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Conventional cryptographic methods are not appropriate for IoT environments due to the specific IoT devices
constraints, such as memory usage, time and computational costs. This leads to the emergence of the
lightweight cryptography field. This paper investigates the different lightweight cryptographic design methods
and proposes an IoT-based cryptographic method, called Ultra-Lightweight method (ULM), to enhance the
performance, memory usage and security of IoT devises. The proposed method is based on three methods
(i.e, bitslice, WTS and involutive), and thus accumulating their various advantages such as, memory use,
efficiency and security. To validate our proposal, a cryptosystem is designed using ULM method. The designed
cryptosystem is benchmarked based on the following metrics: performance (by measuring its execution time
and the number of clock cycles needed to run it), the quantity of used memory (by measuring ROM and RAM
consumption), and security level (by measuring its diffusion and confusion levels along with its resistance to
linear and differential attacks). The results show that the cryptosystem designed using the proposed method
outperforms existing methods in terms of memory use, security and performance.

1. Introduction

The Internet of Things (IoT) involves an increasing number of
physical objects enabled with data exchange capabilities. IoT can also
involve different kinds of smart objects including smart vehicles, smart
industrial machines, smart energy grids, smart homes and buildings,
and smart portable and wearable devices, just to cite few. With billions
of sensors and actuators processing data, IoT becomes an opportunity
at a mass scale. IoT security, however, remains a challenging issue that
hinders the spread of this technology [1–3]. Actually, in most cases, se-
curity is not considered from design time [4]. Rather, this is dealt with
at the end of the chain using solutions that are not originally designed
for constrained environments such IoT. This entails many performance
issues due to the limited resources embedded in IoT objects [5,6].
One of the most resource greedy security function is cryptography,
as it uses complex algorithms which are based on mathematical func-
tions to hide the content from unauthorized parties. To make block
cipher algorithms adaptable to IoT devices, many methods have been
proposed, such as ARX (Addition/Rotation/XOR) [7], WTS (wide-trail
strategy) [8], LTS (Long Trail Strategy) [7], Hybrid [9], Bitslice [10]
and involutive method [11]. Indeed, ARX [7] is a method used to design
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lightweight crypto-algorithms with the aim of minimizing memory use.
This is done using only three operations: modular addition, rotation and
XOR. WTS [8] is used to design a lightweight crypto-algorithm with a
high security level. This is carried out by prioritizing the use of linear
functions to achieve diffusion along with Sbox substitution table to en-
sure confusion. LTS [7] attempts to optimize memory use while keeping
a high security level, and this is done by combining WTS and ARX
methods. Bitslice [10] represents the cryptosystem functions in term
of single-bit logical operations, which are then carried out by running
multiple instances of the function in parallel using bitwise operations.
Consequently, on a processor with 𝑛-bit, a logical instruction corre-
sponds to the parallel execution of 𝑛 logical operations which accelerate
the processing time of the cryptosystem. The involutive method [11] is
characterized by the use of a set of involutive operations. This means
that the operations used during the decryption process are the same
as the ones used in the encryption process. This therefore reduces the
memory usage to store operations. Hybrid method [9] combines both
SPN and Feistel structures to ensure a very high level of security as well
as to reduce ROM memory usage by utilizing some same functions for
both encryption and decryption.
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Fig. 1. Lightweight methods advantages.

These methods differ from each other by the building blocks they
use, their structure as well as the way they are implemented. Each
method is supposed to be adapted to one or more IoT constraints
(e.g. memory use, time, speed and computational cost). However, as we
will show later sections, neither of these methods consider all the afore-
mentioned constraints together. To overcome this issue, we propose a
new block cipher for IoT devices based on WTS, Bitslice and Involutive.
That is to say that our proposal prioritizes the use of linear functions
to achieve diffusion along with Sbox substitution table to ensure confu-
sion. It then represents the cryptosystem functions in term of single-bit
logical operations, which are then carried out by running multiple
instances of the function in parallel using bitwise operations and uses a
set of involutive operations. This enables designing cryptosystems that
optimize memory use, reduces the execution time and provides a high
level of security. The proposed block cipher is compared to existing
ones (e.g., WTS, LTS, ARX, Bitslice, Involutive) and Hybrid methods
and the results show a good improvement regarding performance and
security while keeping a reasonable memory usage.

