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On the Moyal Star Product of Resurgent Series

We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of "algebro-resurgent series" (a subspace of 1-Gevrey formal series in i with coefficients in C{x 1 , . . . , x d }), which we show is stable under Moyal star product.

Introduction

1.1 Given a Poisson structure with constant coefficients in d dimensions

π = 1≤i<j≤d π i,j ∂ x i ∧ ∂ x j , π j,i = -π i,j ∈ R, (1.1) 
the corresponding Poisson bracket can be written {f, g} = µ • P (f ⊗ g), P := 1≤i,j≤d π i,j ∂ x i ⊗ ∂ x j , µ := multiplication.

(1.2)

The corresponding Moyal star product is then

f M g = µ • exp tP 2 f ⊗ g = f g + t 2 i,j π i,j ∂ x i f ∂ x j g + 1 2! t 2 2 i,j,k, π i,j π k, ∂ x i ∂ x k f ∂ x j ∂ x g + • • • (1.3)
for any formal series f , g in t, x 1 , . . . , x d with complex coefficients. One gets a non-commutative associative algebra C[[t, x 1 , . . . , x d ]], M , the unit of which is the constant series 1 and the product of which can be viewed as a non-commutative deformation of ordinary multiplication in the direction of π, in the sense that

f M g = f g + O(t), f M g -g M f = t{ f , g} + O(t 2 ).
(1.4)

The main result of this paper is Theorem B. If f and g are algebro-resurgent series in the 1+2N variables t, q 1 , . . . , q N , p 1 , . . . , p N , then so is their standard star product

f S g := k 1 ,...,k N ≥0 t k 1 +•••+k N k 1 ! • • • k N ! ∂ k 1 p 1 • • • ∂ k N p N f ∂ k 1 q 1 • • • ∂ k N q N g . (1.5)
However, their proof of Theorem B is not valid, due to a flaw in one of the key formulas presented in [START_REF] Garay | Resurgent deformation quantisation[END_REF]. In this paper, we will give the correct formula and develop somewhat different arguments that lead to a proof of Theorem B.

We will go from Theorem B to Theorem A by means of a linear change of variables and a further result on the stability of algebro-resurgence under the "transition operator" introduced in (1.7) infra. Indeed, since the Poisson structure π we started with has constant coefficients, we can pass from the initial coordinates x 1 , . . . , x d to canonical coordinates: setting 2N := rank of the antisymmetric matrix [π i,j ] and s := d -2N ≥ 0, a linear change leads us to coordinates q 1 , . . . , q N , p 1 , . . . , p N , y 1 , . . . , y s in which π is the standard Poisson structure in N degrees of freedom,

π = 1≤i<j≤N ∂ p i ∧ ∂ q i .
(1.6) Forgetting about the "inert" variables y 1 , . . . , y s , we are now dealing with the Poisson bracket {• , •} associated with the standard symplectic structure dp 1 ∧ dq 1 + • • • + dp N ∧ dq N , and the corresponding Moyal star product M is known to be the image of the standard star product S by the transition operator

T := exp - t 2 1≤j≤N ∂ q j ∂ p j (1.7)
in the sense that T ( f S g) = (T f ) M (T g). We will establish Theorem C. If f is an algebro-resurgent series in the 1 + 2N variables t, q 1 , . . . , q N , p 1 , . . . , p N , then so are T f and T -1 f . Theorem A will follow from Theorems B and C.

1.2

We now give some background and motivation. Ever since quantum mechanics started in the 1920s, quantization and semiclassical limit have become a central theme among a variety of areas in mathematics such as functional analysis, geometry and topology, representation theory, pseudo-differential operators and microlocal analysis and symplectic geometry, to name a few.

Conventional quantum mechanics is formulated in terms of linear operators on Hilbert space that realize the fundamental Canonical Commutation Relations, or of Feynman's path integrals as conceived by Dirac and developed by Feynman to make the quantum picture more compatible with the classical one. Built upon Wigner, Weyl and Groenewold's insights and pioneered by Moyal, deformation quantization is a third formulation, in full phase space, which evolved gradually into an autonomous theory with its own internal logic, that is conceptually very appealing.

The idea of deformation quantization is to achieve Heisenberg's Canonical Commutation Relations by deforming the commutative algebra of functions on the phase space (classical observables) to a non-commutative associative algebra.

