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Effect of internal friction on the coil-stretch transition
in turbulent flows

Dario Vincenzi*¢*

A polymer in a turbulent flow undergoes the coil-stretch transition when the Weissenberg num-
ber, i.e. the product of the Lyapunov exponent of the flow and the relaxation time of the polymer,
surpasses a critical value. The effect of internal friction on the transition is studied by means of
Brownian dynamics simulations of the elastic dumbbell model in a homogeneous and isotropic,
incompressible, turbulent flow and analytical calculations for a stochastic velocity gradient. The
results are explained by adapting the large deviations theory of Balkovsky et al. [Phys. Rev. Lett.,
2000, 84, 4765] to an elastic dumbbell with internal viscosity. In turbulent flows, a distinctive fea-
ture of the probability distribution of polymer extensions is its power-law behaviour for extensions
greater than the equilibrium length and smaller than the contour length. It is shown that although
internal friction does not modify the critical Weissenberg number for the coil-stretch transition,
it makes the slope of the probability distribution steeper, thus rendering the transition sharper.
Internal friction therefore provides a possible explanation for the steepness of the distribution of

polymer extensions observed in experiments at large Weissenberg numbers.

1 Introduction

The coil-stretch transition is the complete unravelling of a poly-
mer that occurs when the polymer is immersed in a non-uniform
flow field and the magnitude of the velocity gradient surpasses
a critical value. It was initially predicted? and observed ex-
perimentally® in a laminar extensional flow. The essential fea-
tures of the coil-stretch transition, such as the strong distortion of
the polymer and the associated conformational hysteresis, can be
predicted 2 by using a model as simple as the elastic dumbbell,
which consists of two inertialess beads connected by a spring.
Moreover, if the contour length of the polymer is used as fitting
parameter, the dumbbell model satisfactorily reproduces the ex-
perimental measurements of the end-to-end distance.3"Z Ref-
erences [8H11] contain a comprehensive review of single-polymer
dynamics in laminar flows.

It was later discovered 12714 that the coil-stretch transition also
occurs in chaotic or turbulent flows, albeit with partially differ-
ent features. The most notable difference between extensional
and turbulent flows is in the probability distribution of the poly-
mer end-to-end distances. In turbulent flows, indeed, the core
of the distribution displays a power-law behaviour, which indi-
cates that a wide range of polymer extensions is observed even
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when the magnitude of the velocity gradient is very large. This
feature of the statistics of the end-to-end distance was predicted
by applying large-deviations techniques to the dumbbel model in
a random flow'2' and was observed in both microfluidics experi-
ments1417 and numerical simulations of turbulent flows218-22
(see also Ref. 23] for a review).

The dynamics of a polymer involves internal dissipation pro-
cesses, generally referred to as ‘internal friction’, which origi-
nate from local energy barriers to short-range conformational
changes, such as bond rotations, or from interactions between
distant segments of the polymer that come close in space.24 In
coarse-grained models of elastic polymers, such as the bead-
spring chain,2226 internal friction has been introduced by adding
a linear ‘dashpot’ to each elastic link, which yields a resistive force
proportional to the rate of deformation of the link. This idea was
proposed by Kuhn and Kuhn?Z under the name of ‘internal viscos-
ity’. The early applications of internal viscosity were mainly con-
cerned with the rheology of viscoelastic fluids (see Refs. [25]28H31
and references therein). For instance, internal viscosity is known
to cause shear thinning.2? More recently, there has been renewed
interest in bead-spring models with internal viscosity thanks to
their application to the study of biopolymer dynamics (see, e.g.,
Refs. [32136). The reader is referred to Ref. [37|for a recent intro-
duction on the notion of internal friction and the use of internal
viscosity in polymer models.

It ought to be noted that the notion of internal viscosity has
been subject to some criticism, 23859 for the magnitude of the



force exerted by the dashpot is not easily estimated from the
molecular properties of the polymer and it has been difficult to
find conclusive experimental evidence for the need of internal vis-
cosity in bead—spring chains. However, a protocol for measuring
the value of the internal-friction coefficient to be used in bead-
spring chain models has recently been proposed in Ref. [40.