The rest of the paper is organized as follows. Section 2 presents
the related works and briefly explains some of the existing methods to
design lightweight cryptosystem. In Section 3, with the aim of covering
the different IoT constraints, we describe the new proposed method and
then validate it by designing and implementing a new cryptosystem
based on this method. In Section 4, the proposed cryptosystem is
evaluated with regard to performance (processing time, clock cycle),
memory use (RAM, ROM), and security (confusion level, diffusion level
and resistance to linear and differential attacks). We then compare
the performance of the proposed cryptosystem with the up-to-date
lightweight cryptosystems. Finally, we conclude the paper in Section 5.

2. Related works

To design a Lightweight cryptography system, different methods
could be used including ARX, WTS, LTS, Hybrid, Bitslice and Involutive.
The advantages of each method are depicted in Fig. 1 and explained
below. Examples of a cryptosystems designed using the different meth-
ods are also presented and will be used for the comparison with our
proposal.

• ARX method: ARX is a method used to design lightweight crypto-
algorithms with the aim of minimizing memory use. This is done
by using only three operations: modular addition, rotation and
XOR.
The cryptosystems that follows this method are Hight [12], Si-
mon [13], Speck [13], Lea [14] and Chaskey cipher [15]. There
are two main aspects that distinguish these algorithms: the block
and key size, and the adaptability to processor’s registry size (8,
16, . . . ). For instance, Hight decomposes the input block on 8
subblocks of 8 bits; which makes it adaptable to 8 bit processors.
Lea decomposes a block on 4 subblocks of 32 bits, which makes
it adaptable to 32 and 64 bits processors. Speck and Simon

decompose a block into two subblocks. These algorithms have
different variants with a difference in the block and key sizes of
course the differences influence the time, the quantity of memory
used and the security. The bigger the block size is the more
memory is consumed and the higher security level is provided.
Unlike Simon and Speck, Lea records the highest block and key
sizes. The most popular cryptosystem based on ARX method is
Speck. Speck follows Feistel structure. It has 10 variants with a
difference in the block size, key size and round number (see [13]
for more details). It is usually chosen to optimize hardware and
software implementations. For this objective, a round of speck is
composed of the following operations:

– an Xor operation with a subkey.
– a modular addition.
– a left rotation with a number of bits and also and a right
rotation with a number of bits.

The ARX method is characterized by the use of only three op-
erations (XOR, modular addition and rotation). This enhances
memory RAM consumption. However, it negatively influences the
security as the nonlinearity is based only on modular addition.
The ARX cryptosystem guarantees security by increasing the num-
ber of rounds, which negatively impacts the overall performance
of the algorithm.
• WTS method: WTS is a method used to design lightweight algo-
rithms with a high security level. This is carried out by priori-
tizing the use of linear functions to achieve diffusion along with
Sbox substitution table to ensure confusion. The cryptosystems
that implemented this method are mCrypton [16], Present [17],
Led [18], Zorro [19], Skinny [20], Born and Gift [21]. The
difference between these algorithms resides in message and key
sizes, the rounds number and block representation (bit, matrix,
set of bit, set of bytes, etc.). The choice of message represen-
tation influences the rapidity of the encryption algorithm. The
number and type of the S-box represent also a difference between
these cryptosystems. The most popular cryptosystem based on
WTS method is Present, which is a lightweight block encryption
algorithm standardized in 2012 (ISO/IEC 29192-2). The block size
in this algorithm is 64 bits with a key size of 80 or 128 bits. Present
is based on SPN structure with 31 rounds. This structure is also
used in AES standard. Present has two variants: Present80 and
Present-128 with a key size equals to 80 and 128 bits respectively
(see [17] for details). Thanks to its lightweight components, this
cryptosystem is suitable for hardware implementation. The WTS
method makes a big interest in security level by using expensive
linear operations. However, this negatively impacts the overall
performance.
• LTS method: LTS tries to optimize memory usage while keep-
ing a high security level. This is done by combining WTS and
ARX methods. Indeed, LTS uses S-box represented using Addi-
tion, Rotation and XOR operations just like ARX, combined with
linear functions like WTS. The only cryptosystem that adopts
this method is Sparx [7]. Sparx follows Feistel structure with
three variants Sparx-64/128, Sparx-128/128 and Sparx-128/256
(see [7] for details). The only operations used for implementing
an instance of Sparx are:

– Modular addition 16 bit.
– XOR 16 bit.
– Left and right rotation.