In [START_REF]Quamtum mechanics as a statistical theory[END_REF], in the case of the standard Poisson structure, Moyal introduced his star product M in relation with statistical properties of quantum mechanics. For one degree of freedom, the standard Poisson structure for functions f (q, p) and g(q, p) in R 2 being {f, g} = ∂f ∂p ∂g ∂q -∂f ∂q ∂g ∂p = µ • P (f ⊗ g), with

P := ∂ ∂p ⊗ ∂ ∂q - ∂ ∂q ⊗ ∂ ∂p ,
where µ is the usual pointwise product of functions, the Moyal star product of two classical observables is the formal series in t obtained as

f M g = µ • exp tP 2 (f ⊗ g) = µ • Id + k≥1 t k 2 k k! P k (f ⊗ g) (1.8) with P k = k n=0 (-1) k-n k n (∂ p ⊗ ∂ q ) n (∂ q ⊗ ∂ p ) k-n = k n=0 (-1) k-n k n ∂ n p ∂ k-n q ⊗ ∂ k-n p ∂ n q , i.e. f M g = f g + k≥1 t k 2 k k! k n=0 (-1) k-n k n ∂ n p ∂ k-n q f ∂ k-n p ∂ n q g .
(1.9)

Here, t is the deformation parameter, taken to be i in quantum mechanics. The extension to N ≥ 1 degrees of fredom is obtained by replacing P by

P = N j=1 ∂ ∂p j ⊗ ∂ ∂q j - ∂ ∂q j ⊗ ∂ ∂p j (1.10) in (2.1). When extended to C ∞ (R 2N )[[t]
], the Moyal star product is a non-commutative associative product. We have

f M g = f g + t 2 {f, g} + O(t 2 ), hence [f, g] M := 1 t (f M g -g M f ) = {f, g} + O(t), (1.11) 
we thus recover the Poisson algebra structure of the classical observables in the limit = t/i → 0. Moreover, the Canonical Commutation Relations are realized:

[p j , q j ] M = 1 and [p j , q k ] M = [p j , p k ] M = [q j , q k ] M = 0 for j = k.
(1.12)

The Moyal star product can be viewed as a non-commutative associative deformation of the usual product of functions in the direction of the Poisson structure. The idea to view Quantum Mechanics as a deformation of Classical Mechanics was promoted by Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer [START_REF] Bayen | Deformation theory and quantization I, II[END_REF] in the 1970s and led to what is now called Deformation Quantization Theory.

For general symplectic manifolds, the existence of a star product that satisfies the analogue of (1.11) was proved in [START_REF] Wilde | Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds[END_REF] and [START_REF] Fedosov | Some problems in modern mathematics and their applications to problems in mathematical physics[END_REF], [START_REF] Fedosov | A simple geometrical construction of deformation quantization[END_REF]. In particular, Fedosov recursively constructed a star product through a canonical flat connection on the Weyl bundle.

For the deformation quantization of an arbitrary Poisson structure π in R d , Kontsevich constructed in 1997 an intriguing explicit formula for a star product that satisfies the analogue of (1.11) ( [START_REF] Kontsevich | Deformation quantization of Poisson manifolds, q-alg/9709040[END_REF]):

f K g = f g + k≥1 t k Γ∈G k c Γ B Γ,π (f, g), (1.13)
where each G k is a suitable collection of graphs, the c Γ 's are universal coefficients, and the B Γ,π 's are polydifferential operators depending on the graph Γ and the Poisson structure π. Recently, a deep connection between these universal coefficients c Γ and multiple zeta values 1 has been brought to light [START_REF] Banks | Multiple zeta values in deformation quantization[END_REF].

For a general Poisson manifold (M, π), the existence of a star product that satisfies the analogue of (1.11) is a consequence of the formality theorem which establishes an L ∞ quasiisomorphism between two differential graded Lie algebras (DGLAs): the Hochschild complex of the associative algebra A = C ∞ (M ) and its cohomology. [START_REF] Dyson | Divergence of perturbation theory in quantum electrodynamics[END_REF] and others that, in quantum field theory, almost all the series in describing physical quantities are divergent and must be interpreted as giving asymptotic information. In quantum mechanics, this can even be traced back to as early as Birkhoff. When Voros developed the exact WKB theory [START_REF] Voros | The return of the quartic oscillator. The complex WKB method[END_REF] to study the spectrum of Sturm-Liouville operators, he already conjectured the resurgent character of these series. Resurgence Theory was then a new perspective, initiated by Écalle ([Eca81], [START_REF] Écalle | Les fonctions résurgentes[END_REF]), to deal with asymptotic series. Écalle immediately clarified and confirmed Voros' conjecture in [START_REF] Écalle | Cinq applications des fonctions resurgentes[END_REF] and [START_REF] Écalle | Les fonctions résurgentes[END_REF]. Pham and his collaborators devoted a lot of energy to make the whole picture complete in [START_REF] Pham | Resurgence, quantized canonical transformations, and multi-instanton expansions[END_REF] and a series of papers in the 1990s, culminating in the proof of the conjectural formula proposed by Zinn-Justin [START_REF] Zinn-Justin | Multi-instanton contributions in quantum mechanics (II)[END_REF] on multi-instanton expansions in quantum mechanics (however they had to rely on a resurgence conjecture stated in [START_REF] Écalle | Cinq applications des fonctions resurgentes[END_REF], the proof of which has not yet been given in detail).

