreover, 〈
H

2
n+2

n+1

〉
T

=

〈(
Hn+1

H
n
n+1
n

) 2
n+2

H
2n

(n+1)(n+2)
n

〉
T

6

〈
Hn+1

H
n
n+1
n

〉 2
n+2

T

〈
H

2
n+1
n

〉 n
n+2

T

(88)

Let

Xn =

〈
H

2
n+1
n

〉
T

(89)

‖ In this section, cn is a generic positive constant dependent on n.
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then from (88) and (87) we have

Xn+1 6
2

n+ 2

〈
Hn+1

H
n
n+1
n

〉
T

+
n

n+ 2
Xn

6
1

n+ 2
(〈H1〉T +Xn) +

n

n+ 2
Xn

=
1

n+ 2
〈H1〉T +

n+ 1

n+ 2
Xn (90)

Since X1 = 〈H1〉T 6 Re3 we have estimates for every n > 1 in the form of (86).

Theorem 5 holds for n > 1. What of the velocity field represented by n = 0?

Lemma 2. For 1 6 m 6∞, the velocity field for the 3D VGA-NSEs obey the bounds〈
‖u‖22m

〉
T
6 cm ν

2L−
2m−3
m Re3 . (91)

Proof. The Poincaré inequality yields

‖u‖2m 6 cmL‖∇u‖2m 6 cmL
2m+3
2m ‖∇u‖∞ . (92)

Then the L∞ → L2 replacement as in (10) gives

‖u‖2m 6 c L−
m−3
2m ‖∇u‖2 for m > 1 . (93)

This is exactly a ‘less intermittent’ form of Sobolev’s inequality which allows some

variation in the L2m-norm on the left-hand side instead of L6 alone, as in its standard

form.

Comparing (76) with (91) shows that the equivalence between the shell model and

the VGA-NSEs only holds at the level of the velocity derivatives. In shell models,

the dependence of the velocity field on Re is even weaker than in the VGA-NSEs.

Equivalence at the level of the velocity estimates would be obtained by assuming

‖u‖∞ ≈ c L−3/2‖u‖2, which corresponds to a suppression of the large fluctuations of the

velocity field.

6. Simulations and concluding remarks

To test the mathematical estimates, we have performed numerical simulations of the

Sabra model. The parameters are the typical ones used in studies of 3D turbulence :

a = 1, b = c = −1/2, k0 = 2−4, λ = 2 [30]. The forcing has the form fj = F δj,1 with

F = 5 × 10−3(1 + i), and the viscosity is varied between ν = 10−7 and ν ≈ 6 × 102.

We truncate the system to N shells by imposing the additional boundary conditions

uN+1 = uN+2 = 0, where N is varied between 8 and 27 depending on the value of

ν. The numerical integration uses a second-order slaved Adams–Bashforth scheme [45]

with time step dt = 10−4.

Figures 1 to 3 show ε, Gr , and
〈
H

2
m(n+1)
n,m

〉
T

for different values of n and m as a

function of Re. The values of Re vary from the ‘laminar’ regime, in which the shell
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Definition Estimate Reference

ε = ν
〈∑∞

j=1 k
2
j |uj |2

〉
T

ε 6 ν3k4f
(
c1Re2 + c2Re3

)
ε U−3k−1f 6 c1Re−1 + c2

(26)

(36)

Gr = |F |/ν2k3f Gr 6 c′1Re + c′2Re2 (39)

Hn =
∑∞

j=1 k
2n
j |uj |2

〈
H

2
n+1
n

〉
T
6 ĉn ν

4
n+1k4f Re3 (n > 1, Re � 1) (62)

Hn,m =
∑∞

j=1 k
2nm
j |uj |2m

〈
H

2
m(n+1)
n,m

〉
T
6 ĉn ν

4
(n+1)k4f Re3 (n > 1, Re � 1) (75)

H0,m =
∑∞

j=1 |uj |2m
〈
H

1/m
0,m

〉
T
6 ν2k2fRe2 (76)

〈(
supj>1 k

n
j |uj |

) 4
n+1

〉
T

6 ĉn ν
4

(n+1)k4f Re3 (n > 1) (77)

〈(
supj>1 |uj |

)2〉
T

6 ν2k2f Re2 (78)

Table 1. Summary of the main estimates and definitions for the shell model. The

O
(
T−1

)
corrections have not been included for simplicity.

model relaxes to a fixed point, to the fully turbulent regime, which is characterized

by a k
−5/3
j spectrum over several decades of wavenumbers. To facilitate the reading of

the figures, the relevant definitions and estimates for shell models are summarized in

Table 1. The shell-model estimates are then compared with those for the 3D NSEs and

VGA NSEs in Table 2.

The simulations clearly show that the mathematical estimates in Table 1 accurately

describe the behaviour of the shell model as a function of Re. Figure 2(b) also indicate

that, for Re � 1, the scaling of
〈
H

2
(n+1)
n

〉
T

depends on n, as may be inferred from the

proof of Theorem 3 (see (70) to (72)). Related to this, in Fig. 3(a) the small-Re scaling

of
〈
H

2
m(n+1)
n,m

〉
T

depends on n but not on m, as a consequence of Hn,m being controlled

by Hm
n (see (80)).