The LTS method combines WTS and ARX methods. This is done to
ensure a high security and a low memory consumption ensured
by ARX. LTS method increases confusion level by using a volu-
minous nonLinear layer. This ensures a high confusion level with
minimum RAM use and reasonable performance.
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• Bitslice method: Bitslice represents the cryptosystem functions
in term of single-bit logical operations, which are then carried
out by running multiple instances of the function in parallel
using bitwise operations. Consequently, on a processor with 𝑛-
bit, a logic instruction corresponds to the parallel execution of
𝑛 logical operations which accelerate the processing time of the
cryptosystem. The cryptosystems that are based on this method
are Rectangle [22], Fantomas [23] and Mysterion [24]. Similar
to many Lightweight block encryption algorithms, the block size
of Rectangle [22] is 64 bits with 80 bits key size. It follows the SPN
structure composed of 25 rounds. A round function is composed
of an addition with a subkey, a substitution using 4 × 4 S-box
followed by a bitwise shift. After the last round, an addition with
subkey is applied.
The aim of the Bitslice method is to improve performance while
minimizing RAM consumption. However, the security level is
highly dependent on the components chosen to implement the
system.
• Involutive method: The involutive method is characterized by
the use of a set of involutive functions. An involutive function, say
𝑓𝑖, is a function that takes the form 𝑓𝑖(𝑓𝑖(𝑥)) = 𝑥. This means that
the functions used during the decryption process are the same as
the ones used in the encryption process. This therefore reduces the
memory usage to store operations. The cryptosystems that follow
this method are Prince [25], Klein [26], Midori [27] and Man-
tis [28]. The difference between these cryptosystems is principally
the number of included involutives operations. Specifically, all
the operations used in Prince and Midori are involutives, while
in Klein only the substitution operation is involutive. Using invo-
lutive operations in a cryptosystem reduces the memory usage,
however it also decreases security. As presented in [25], Prince
follows the SPN structure of eleven (11) rounds. Each round
is composed of an addition with a subkey, a substitution using
4 × 4 S-box. This is followed by a multiplication with three
different matrices, one matrix for the first five rounds, another
matrix for the sixth round and a third matrix for the last five
rounds. The involutive method uses the same components in both
encryption and decryption. Although involutive feature reduces
ROM usage, it negatively impacts the security level. Similar to
Bitslice method, rapidity and RAM use are highly dependent on
the choice of the implemented components.
• Hybrid method: This method combines both SPN and Feistel
structures to ensure a high level of security as well as to reduce
ROM memory usage by utilizing some functions for both encryp-
tion and decryption (similarly to involutive method). The cryp-
tosystems that are based on this method are Sea [29], Celfia [30],
Gost revisited [31], Twine [32], Lblock [33], Piccolo [34],
ITUbee [35], RoadRunner [36], LiCi [37], SIT [38], ANU-II [39]
and Nux [40]. The principal difference between these cryptosys-
tems is the way they use the linear layer embedded in the
SPN structure. Unlike Twine and Gost revisited, Sea, Piccolo,
RoadRunner, Lici and Nux are characterized by the use of a rather
costly linear layer implementation. This is done to provide a
higher level of diffusion.As previously, only one cryptosystem is
presented, namely the LBlock cryptosystem. LBlock is a Feistel
of 32 rounds which encrypts a block of 64 bits with a key of
80 bits. A round of LBlock consists of a 8 bits rotation and a
Feistel function. This function consists of a subkey addition, a
substitution operation with uses of eight 4 × 4 S-boxes. At the
end of each round, a nybble permutation is done. This operation
consists of a rearrangement by 4 bits (as in [33]).
The Hybrid method combines between SPN and Feistel structures.
This positively influences the security level. However, it requires a
rather intensive use of memory. The rapidity of a Hybrid method
based cryptosystem is highly related to the number of its rounds.