It is known after Dyson

In a nutshell, in Resurgence Theory, one considers formal series ϕ(t) = n≥0 a n t n (in applications to physics, the coefficients a n may be functions on the configuration space or the phase space) and their formal Borel transforms ϕ(ξ) defined by 2 formal Borel transform β :

ϕ(t) = n≥0 a n t n → ϕ(ξ) = n≥0 a n ξ n n! , (1.14)
and one imposes the convergence of ϕ(ξ) for |ξ| small enough and suitable conditions on its analytic continuation, so as to be able to analyse the various "Borel-Laplace sums" S θ ϕ(t) =

1 Interestingly, multiple zeta values are themselves deeply related to Resurgence Theory-see e.g. [START_REF] Waldschmidt | Valeurs zêta multiples. Une introduction[END_REF].

2 In this article, we depart from the usual convention of Resurgence Theory, which is to define the formal Borel transform as B n≥1 ant n = n≥1 an ξ n-1 (n-1)! and to handle the constant term a0 separately by setting B(1) = δ (a symbol that can be identified with the Dirac mass at 0). Obviously, formula (1.14) yields β( ϕ) = B(t ϕ). The advantage of B over β is that it gives rise to slightly simpler formula for convolution and Laplace transform. However, β has other advantages, e.g. not to force us to deal separately the t-independent term. Note that the choice of β as formal Borel transform is also the one favored by Voros.

e iθ ∞ 0 e -ξ/t ϕ(ξ)dt/t for all non-singular directions θ: the functions S θ ϕ all are asymptotic to ϕ(t) as |t| → 0 but differ by exponentially small quantities. The analytic continuation of the convergent germ ϕ(ξ) is required to have at worse isolated singularities-more precisely (in order of increasing generality): to be "Ω-continuable" with a certain prescribed set Ω of potentially singular points [START_REF] Écalle | Les fonctions résurgentes[END_REF], [START_REF] Sauzin | On the stability under convolution of resurgent functions[END_REF]; or "endlessly continuable" [START_REF] Candelpergher | Approche de la résurgence[END_REF]; or "continuable without a cut" [START_REF] Écalle | Les fonctions résurgentes[END_REF].

Another variant of this property of continuability in the Borel plane was introduced in [GGS14] under the name "algebro-resurgence". It was designed for situations where the coefficients a n depend analytically on affine variables x = (x 1 , . . . , x d ) ∈ C d : the singular locus of ϕ(ξ, x) is required to be a proper algebraic subvariety of C 1+d , the germ ϕ(ξ, x) should have analytic continuation along all the paths that avoid it; in particular, for fixed x, only finitely many singular points can exist in the Borel plane. It is with this version of resurgence that we will work throughout this article.

The present article does not require any familiarity with Resurgence Theory on the part of the reader. But let us mention that, from the viewpoint of Resurgence Theory, stability properties like those indicated in our main results are reminiscent of the stability of the space of resurgent series under multiplication and other nonlinear operations [START_REF] Écalle | Les fonctions résurgentes[END_REF], [START_REF] Candelpergher | Approche de la résurgence[END_REF], [START_REF] Sauzin | On the stability under convolution of resurgent functions[END_REF]. The possibility of doing nonlinear analysis with resurgent series has always been emphasized by J. Écalle and, ultimately, is responsible for the success of Resurgence Theory in nonlinear dynamics, its initial area of application in mathematics. The success of the theory in WKB analysis also has recently aroused renewed interest for its applicability to mathematical physics, as testified e.g. by the resurgence conjecture of the recent preprint [START_REF] Kontsevich | Analyticity and resurgence in wall-crossing formulas[END_REF].