The effect of internal viscosity on polymer stretching has been
studied for laminar, planar velocity fields.2841543! n particular, it
was shown in Ref. 38| that a moderate internal viscosity reduces
the steady-state end-to-end distance, although without affecting
the critical velocity gradient for the coil-stretch transition. In con-
trast, when the magnitude of internal viscosity exceeds a thresh-
old value, polymers hardly deform. The limiting case of a purely
extensional flow was shown to be special, since in such a flow
internal viscosity does not modify the steady-state configuration
of the polymer. The goal of this study is to examine the effect of
internal friction on the coil-stretch transition when the velocity
field is turbulent. To the author’s knowledge, indeed, the effect
of internal dissipation processes in turbulent flows has not been
studied yet. Thus, the dumbbell model with internal viscosity
provides a simple setting for a qualitative understanding of this
phenomenon.

The study consists of Brownian dynamics simulations in three-
dimensional homogeneous and isotropic turbulence and focuses
on the statistics of polymer extension and the coil-stretch transi-
tion. The numerical results are explained by adapting the theory
in Ref. [12] to a dumbbell with internal viscosity. In addition, a
fully analytical solution for a stochastic velocity gradient supports
the interpretation of the results. Finally, the concluding section
discusses the experimental evidence for the effect of internal fric-
tion on single-polymer dynamics and identifies a phenomenon,
namely the steepness of the probablity distribution of the end-to-
end distances, that can be attributed to internal friction and not
to other forces usually included in bead-spring chains, such as hy-
drodynamic and excluded-volume interactions or a conformation-
dependent drag.

2 Model and methods

2.1 Elastic dumbbell with internal viscosity

The polymer is described as an elastic dumbbell. The extension
and orientation are specified by the vector g that connects the
two beads and represents the end-to-end separation vector of the
polymer. Internal viscosity is introduced in the dumbbell model
by adding the resistive force F;, = —¢(q-¢)q/q> to the equation
for g (see Refs. [27]29). Here ¢ = |q| and ¢ is termed the internal
viscosity coefficient. The resistive force is parallel to —q and has
a magnitude proportional to dg/dt. Thus, for a finitely extensi-
ble nonlinear elastic (FENE) dumbbell with internal viscosity the
evolution equation for the connector vector is444>

Gi = Ai+Ciji K (1) + Bij Wy (1) M
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with

qi € 4KT g;
A = — - = 2a
! 2t(1+e)(1—q2/L2) 1+e ¢ ¢’ (22)

o [4KT o ] 1 qiq;j

Bz] = 7@, 51] (1 71 T 8) qz :| B (Zb)
_ € qiqk

Cuy = (&k T5e &2 ) qa (20)

where i, j,k = 1,2,3 and summation over repeated indices is un-
derstood, 7 is the relaxation time of the polymer, L is its con-
tour length, { is the drag coefficient of the beads, K is the Boltz-
mann constant, T is temperature, k;; = du;/dx; is the velocity
gradient at the position of the center of mass, and W(¢) is the
three-dimensional Brownian motion [in Eq. the noise term
is interpreted in the Itd sense®]. The equilibrium length of the
dumbbell, defined as the standard deviation of ¢ for x = 0, is
Geq = \/12KT7/C.

The parameter € =2¢ /{ describes the ratio of internal viscosity
to the hydrodynamic drag. The usual FENE dumbbell model is
recovered for € = 0, whereas for infinite € Eq. yields the rigid
dumbbell model.2? In the literature, € is typically taken between
0 and 10.

The balance between polymer stretching and relaxation is mea-
sured by the Weissenberg number, which in a chaotic flow is com-
monly defined as Wi = A7, where A is the maximum Lyapunov
exponent of the flow, i.e. the average exponential rate at which
fluid particles separate.

Here Eq. is studied under the assumption that x(z) is the
gradient of a turbulent velocity field. It is worth mentioning that
even though Eq. assumes a linear velocity field, it remains
appropriate for turbulent flows, because the length of a polymer
is generally shorter than the viscous dissipation scale, which is
the smallest length scale in such flows.