The cryptosystems described above deal with problems related to
resource-limited devices, either in terms of software implementation
or hardware implementation or both. Table 1 summarizes the char-
acteristics of each cryptosystem, where we considered the following
characteristics:

• The structure adopted in the cryptosystem: SNP or Feistel.
• Keyschedule: This is the function responsible for generating sub-
keys. In fact, some cryptosystems use complex functions to gen-
erate subkeys whose purpose is to provide a high security level.
However, this function entails the use of a relatively memory
space, a lot of energy and circuit surface.
• Whether the cryptosystem addresses the hardware implementa-
tion, software implementation.
• Principal operations used including Substitution, Permutation,
SWAP, Multiplication, Shift, Key Whitening, Constant Addition,
Mixing with subkey, etc.
• Key size, Block size, Number of Rounds.

3. The proposed Ultra-Lightweight Method (ULM)

The theoretical studies have showed a clear correlation between
security, rapidity, ROM and RAM memory consumption. As previously
mentioned, each method focuses on one or two of such metrics without
considering the others. Thus, none of the methods considered together
the specific requirements of IoT environments, namely high perfor-
mance (from a computational perspective), high security level and
low memory consumption. To deal with this limitation, we propose a
new IoT-Oriented cryptographic method called ULM (Ultra-Lightweight
Method). This method is then validated by a new cryptosystem ULC
(Ultra-Lightweight Cryptosystem) which is then implemented using Ar-
duino Uno platform and compared with the most existents Lightweight
cryptosystems described above.

3.1. Details about ULM

The aim of the proposed method is to ensure a high security level,
good performance of the underlying crypto-algorithm and a low mem-
ory usage. To do so, ULM combines the Bitslice, WTS and the Involutive
methods, which makes it a hybrid method that optimizes the various
metrics so to make it suitable for IoT environments. The method can
be summarized by the following rules:

1. To ensure a high security level, prioritize the use of linear
functions to achieve diffusion along with Sbox substitution table
to ensure confusion.

2. To speed-up the algorithm, represent the cryptosystem functions
in term of single-bit logical operations in such a way that to
enable carrying them out by running multiple instances of the
function in parallel using bitwise operations. This is especially
useful in case of using on an 𝑛-bit processor.

3. Reduce the memory usage to store operations by maximize the
use of involutive operations.

The comparison of the proposed method with the other methods
in terms of security, performance and memory usage is summarized
in Table 2. And for validation purpose, a new cryptosystem, called
Ultra-lightweight Cryptosystem (ULC), is designed based on the ULM
method.

3.2. Ultra-lightweight Cryptosystem (ULC)

As illustrated in Fig. 2, ULC is an SPN which encrypts a block of
64 bits represented in from of bytes. This cryptosystem is composed of 𝑛
rounds, where 𝑛 is chosen based the conducted evaluation in Section 4.1
(we use 15 rounds). Each round is composed of a subkey addition, a
bitslice substitution and an involutive bit permutation. At the end of the
rounds, a mixing with a subkey is applied (see Fig. 2). These operations
are explained as follows.
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Table 1
The characteristics of each method/cryptosystem.

Method ARX WTS LTS Bitslice Involutive Hybride
Speck Present Sparx Rectangle Prince LBlock

Structure Feistel SPN SPN+ARX SPN SPN Feistel+SPN
Key schedule Complex Simple Complex Average Simple Complex
Hardware No Yes No Yes Yes Yes
Software Yes No Yes Yes No Yes
Substitution yes Yes Yes Yes yes Yes
Permutation No Yes Yes Yes Yes Yes
SWAP Yes No Yes No Yes Yes
Multiplication No No No No Yes No
Shift No No Yes No Yes Yes
Key Whitening No No No No Yes No
Constant Addition No No No No Yes No
Mixing with subkey Yes Yes Yes Yes Yes Yes
Key size 32 to 128 80/128 128/256 80/128 128 80
Block size 32 to 128 64 64/128 64 64 64
Number of rounds 22 to 34 31 24–40 25 12 32

Table 2
Comparison between ULM and the existent methods.