Our conclusion is that shell models behave more closely to the 3D VGA-NSEs than

the NSEs themselves. They both have identical scaling exponents in their time averages

of their velocity derivatives which are reflected in the suppression of strong events of

∇u, as proposed in equation (10). The actual properties of shell models for the velocity

field itself are even milder than the estimates for the VGA-NSEs : compare (76) in Table

1 with (91).

Finally, we ask how much more regularity do solutions of shell models possess
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than those for the NSEs? This is shown up by comparing the estimates for velocity

derivatives. Consider the scaling exponents αn,m defined in (3) which appear in (4). It

is not difficult to replicate this result in D = 3, 2, 1 dimensions [10]. αn,m is replaced

by αn,m,D

αn,m,D =
2m

2m(n+ 1)−D
(94)

and the relation involving Fn,m in (4) is replaced by〈
F

(4−D)αn,m,D
n,m,D

〉
T
6 cn,m,DRe3 . (95)

In all these estimates, the larger the exponent the more regularity we have. Under what

conditions is the 4/(n+ 1) of shell models greater than (4−D)αn,m,D?

4

n+ 1
≥ (4−D)αn,m,D ? (96)

The answer turns out to be

2D {m(n+ 1)− 2} > 0 , (97)

and is thus always true when n > 1 and m > 1 for every value of D. Equality holds only

at the level of the energy dissipation rate when n = m = 1. The same result implies

that, exception made for the time-averaged dissipation rate, the Re-dependence of the

velocity derivatives is weaker for shell models than for the D-dimensional NSEs for any

integer D. Curiously, in a formal manner, equality also holds in the limit D → 0, which

corresponds to the “Navier–Stokes equations on a point”, which has zero dimension.

Since shell models can be regarded as field problems in zero spatial dimension [46], the

physical correspondence between the two is intriguing.

We conclude by discussing possible extensions of this work. To our knowledge,

the mathematical estimates for the 3D NSEs have been compared with numerical

simulations of turbulent flows only for n = 1 [15]. In order further to study the

correspondence between shell models and the 3D NSEs, it would be interesting to

examine the higher-order derivatives of the velocity field in turbulence simulations.

In shell models, the nonlinear interactions are drastically truncated to few Fourier

modes. There exist various extensions of shell models aimed at better approximating the

structure of the NSEs in Fourier space, for instance dyadic models on trees [46,47]. These

refined models may show a behaviour closer to that of the 3D NSEs, but the solution

remains an element of a sequence space, and hence its infinity norm is dominated by

all norms of finite order. Such a property has been identified as the main reason for

the weaker dependence on Re in shell models. It is therefore expected that a similar

behaviour will be found in dyadic models on trees.

While the regularity problem remains unsolved for the 3D NSEs, it was shown

in Ref. [48] that suitably ‘decimating’ the Fourier modes of the velocity field so as to

project the NSEs onto a subspace with sign-definite helicity induces regularity. It would

be worth exploring whether the regularity of the helically-decimated NSEs leads to a

close correspondence with their shell-model counterpart.
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Figure 1. Rescaled time-averaged energy dissipation rate as a function of the Reynolds

number.

Finally, it was recalled in the introduction that the moments of the derivatives of a

turbulent velocity field can be estimated by using the multifractal formalism. It ought to

be noted that the quantities examined here differ from those commonly considered within

the multifractal formalism, which studies estimates of the form 〈‖∇nu‖2m2m〉T ∼ Reρn,m

[1, 11, 12]. In our estimates (see Table 2), the exponent αn,m is a decreasing function

of both n and m and is inserted in between the space and time averages. On the one

hand, this has the consequence that the dependence on m and n is entirely contained

within the averages of the velocity derivatives rather than appearing in the exponent of

the Reynolds number. On the other hand, the quantities considered in our study may

be difficult to analyze with the multifractal formalism, which does not distinguish easily

between space and time averages. Establishing a connection between the mathematical

estimates and the multifractal formalism would contribute greatly to the understanding

of the intermittent nature of turbulent flows.
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Appendix

Inequality (55) is proved by induction on n [35]. By using the Cauchy–Schwarz

inequality, we find

H1 =
∞∑
j=1

|uj|
(
k2j |uj|

)
6 H

1
2
0 H

1
2
2 . (A.1)

We then assume

Hn 6 H
1

n+1

0 H
n
n+1

n+1 (A.2)
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and estimate Hn+1 as

Hn+1 6 H
1
2
nH

1
2
n+2 6 H

1
2(n+1)

0 H
n

2(n+1)

n+1 H
1
2
n+2 , (A.3)

which yields

Hn+1 6 H
1

n+2

0 H
n+1
n+2

n+2 . (A.4)

This completes the proof by induction.
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