2.2 Brownian dynamics simulations

The effect of internal viscosity is studied by using a database of La-
grangian trajectories in homogeneous and isotropic, incompress-
ible turbulence generated at ICTS, Bangalore4®. Although an
isotropic turbulent flow has zero mean strain rate, line elements
are stretched exponentially with an asymptotic rate A. Thus, a
polymer in an isotropic turbulent flow experiences strong stretch-
ing events that can unravel it completely. 122947 The database
was obtained by tracking the positions of 10° fluid particles
and calculating k(r) along their trajectories in a direct numeri-
cal simulation of the three-dimensional Navier-Stokes equations
over a periodic cube and at Taylor-microscale Reynolds number
R; =111 (see Ref. [46/for more details). The time series of k(z) is
then inserted into Eq. (). This procedure assumes that the cen-
tre of mass of a polymer moves along a fluid trajectory; therefore
the effect of thermal noise on the motion of the centre of mass is
disregarded. Such an assumption is justified in a turbulent flow,
because thermal diffusion is negligible compared to turbulent dif-
fusion.



Py (0)

0.05 -

: 0.00

10° 100 (b) 10 20 30 40 50

q q

Fig. 1 Stationary PDF of ¢ for different values of € and (a) Wi = 0.35 and (b) Wi = 2. Panel (c) is the same as panel (b) but on a linear scale.

For the numerical integration of Eq. (1)), Ref. [37] proposes a
semi-implicit predictor—corrector scheme, which is adapted from
an analogous algorithm initially derived for & = 0.2% However, in
the present setting the Euler-Maruyama method supplemented
with a rejection algorithm® proved accurate enough to prevent
extensions greater than L (for € = 0 and the largest value of Wi—
the least favourable case—only 0.02% of the time steps were re-
jected). In the Lagrangian database, the velocity gradient was
saved at a time interval Ar = 4 x 1073, The time step used for the
integration of Eq. is dr =4 x 10~4; a linear interpolation be-
tween two subsequent values of the velocity gradient is therefore
required. In Sect. the contour length is L = v/3 x 103 and K,
T, {, are such that geq is unity. The ratio L?/ ng is thus compara-
ble to that of long DNA molecules® and is the same as that used in
Refs. [20/47. In Sect. L is taken unrealistically large, namely
L=103, in order accurately to resolve the power-law behaviour of
the distribution of ¢q. The Weissenberg number is varied between
0.05 and 8, while ¢ is taken between 0 and 2.

3 Results and discussion

3.1 Polymer stretching in isotropic turbulence: the effect of
internal viscosity

The statistics of polymer stretching is described in terms of the
stationary probability density function (PDF) of the polymer end-
to-end distance, here denoted as Py(g). It was already mentioned
in Sect. [1] that if € = 0, analytical, 12 experimental,14"17 and nu-
merical 13118722 stydies of the dumbbell model have shown that
Py (q) behaves as a power of g for geq < ¢ < L, with a slope that is
negative for small Wi, motonically increases as a function of Wi,
and crosses —1 when the Weissenberg number takes the critical
value Wig = 1/2 (note that the present definition of 7, and hence
of Wi, differs by a factor of 2 from that used in some of the ref-
erences cited above). Thus, in the L —  limit (linear polymer),
Py (g) is no longer normalisable for Wi > Wi, and this is inter-
preted as the indication of the coil-stretch transition occurring at
Wi = Wig;. The power-law behaviour of P (g) means that the PDF
is not dominated by a peak about its mean, but the distribution
of polymer extensions is broad. The transition is characterized by
a rapid increase of the mean extension and a sharp maximum in

the coefficient of variation of ¢, defined as o/(g), where o is the
standard deviation of ¢ (see Refs. [14]20]48). The latter behaviour
is a further indication of the breadth of the distribution and the
heterogeineity of polymer configurations in a turbulent flow.

Figure |1{shows that, in the presence of internal viscosity, Py (g)
continues to behave as a power of ¢ for intermediate extensions,
but the slope of the power law changes significanly with €. In-
ternal viscosity indeed makes the power steeper: the PDF falls
faster than for € = 0 at small Wi and rises faster at large Wi. As
a consequence, the mean polymer extension displays a sharper
transition from the coiled to the stretched state as € is increased,
and its asymptotic value is larger at higher € (see Fig[2|(a)). At the
same time, the dispersion of the PDF around the mean is reduced
by internal viscosity, as is quantified by a systematically smaller
coefficient of variation for & > 0 (inset of Fig. [2(a)).