Method Security Performance RAM ROM
consumption consumption

ARX Low Average Low Neutral
WTS High Low Low High
LTS High High High High
Hybride High High High Average
Bitslice Neutral High if n-bits processor is used Low Neutral
Involutive Low Neutral High Low
ULM High High Low Low

Fig. 2. The diagram of our proposal: ULC.

• Mixing with a subkey: it is a simple bitwise XOR operation
between the block and the subkey 𝐾𝑖. This is shown in Eq. (2)
below.

𝑏𝑙𝑜𝑐𝑖 = 𝑏𝑙𝑜𝑐𝑖 ⊕𝐾𝑖 avec 1 ≤ 𝑖 ≤ 16 (1)

• Substitution using 4 × 4 S-box: it is a non-linear function using
the substitution table represented in Table 3. The Sbox is applied
for each column of input block in parallel as follows. The substi-
tution table is represented by logical operations form (AND (&),
XOR (⊕), OR (|), NOT()) in order to follow the bitslice technique.

Table 3
S-box of ULC based on Rectangle.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

This function has been inspired from Rectangle cryptosystem (for

which the efficiency and performance have been proven). The

function is represented as shown in the following:

1. 𝑇1 = 𝐴1; 2. 𝑇2 = 𝐴0&𝑇1; 3. 𝑇3 = 𝐴2 ⊕𝐴3;

4. 𝐵0 = 𝑇2 ⊕ 𝑇3; 5. 𝑇5 = 𝐴3|𝑇1; 6. 𝑇6 = 𝐴0 ⊕ 𝑇5;

7. 𝐵1 = 𝐴2&𝑇6; 8. 𝑇8 = 𝐴1 ⊕𝐴2; 9. 𝑇9 = 𝑇3&𝑇6;

10. 𝐵3 = 𝑇8&𝑇9; 11. 𝑇11 = 𝐵0|𝑇8; 12. 𝐵2 = 𝑇6&𝑇11;

with 𝑇𝑖 is a temporary variable of 16 bit size, 𝐴𝑖 is the line 𝑖 of

the substitution operation’s input block and 𝐵𝑖 is the line 𝑖 of the

substitution operations output block.
• Bit permutation: it is an operation that distributes each 4 bits

of the substitution function’s output on different subblocks. To

make the this operation involutive, we used a transpose matrix of

𝑀 of 16 × 4 size noted 𝑀 𝑡. In the following we show the block

represented as a 16 × 4 matrix.

𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏0,7 𝑏0,6 𝑏0,5 𝑏0,4

𝑏0,3 𝑏0,2 𝑏0,1 𝑏0,0

𝑏1,7 𝑏1,6 𝑏1,5 𝑏1,4

𝑏1,3 𝑏1,2 𝑏1,1 𝑏1,0

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

𝑏15,7 𝑏15,6 𝑏15,5 𝑏15,4

𝑏15,3 𝑏15,2 𝑏15,1 𝑏15,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 4
Linear cryptanalysis of ULC: linear equation, it probability in every encryption round.

𝑁 Equation 𝜖 Complexity

1 𝑋1,5⊕𝑋1,7⊕𝑋1,8⊕𝑌1,2⊕𝑌1,18⊕𝑌1,34⊕𝑌1,50⊕
∑

𝐾 = 0
1

4
24 < 280

2 𝑋2,2 ⊕𝑋2,18 ⊕𝑋2,34 ⊕𝑋2,50 ⊕ 𝑌2,17 ⊕ 𝑌2,21 ⊕ 𝑌2,25 ⊕

𝑌2,29 ⊕ 𝑌2,33 ⊕ 𝑌2,37 ⊕ 𝑌2,41 ⊕ 𝑌2,45 ⊕ 𝑌2,49 ⊕ 𝑌2,53 ⊕

𝑌2,57 ⊕ 𝑌2,61 ⊕
∑

𝐾 = 0

1

24
28 < 280

… … … …

10 𝑋10,23 ⊕𝑋10,24 ⊕𝑋10,27 ⊕𝑋10,28 ⊕𝑋10,39 ⊕𝑋10,40 ⊕

𝑋10,43 ⊕𝑋10,44 ⊕𝑋10,55 ⊕𝑋10,56 ⊕𝑋10,59 ⊕𝑋10,60 ⊕

𝑌10,22⊕𝑌10,23⊕𝑌10,26⊕𝑌10,27⊕𝑌10,30⊕𝑌10,31⊕
∑

𝐾 = 0

1

238
276 < 280

11 𝑋11,22 ⊕𝑋11,23 ⊕𝑋11,26 ⊕𝑋11,27 ⊕𝑋11,30 ⊕𝑋11,31 ⊕

𝑌11,6 ⊕ 𝑌11,7 ⊕ 𝑌11,8 ⊕
∑

𝐾 = 0

1

241
282 > 280

Fig. 3. Evaluation of the execution time of our cryptosystem (ULC) compared to other lightweight cryptosystems.

