Exponentials of Bounded Normal Operators and Commutativity

Mohammed Hichem Mortad, Laboratory: LAMA, Department of Mathematics, University Of Oran (Algeria)

Tenth ACOTCA: 11-13 June, 2013, Sevilla

Table of contents

Introduction

Main Results

References

Introduction

Theorem 1 (eg see [10]) Let A and B be two self-adjoint operators defined on a Hilbert space. Then

$$
e^{A} e^{B}=e^{B} e^{A} \Longleftrightarrow A B=B A
$$

There have been several attempts to prove the previous theorem for non self-adjoint operators using the $2 \pi i$-congruence-free hypothesis (see eg. [6, 7, 8, 9, 10]). See also [2] for some low dimensions results without the $2 \pi i$-congruence-free hypothesis. In this talk, we present a different approach to this problem using results about similarities due to Berberian [1] (see also to Embry [4]. The main question asked here is under which assumptions we have

$$
e^{A} e^{B}=e^{B} e^{A} \Longrightarrow A B=B A
$$

for normal A and B ?
Recall the following: A unitary operator U is said to be cramped if its spectrum is completely contained on some open semi-circle
(of the unit circle), that is

$$
\sigma(U) \subseteq\left\{e^{i t}: \alpha<t<\alpha+\pi\right\}
$$

Theorem 2 [Berberian, [1]] Let U be a cramped operator and let X be a bounded operator such that $U X U^{*}=X^{*}$. Then X is self-adjoint.

Lemma 1 Let A and B be two commuting normal operators, on a Hilbert space, having spectra contained in simply connected regions not containing 0 . Then

$$
A^{i} B^{i}=B^{i} A^{i}
$$

where $i=\sqrt{-1}$.
Lemma 2 Let A be a self-adjoint operator such that $\sigma(A) \subset(0, \pi)$. Then

Main Results

$$
\left(e^{i A}\right)^{i}=e^{-A}
$$

Before stating and proving the main theorem, we first give an intermediate result.

Proposition 1 Let N be a normal operator with cartesian decomposition $A+i B$. Let S be a self-adjoint operator. If $\sigma(B) \subset(0, \pi)$, then

$$
e^{S} e^{N}=e^{N} e^{S} \Longleftrightarrow S N=N S
$$

Proof.

Write $N=A+i B$ where A and B are two commuting self-adjoint operators. Hence $e^{A} e^{i B}=e^{i B} e^{A}$. Consequently,

$$
e^{S} e^{N}=e^{N} e^{S} \Longleftrightarrow e^{S} e^{A} e^{i B}=e^{i B}\left(e^{S} e^{A}\right)^{*}
$$

Since B is self-adjoint, $e^{i B}$ is unitary which is also cramped by the spectral hypothesis on B. Now, Theorem 2 implies that $e^{S} e^{A}$ is self-adjoint, i.e.

$$
e^{S} e^{A}=e^{A} e^{S}
$$

Theorem 1 then gives us $A S=S A$.
It only remains to show that $B S=S B$. Since $e^{S} e^{A}=e^{A} e^{S}$, and by the invertibility of e^{A}, we obtain

$$
e^{S} e^{N}=e^{N} e^{S} \Longrightarrow e^{A} e^{S} e^{i B}=e^{A} e^{i B} e^{S} \Longrightarrow e^{S} e^{i B}=e^{i B} e^{S}
$$

Using Lemmas $1 \& 2$ we immediately see that

$$
e^{S} e^{-B}=e^{-B} e^{S}
$$

Theorem 1 yields $B S=S B$ and thus

$$
S N=S(A+i B)=(A+i B) S=N S
$$

The proof of the proposition is complete.
Theorem 3 Let N and M be two normal operators with cartesian decompositions $A+i B$ and $C+i D$ respectively. If $\sigma(B), \sigma(D) \subset(0, \pi)$, then

$$
e^{M} e^{N}=e^{N} e^{M} \Longleftrightarrow M N=N M .
$$

The following result has important applications:
Theorem 4 Let A be in $B(H)$. Let $N \in B(H)$ be normal such that $\sigma(\operatorname{lm} N) \subset(0, \pi)$. Then

$$
A e^{N}=e^{N} A \Longleftrightarrow A N=N A
$$

Theorem 5 Let A and B be both in $B(H)$. Assume that $A+B$ is normal such that $\sigma \operatorname{Im}(A+B)) \subset(0, \pi)$. If

$$
e^{A} e^{B}=e^{B} e^{A}=e^{A+B}
$$

then $A B=B A$.
Corollary 1 Let A be normal such that $\sigma(\operatorname{Im} A) \subset(0, \pi)$. Let $B \in B(H)$. Then

$$
e^{A}=e^{B} \Longrightarrow A B=B A
$$

Corollary 2 Let A and B be two self-adjoint operators. Then

$$
e^{A}=e^{B} \Longleftrightarrow A=B
$$

Corollary 3 Let A be normal. Then A is self-adjoint iff $e^{i A}$ is unitary.
References

1. S. K. Berberian, A note on operators unitarily equivalent to their adjoints, J. London Math. Soc., 37 (1962) 403-404.
2. G. Bourgeois, On commuting exponentials in low dimensions, Linear Algebra Appl. 423/2-3 (2007), 277-286.
3. Chaban, M. H. Mortad, Exponentials of Normal Operators, Colloq. Math., 133/2 (2013) 237-244.
4. M. R. Embry, Similarities involving normal operators on Hilbert space, Pacific J. Math., 35 (1970) 331-336.
5. M. H. Mortad, Exponentials of Normal Operators and Commutativity of Operators: A New Approach, Colloq. Math., 125/1 (2011) 1-6.
6. F. C. Paliogiannis, On Commuting Operator Exponentials, Proc. Amer. Math. Soc. 131/12, (2003), 3777-3721.
7. C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc., 127/5, (1999) 1337-1338.
8. C. Schmoeger, Remarks on commuting exponentials in Banach algebras II, Proc. Amer. Math. Soc., 128/11, (2000) 3405-3409.
9. C. Schmoeger, On normal operator exponentials, Proc. Amer. Math. Soc., 130/3, (2001) 697-702.
10. E. M. E. Wermuth, A remark on commuting operator exponentials, Proc. Amer. Math. Soc., 125/6, (1997) 1685-1688.