This behaviour of P (¢) may be inferred from the fact that, in a
turbulent flow, large deviations from the mean extension are the
cumulative result of strong fluctuations of the velocity gradient,
and the effect of internal viscosity is to attenuate the response of
the polymer to sudden variations in the velocity gradient. How-
ever, a rigorous explanation of this phenomenon will be given in
the following sections.

The coil-stretch transition also manifests itself in a signifi-
cant increase of the correlation time of polymer the end-to-
end distance.?? A related phenomenon is the slowing down
of the equilibration dynamics of the polymer in the flow.42
If C(r) = {(q(t)q(0)) — {¢(¢))? is the autocorrelation function of
the end-to-end distance, the correlation time is defined as T =
Jo dtC(r)/C(0). The inset of Fig. b) shows that C(r) decays ap-
proximately as an exponential function, as was already observed
for € =0 (see Ref. 20). However, internal viscosity strongly am-
plifies the aforementioned increase of the correlation time near
the coil-stretch transition: 7 displays a higher and higher peak
near Wic, as € grows (in Fig. [2b), time is rescaled by the Kol-
mogorov time Ty, which is the time scale associated with viscous
dissipation in turbulent flows).

Finally, the orientation dynamics of polymers in isotropic turbu-
lence has also attracted some attention.202150 Internal viscosity
obviously does not affect the orientation of a polymer directly,
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Fig. 2 (a) Mean extension rescaled by the contour length as a function of Wi for different values of €. The inset shows the coefficient of variation of ¢
for the same values of Wi and €. (b) Correlation time of the polymer end-to-end distance as a function of Wi for different values of €. The inset shows
the autocorrelation of the polymer extension vs time for Wi = 0.6. The time scale 7, is the Kolmogorov time.

because F;, is parallel to . However, it may in principle do so in-
directly, since it modifies the statistics of ¢.The numerical results
(not shown) indicate that internal viscosity causes a mild reduc-
tion of the alignment of the polymer with the vorticity only for Wi
smaller than Wi, and close to Wig,. The effect on the orientation
dynamics is otherwise negligible.

3.2 An exactly solvable model

The stationary PDF of ¢ can be calculated exactly if the turbulent
velocity gradient is modelled as a a stochastic tensor with suit-
able statistical properties. In the Batchelor regime of the three-
dimensional Kraichnan model, > k(r) is an isotropic traceless ten-
sorial white noise, which means that x(¢) is Gaussian, has zero
mean, and two-time correlation

(Kij (1)K (1) = Hijud(t—1"),

with JZjj = A(4836;; — 6;j0u — 0u0jx)/3. This stochastic model
of the velocity gradient has been widely used in the study of tur-
bulent transport®l and was applied for the first time to single-
polymer dynamics in Ref. With this choice of x(¢), the veloc-
ity gradient plays the role of a multiplicative noise in the second
term on the right hand side of Eq. and is interpreted in the
Stratonovich sense.>1552

i,j,k,l=1,2,3 €)]

By using the methods presented in Ref. [53] it can be shown
that if x(¢) is as above, then the PDF of the vector ¢, denoted as
f(q.t), satisfies the Fokker—Planck equation

of 9 1 92 B
y—*afqi(vzf)+§m(l)uf) )]
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with drift and diffusion coefficients

1 aC;
Vi=Ai+ Ef)i/klmncjmn M

Fy Dij = BB ji + ZamnCitiCimn, (5)
j

where A;, B;;, C;j; have been defined in Egs. (@). Summation over
repeated indices is assumed also in this section. The change to
spherical coordinates g = (gsin6cos @,gsin0sin@,gcos6) trans-
forms Eq. into a Fokker-Planck equation for f(g,0,¢,t) with
coefficients:

vo— 4KT q (4+3¢e)Ag
T (14+e)¢q 20+e)t(1-¢2/L2)  3(14+€)?’
KT A 4KT 4L
Vo = 2(55+5 |coth, Dgg=—5 + —
o <§q2+3>00 C DT T T
4KT 2047 KT A )
D Dop =4 — + =
“ = (el 3(iter U0 (f;qz+ 3) %

and Vy = Dyg = Dyp = Dgyp = 0 (see Ref. p. 88, for the trans-
formation rules of a Fokker—Planck equation under a change of
variables). Taking into account the statistical isotropy of the
flow, it is now assumed that the stationary PDF of g is of the
form fi(q,0,¢9) = Py(q)sin6. By replacing this expression into
the Fokker-Planck equation for f(q,0,¢,7), it is then found that
Py (q) satisfies the equation