Fig. 4. Evaluation of the clock cycles of our cryptosystem (ULC) compared to other lightweight cryptosystems.
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Fig. 5. Evaluation of total memory ROM consumed of our cryptosystem (ULC) compared to other lightweight cryptosystems.

Fig. 6. Evaluation of memory RAM consumed of our cryptosystem (ULC) compared to other lightweight cryptosystems.

(𝑀 𝑡)𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏0,7 𝑏0,6 𝑏0,5 𝑏0,4

𝑏0,3 𝑏0,2 𝑏0,1 𝑏0,0

𝑏1,7 𝑏1,6 𝑏1,5 𝑏1,4

𝑏1,3 𝑏1,2 𝑏1,1 𝑏1,0

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

.. .. .. ..

𝑏15,7 𝑏15,6 𝑏15,5 𝑏15,4

𝑏15,3 𝑏15,2 𝑏15,1 𝑏15,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• keyschedule: Let us consider the principal key of 80 bits 𝐾 =

𝑘79𝑘78 … 𝑘0. To compute the subkey 𝑘𝑖 For the round number 𝑖,

we consider the following steps:

– Apply substitution operation S-box on the last 4 bits.

𝑘79𝑘78𝑘77𝑘76 = 𝑆[𝑘79𝑘78𝑘77𝑘76]

– Rotate the left 61 bits of the principal key. Given that

the principal key is 𝑘79𝑘78 … 𝑘0. After rotation, the subkey

became 𝑘𝑖 = 𝑘18𝑘17 … 𝑘20𝑘19.

– Extract the 64 last bits for the subkey to become as follow-
ing; 𝑘𝑖 = 𝑘63𝑘62 … 𝑘0 = 𝑘79𝑘78 … 𝑘16

4. Methods’ benchmarking

To assess the efficiency of the proposed method, in this section a
benchmark is conducted. To do so, we have chosen the most popular
cryptosystems designed using the different aforementioned methods
(one for each method as stated in the first row of Table 1), including
the new proposed method (via the designed cryptosystem). In the
experimentations, we used the Arduino UNO platform. This choice is
explained by the fact that this platform has limited processing and
storage resources and hence could represent a good benchmarking
platform for lightweight cryptosystems. Arduino UNO is characterized,
in one hand, by the low memory which corresponds to 2 KB RAM and
32 KB ROM. In the other hand, it has an 8 bit processor with a low
frequency which is equal to 16 MHz.

The Lightweight cryptosystems were benchmarked based on the
following metrics: performance (i.e. execution time and the number of
clock cycles), memory usage (i.e. the quantity of consumed memory by
measuring the quantity of ROM and RAM used to encrypt and decrypt
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Table 5
The output difference 𝛥𝑌 , its holding probability, and the found complexity in each
round.

𝑁 Output difference 𝛥𝑌 Probability Complexity

1 0 × 4
1

4
22 < 280

2 0 × 08000800
1

16
24 < 280

3 0 × 44
1

210
210 < 280

4 … … …

14 0𝑥𝐷000𝐷..𝐷0
1

274
274 < 280

15 0 × 2202000022020000
1

280
280 ≥ 280

a message), and security level (using a random input of 64 bit). This
testing is repeated five (5) times and the same results were obtained
for all the conducted experiments. For the security level, it is verified
by evaluating the confusion and diffusion levels using the metrics
explained in [41]. This test is repeated 1000 times (using 1000 randomly
generated content) and the average of the results is considered.

