Exponentials of Bounded Normal Operators and Commutativity

Mohammed Hichem Mortad, Laboratory: LAMA, Department of Mathematics, University Of Oran (Algeria)

Tenth ACOTCA: 11-13 June, 2013, Sevilla

Table of contents

Introduction

Main Results

References

Introduction

Theorem 1 (eg see [10]) Let A and B be two self-adjoint operators defined on a Hilbert space. Then

$$e^A e^B = e^B e^A \iff AB = BA.$$

There have been several attempts to prove the previous theorem for non self-adjoint operators using the $2\pi i$ -congruence-free hypothesis (see eg. [6, 7, 8, 9, 10]). See also [2] for some low dimensions results without the $2\pi i$ -congruence-free hypothesis. In this talk, we present a different approach to this problem using results about similarities due to Berberian [1] (see also to Embry [4]. The main question asked here is under which assumptions we have

$$e^A e^B = e^B e^A \Longrightarrow AB = BA$$

for normal A and B?

Recall the following: A unitary operator U is said to be cramped if its spectrum is completely contained on some open semi-circle

(of the unit circle), that is

$$\sigma(U) \subseteq \{e^{it}: \ \alpha < t < \alpha + \pi\}.$$

Theorem 2 [Berberian, [1]] Let U be a cramped operator and let X be a bounded operator such that $UXU^* = X^*$. Then X is self-adjoint.

Lemma 1 Let A and B be two commuting normal operators, on a Hilbert space, having spectra contained in simply connected regions not containing 0. Then

$$A^iB^i=B^iA^i$$

where $i = \sqrt{-1}$.

Lemma 2 Let A be a self-adjoint operator such that $\sigma(A) \subset (0, \pi)$. Then

$$(e^{iA})^i = e^{-A}.$$

Before stating and proving the main theorem, we first give an intermediate result.

Proposition 1 Let N be a normal operator with cartesian decomposition A + iB. Let S be a self-adjoint operator. If $\sigma(B) \subset (0, \pi)$, then

$$e^{S}e^{N}=e^{N}e^{S}\Longleftrightarrow SN=NS.$$

Proof.

Write N = A + iB where A and B are two commuting self-adjoint operators. Hence $e^A e^{iB} = e^{iB} e^A$. Consequently,

$$e^{S}e^{N} = e^{N}e^{S} \iff e^{S}e^{A}e^{iB} = e^{iB}(e^{S}e^{A})^{*}$$

Since B is self-adjoint, e^{iB} is unitary which is also cramped by the spectral hypothesis on B. Now, Theorem 2 implies that $e^S e^A$ is self-adjoint, i.e.

$$e^{S}e^{A}=e^{A}e^{S}$$
.

Theorem 1 then gives us AS = SA.

It only remains to show that BS = SB. Since $e^S e^A = e^A e^S$, and by the invertibility of e^A , we obtain

$$e^S e^N = e^N e^S \Longrightarrow e^A e^S e^{iB} = e^A e^{iB} e^S \Longrightarrow e^S e^{iB} = e^{iB} e^S.$$

Using Lemmas 1 & 2 we immediately see that

$$e^{S}e^{-B}=e^{-B}e^{S}.$$

Theorem 1 yields BS = SB and thus

$$SN = S(A + iB) = (A + iB)S = NS.$$

The proof of the proposition is complete.

Theorem 3 Let N and M be two normal operators with cartesian decompositions A + iB and C + iD respectively. If $\sigma(B), \sigma(D) \subset (0, \pi)$, then

$$e^M e^N = e^N e^M \iff MN = NM$$

The following result has important applications:

Theorem 4 Let A be in B(H). Let $N \in B(H)$ be normal such that $\sigma(ImN) \subset (0,\pi)$. Then

$$Ae^{N} = e^{N}A \iff AN = NA.$$

Theorem 5 Let A and B be both in B(H). Assume that A + B is normal such that $\sigma Im(A + B)) \subset (0, \pi)$. If

$$e^A e^B = e^B e^A = e^{A+B},$$

then AB = BA.

Corollary 1 Let A be normal such that $\sigma(ImA) \subset (0,\pi)$. Let $B \in B(H)$. Then

$$e^A = e^B \Longrightarrow AB = BA$$

Corollary 2 Let A and B be two self-adjoint operators. Then

$$e^A = e^B \iff A = B.$$

Corollary 3 Let A be normal. Then A is self-adjoint iff e^{iA} is unitary.

References

- 1. S. K. Berberian, A note on operators unitarily equivalent to their adjoints, *J. London Math. Soc.*, **37** (1962) 403-404.
- 2. G. Bourgeois, On commuting exponentials in low dimensions, Linear Algebra Appl. **423/2-3** (2007), 277-286.
- 3. Chaban, M. H. Mortad, Exponentials of Normal Operators, Collog. Math., **133/2 (2013)** 237-244.
- 4. M. R. Embry, Similarities involving normal operators on Hilbert space, Pacific J. Math., 35 (1970) 331-336.
- 5. M. H. Mortad, Exponentials of Normal Operators and Commutativity of Operators: A New Approach, Collog. Math., 125/1 (2011) 1-6.
- 6. F. C. Paliogiannis, On Commuting Operator Exponentials, Proc. Amer. Math. Soc. 131/12, (2003), 3777-3781.

- 7. C. Schmoeger, Remarks on commuting exponentials in Banach algebras, *Proc. Amer. Math. Soc.*, **127/5**, (1999) 1337-1338.
- 8. C. Schmoeger, Remarks on commuting exponentials in Banach algebras II, *Proc. Amer. Math. Soc.*, **128/11**, (2000) 3405-3409.
- 9. C. Schmoeger, On normal operator exponentials, *Proc. Amer. Math. Soc.*, **130/3**, (2001) 697-702.
- 10. E. M. E. Wermuth, A remark on commuting operator exponentials, *Proc. Amer. Math. Soc.*, **125/6**, (1997) 1685-1688.