204 (VgPyt) = 97 (DgPy), 6)

which is solved with a reflecting boundary condition in ¢ = 0.
This implies that in the steady state the probability current van-
ishes everywhere.>® The solution of Eq. (6] corresponding to zero



probability current is2¥ Py (q) o D(;ql exp (2 [V, /Dyqdq), whence
the analytical expression of Py(g) is

25*75
2Wi q2 2 q2 ¥
Pu(q) < g 1+(1+£)qz] -5 (7
eq
with
2 )
2|q 2Wi
1 eq
— = | . 8
te 3[L2 (1+e) ®)

If € is set to zero, the above PDF reduces to that found in Ref.
48| for a polymer with zero internal viscosity in the Batchelor—
Kraichnan flow. At small ¢, the PDF is proportional to ¢2, because
the dynamics is dominated by thermal fluctuations. At very large
g, the last term in Eq. (7)), which originates from the nonlinear
elastic force, introduces a cut-off at the length L. For goq < ¢ < L,
the stationary PDF of ¢ behaves as Py(g) ~ ¢g~'~% with

3 1

The factor 1+ ¢ has the effect of reducing the slope of Py(q) for
Wi < Wi, and increasing it for Wi > Wi,,. This makes Py (¢g) nar-
rower and the coil-stretch transition sharper, although it does not
modify Wi, which is defined as the value of Wi at which «, van-
ishes. Thus, the stochastic model captures the effect of internal
viscosity on the steady-state statistics of polymer extension as ob-
served in the Brownian dynamics simulations and provides an an-
alytical tool for the study of internal viscosity in turbulent flows.

3.3 Predictions for a general random flow

The behaviour of Py (g) observed in the Brownian dynamics simu-
lations and reproduced by the stochastic model can be predicted
for a general random flow by invoking the theory in Ref. [12 This
is briefly recalled below in the version provided in Ref. [18] which
uses the generalized Lyapunov exponents.

Let £(r) be a line element in a random flow. Its time evolution
is given by the equation £(r) = x(r) - £(¢), which in turn yields the
following equation for the length of the line element:

d ~ ~
Elnéfex(t)! (10)
with £ =¢ /¢. The p-th generalized Lyapunov exponent is defined
2555156
PN | 06)1?
20 -pmn[75] ) av

where (-) denotes the average over the statistics of the velocity
field. .Z(p) represents the rate of exponential growth of the p-
th moment of /(). It is a positive and convex function of p and
satisfies £ (0) = £ (—d) = 0, where d is the space dimension. In
addition, .#’(0) = 1.

References [12] and [18] express Py (¢) in terms of £ (p) (or its
Legendre transformation). It is first observed that if € = 0 and
thermal noise is disregarded, the end-to-end distance and the ori-
entation of a linear polymer evolve according to the following

equations: 12157
7d 1§ = t)— 71 =0 (12 )
; ng B(t) 7 (e=0) a
j = q-B(t)q (12b)
m (t)-q—B(t)g

with B(t) = g-«k(t)-¢q. The similarity between Eq. and
Eq. makes it clear that the statistics of ¢ must be related
to the generalized Lyapunov exponents of the flow. Extensions
much greater than ¢.q are observed after the polymer has experi-
enced large values of (r). Thus, ¢ is expressed in terms of ()
by writing the first of Eqs. (I2a) in integral form, and then the
probability of large values of B(r) is approximated with its large-
deviations form to find:

Pa(g)~q "% with a=21.2(cx) (13)

for geq < g < L. The value of o is therefore sought as the
nonzero intersection of the straight line ¢ /2Wi with the graph
of the function £ (o) /A. Since £ (p) is convex, the above equa-
tion indeed has two solutions, of which oy = 0 is not meaning-
ful and should be discarded (except of course at the coil-stretch
transition, when the two solutions coincide). By using the afore-
mentioned properties of .Z(p) as a function of p, it is easy to see
that the non-zero solution is positive for small Wi and decreseas
with Wi, until it vanishes for Wi = Wi¢,. It then becomes neg-
ative for Wi > Wig,. Close to p = 0, the generalized Lyapunov
exponent can be expanded as Z(p) = Ap+ Ap?/2+ O(p?) with
A= [ ({B(t)B(t")) — A2)dt'. This expansion allows the explicit cal-
culation of o for Wi near to Wic,:

A1
%:Z(W_z)' 14

In particular, the latter expression shows that Wig = 1/2. Finally,
in the limit of very large Wi, the straight line o /2Wi becomes
parallel to the horizontal axis. Since .#(p) vanishes at p = —d,
for infinite Wi the intersection of the straight line o /2Wi with
the graph of .Z(0g)/A is located at oy = —d, i.e.

“}llgmao =—d. (15)
Thus, in the limit of very large Wi the stationary PDF of ¢ remains
broad and reaches an asymptotic shape such that Py(g) ~ ¢~ ~¢
for geq < g < L. A saturation of the PDF of polymer extensions is
observed also in the regime of elastic turbulence of the Oldroyd-B
model.28 In that case, however, the asymptotic shape results from
the backreaction of the linear polymers on the flow and therefore
differs from the prediction in Eq. (I5).

It is worth mentioning that Eq. (I3) holds under very mild as-
sumptions on the random flow, namely that the correlation time
of B(t) is finite.12 Moreover, even though Eq. is derived for
a dumbbell, Ref. 20/ has shown that the steady-state statistics of
the end-to-end distance is the same for a dumbbell and a chain
with multiple beads, provided that a suitable mapping between
the parameters of the two systems is applied. Hence the validity
of Eq. (I3) is not restriced to the dumbbell model.

Journal Name, [year], [vol.], 1 |5
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Fig. 3 Exponent o, rescaled by 1+ ¢ as a function of Wi for different
values of ¢.

It is now discussed how internal viscosity modifies the above
predictions. If € > 0, the analogue of Eq. can be obtained
by multiplying Eq. by ¢;, neglecting the noise term, summing
over i, and dividing by ¢? to find:

=g B0 - 5

Constrastingly, Eq. is unchanged. Therefore, for € > 0, the
time evolution of ¢(¢) is the same as that of a polymer with € =0,
provided that 7 is multiplied by 1+ & and B(r) is rescaled by the
same quantity. It follows immediately that Py(g) must display a
power-law behaviour also in the presence of internal viscosity:

(£>0). (16)

Py(q) ~ qilias (qeq € g < L) 17

with an exponent that can be determined as follows. Rescaling
B(t) by (1+¢€) is equivalent to considering the evolution of g in a
flow with generalized Lyapunov exponents .%; (p) =% (p/(1+€)).
This can be seen by noting that the solution of Eq. is £(r) =
£(0)exp[fg dsi- K(s) Z], if this expression is replaced into Eq. (11)),
it follows that considering a flow with a rescaled §(¢) is the same
as taking a moment of £(¢) of a rescaled order in the original flow.
Hence, the equivalent of Eq. fore >0is

O
1+¢

Comparing Eq. with Eq. finally yields

=21.%(0g) = ZT‘Z(I—ks) . (18)

o = (1+¢€)0p. 19)

Therefore, the effect of internal viscosity on the PDF of polymer
extensions is to multiply o by a factor of (1+ ¢€). Since the crite-
rion for the coil-stretch transition in random flows is ¢ = 0, in-

6| Journal Name, [year], [vol.],1

ternal viscosity does not modify the critical Weissenberg number.
However, the statistics of g is affected. Indeed, —1 — o0 < —1— 0
when oy < 0, i.e. for Wi < Wi, whereas —1 — oz > —1 — 0 in the
opposite case. Thus, below the coil-stretch transition the proba-
bility of large extensions is depleted by internal viscosity; above
the transition it is the small extensions that are disfavoured. As
a result, the mean extension is reduced when Wi is below Wi,
and increased for Wi > Wi, while the width of the PDF of the
extension is systematically decreased by internal viscosity. The
coil-stretch transition therefore becomes sharper with increasing
€. Figure [3| clearly illustrates the validity of Eq. by showing
o, rescaled by (14 ¢) from the Brownian dynamics simulations
described in Sect. The value of a is estimated by fitting
Py(q) for goq < g < L with a power law (in order to obtain an
accurate estimate, here the ratio of L and geq is taken larger than
in Sect. ie. L/geq=10%). Figurealso shows that, for large
Weissenberg numbers, o, tends to —d(1+¢€), as can be seen by
combining Egs. and (I9).