4.1. Linear and differential cryptanalysis

A cryptosystem can be considered acceptable (security wise) if and
only if the complexity of successful linear and differential attacks are
equal or superior to brute force attack [42]. Indeed, a linear crypt-
analysis attempts to find a linear approximation of the cipher between
plaintext, ciphertext and the secret keys, as described by the following
equation:
∑

𝑃𝑢 ⊕
∑

𝐶𝑣 =
∑

𝐾𝑤 (2)

where 𝑃𝑢 is the 𝑢th bit of the input 𝑃 = [𝑃1, 𝑃2,… , 𝑃𝑛] and 𝐶𝑣 is the 𝑣th
bit of the output. Where 𝐾𝑤 is the 𝑘th bit of the key.

This linear approximation holds with a probability 𝑝 and its quality
is measured with a bias 𝜖 equal to 𝜖 = |𝑃 −

1

2
|. By knowing the bias, we

can determine the needed pairs of numbers of plaintext/ciphertext to
break the key. This number can be estimated by the following equation:

𝐿𝐶 =
1

𝜖2
(3)

Table 4 summarizes the found linear equation, its probability and
its corresponding bias in every encryption round. Then the result of our
evaluation shows that the complexity of any successful linear attack is
equal or superior to 282 at the 11th round.

Differential cryptanalysis studies the propagation of two inputs
difference along the cipher encryption rounds and how it affects their
corresponding outputs difference. Based on [42], we derived in Table 5
the output difference 𝛥𝑌 , its holding probability, and the found com-
plexity in each round. Then the result shows that the complexity of
any successful differential attack is equal or superior to 280 at the 15th
round.

4.2. Performance evaluation

We evaluated the Lightweight cryptosystems in term of performance
using 5 inputs of 64 bit. The same result have been derived for all the
conducted tests. The processing time for present cryptosystem is around
65 ms which is equivalent to more than 1 million clock cycles. The
results of the other cryptosystems are depicted in Figs. 3 and 4. One
can see that ULC processing time is around 0.13 ms which is equal
to 1230 clock cycles. Hence, it can be considered as the best choice
for software implementation i.e. when the hardware platform is not
customizable (predefined). This is explained by the adoption of Bitslice
in the proposed method.

Fig. 7. Evaluation of diffusion level of our cryptosystem (ULC) and the existents
lightweight cryptosystems.

Fig. 8. Evaluation of confusion level of our cryptosystem (ULC) and the existents
lightweight cryptosystems.

4.3. Memory consumption

We evaluated the Lightweight cryptosystems in term of memory
use using 5 inputs of 64 bit. The same result was obtained for all the
conducted tests. The results in Figs. 5 and 6 show the efficiency of the
proposed cryptosystem in term of memory usage. One can see in Fig. 5
that the proposed ULC has the lowest ROM usage compared to the other
studied systems (2.2 KB for both encryption and decryption operations).
It keeps also a rather low RAM usage as shown in Fig. 6 which is
very close to Rectangle and Speck (0.203 KB for both encryption
and decryption operations). This result is explained by the Involutive
property of the proposed method.

4.4. Confusion and diffusion levels

For security level, we evaluated the confusion and diffusion proper-
ties of Claude Shannon. These properties are applied for 1000 random
plaintexts for each cryptosystem. In Figs. 7 and 8, the maximum, the
minimum and the average values of diffusion and confusion levels
for the 1000 plaintext are shown respectively. As we can see, ULC’s
diffusion and confusion are very close to those of Present (which is
considered the best cryptosystem regarding security level it provides).
These results are guaranteed by the WTS method.
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5. Conclusion

This paper focused on the design of lightweight cryptosystems to
satisfy the IoT requirements and constraints. We first investigated ex-
isting methods used to design block cipher lightweight cryptosystems.
We later showed that none of these methods satisfies all IoT constraints
together (memory usage, performance and security). For this reason,
we proposed the new Ultra-lightweight method to enhance the per-
formance, memory usage and security of IoT devices. The method is
validated by a new lightweight cryptosystem ULC (Ultra-lightweight
Cryptosystem). The evaluation of ULC showed an improvement with
regards to performance and security while keeping a reasonable mem-
ory usage compared to the studied cryptosystems. As future work, we
will investigate more criteria such as algorithms complexity and the
adequacy of each cryptosystem to different kinds of contents.
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