In the Batchelor—Kraichnan flow studied in Sect. Z(p) is
exactly quadratic for all p (see Ref. [S1). Hence the expression
for o given in Eq. holds for all Wi and not only near the
coil-stretch transition. In addition, A/A = d/2 for this flow.>1
Therefore, Eq. (@) is an explicit example of the general relation

given in Eq. (19).
4 Summary and conclusions

The effect of internal friction on polymer stretching in turbulent
flows has been studied by considering an elastic dumbbell with
a linear dashpot. The results are based on Brownian dynamics
simulations using a database of fluid trajectories in isotropic tur-
bulence, an exact solution for a stochastic velocity gradient, and
a generalization of the large deviations approach of Ref. [12] that
takes internal viscosity into account. Although it does not mod-
ify the critical Weissenberg number for the coil-stretch transition,
internal viscosity strongly affects the statistics of polymer exten-
sion in two opposite ways below and above the transition. Its
effect is indeed to multiply oy by a factor of (1 + ¢). This depletes
the probability of large extensions below the transition and the
probability of small extensions above the transition, thus leading
to a sharpening of the transition itself. Internal viscosity also en-
hances the peak of the correlation time of the extension near Wi,
whereas it has a negligible effect on the orientation statistics of
the polymer.

It remains to consider the question of the experimental evi-
dence for the phenomenon described here. If internal viscosity
is disregarded, the theory!? predicts that, in the limit of very
large Weissenberg numbers, oy should tend to —d, and hence,
in a three dimensional flow, Py (gq) ~ > for Geq < g <X L. However,
experiments1® show PDFs as steep as ¢* when the Weissenberg
number is large. The & = 0 theory therefore does not explain
the shape of Py(g) in the large-Wi regime. Contrastingly, if inter-
nal viscosity is taken into account, Egs. and imply that
ae — —d(1 +¢) and hence Py(g) ~ ¢?('+8)~1 as Wi — co. Thus,
internal friction provides a possible explanation for the steep be-
haviour of Py (g) observed in experiments at large Wi. Moreover,
the experimental slope Py(g) ~ ¢* found in Ref. [16]is recovered



by taking € = 0.67, a value of € which falls in the range typically
considered in studies of internal friction.

These predictions also imply that, as Wi is increased, the statis-
tics of polymer extensions becomes independent of Wi, but the
asymptotic shape of Py (g) is sensitive to the magnitude of internal
viscosity and is therefore non-universal. It would be interesting
to perform experiments that compare different polymers in the
same flow conditions in order to examine this point.

Finally, it is important to note that other forces that are usually
included in bead-spring chain models cannot increase the steep-
ness of Py(q) for large Wi. Hydrodynamic interactions between
the beads have the effect of delaying the unravelling of the poly-
mer, and once this is sufficiently stretched, they become negli-
gible. Therefore, in a turbulent flow, hydrodynamic interactions
reduce the probability of large extensions for all Wi. Excluded-
volume interactions are short-range and do not impact the statis-
tics of large polymer extensions. A conformation-dependent drag,
which interpolates bewteen the drag coefficient of a sphere in the
coiled state and that of a thin cylinder in the stretched state,? im-
pacts the dynamics of the polymer around the coil-stretch transi-
tion, but has little effect at large Wi, when most of the polymers
are highly stretched anyway. 4242 In particular, by using the ana-
lytical results of Ref. [49] it is easy to check that, in the Batchelor—
Kraichnan flow, Py (g) ~ ¢* as Wi — oo, even if the drag coefficient
of the polymer depends on its conformation. Thus, the present
study identifies a phenomenon that is the unambiguous result of
internal friction.
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