1.4 Our initial motivation was to understand Deformation Quantization and the explicit construction (1.13) of Kontsevich from the viewpoint of Resurgence Theory. But already at the level of the Moyal star product (1.3), even with N = 1 and analytic classical observables that do not depend on t, one can see that the star product is generically divergent as a series in t, but with at most factorial growth due to the Cauchy inequalities-see the examples in § 2.2. It is thus natural to consider the Moyal star product of two elements of f and g of C{q 1 , . . . , q N , p 1 , . . . , p N }[[t]] and to enquire on β( f M g) in terms of β f and β g, i.e. to investigate the Borel counterpart of the Moyal star product:

f * M g := β β -1 f M β -1 g . (1.15)
This is what Garay, de Goursac and van Straten did in [START_REF] Garay | Resurgent deformation quantisation[END_REF] with the "standard star product" S defined by (1.5), which is a star product equivalent to the Moyal one via the transition operator T . They considered

f * S g := β β -1 f S β -1 g (1.16)
with a view to proving Theorem B: supposing that f and g are algebro-resurgent series, i.e. that f and g are algebro-resurgent germs, is it true that f * S g is an algebro-resurgent germ (and hence that f S g is an algebro-resurgent series)? However, the analysis in [START_REF] Garay | Resurgent deformation quantisation[END_REF] relies on an integral representation of * S that is flawed (Proposition 3.3 of that article), thus invalidating the purported proof of Theorem B. In Section 2, we will give another integral representation of * S , formula (2.27). The correct formula is more intricate than that of [START_REF] Garay | Resurgent deformation quantisation[END_REF]; therefore, following the analytic continuation of f * S g (where both factors are supposed to be algebro-resurgent) requires considerably more work.

For the sake of clarity, we will begin in Section 2 with the case of one degree of freedom and give in Lemma 2.4 the formula for * S for that case. It is a mixture of convolution 3 and Hadamard product (which has the classical integral representation given as (6.2) infra); more specifically, the formula involves the Hadamard product with respect to ζ of the Taylor expansions f (ξ 1 , q, p+ ζ) g(ξ 2 , q + ζ, p) and then a convolution-like integration with respect to ζ, ξ 1 and ξ 2 .

Analytic continuation of convolution is a classical topic in Resurgence Theory [START_REF] Écalle | Les fonctions résurgentes[END_REF], [START_REF] Candelpergher | Approche de la résurgence[END_REF], [START_REF] Sauzin | On the stability under convolution of resurgent functions[END_REF], [START_REF] Mitschi | Divergent Series, Summability and Resurgence[END_REF]. We will adapt these techniques to our more intricate situation in Section 5. The analytic continuation of the Hadamard product of two Ω-continuable germs has been treated in [START_REF] Li | Hadamard Product and Resurgence Theory[END_REF], with a possibly infinite singular locus Ω; our situation is simpler inasmuch as it involves only finite singular loci in the Borel plane, as we will see in Section 6 devoted to the Hadamard part of the formula for * S .

The technique for following the analytic continuation of f * S g in the case of N degrees of freedom is indicated in Section 7. This will lead us to a proof of Theorem B that follows a path rather different than that of [START_REF] Garay | Resurgent deformation quantisation[END_REF]. Then, using the concrete form of the equivalence T between the Moyal and standard star products M and S , we will be able to relate * M and * S by an integral transform T , prove that f algebro-resurgent germ =⇒ T f and T -1 f algebro-resurgent germs (which is equivalent to Theorem C) and deduce that f and g algebro-resurgent germs =⇒ f * M g algebro-resurgent germ (which is equivalent to Theorem A). Hence, algebro-resurgent series form a subalgebra of C{q 1 , . . . , q N , p 1 , . . . ,

p N }[[t]], S or of C{q 1 , . . . , q N , p 1 , . . . , p N }[[t]], M or, in the case of a general constant-coefficient Poisson structure π, of C{x 1 , . . . , x d }[[t]], M .
1.5 The formal parameter = t/i corresponds to the Planck constant, which is a nonzero fundamental constant of nature, and hence can hardly be treated as formal and dimensionless in applications to physics. A question thus naturally arises as to the "convergence of formal deformation quantization", in the sense of giving an analytic meaning to formal star products (recall that all the corresponding power series in t are expected to be generically divergent, so it cannot be "convergence" in the usual sense).

In fact, this question is considered to be one of the fundamental remaining open problems e.g. in [START_REF] Waldmann | Convergence of star products: From examples to a general framework[END_REF] and there still is no general theory to answer it. The approach to Deformation Quantization taken in this paper may give hope to reach an answer, at least in some cases, by means of a Borel-Laplace summation of some sort (the usual Borel-Laplace summation S θ or one of the "Borel-Laplace averages" conceived by J. Écalle as a tool to be used when S θ ϕ is ill-defined due to the presence of singularities of ϕ(ξ) on the integration ray e iθ R >0 ). We have not pursued the question of Borel summability in this article-see however Remark 2.3.

1.6

The paper is organized as follows.

-Section 2 deals with definitions, examples and elementary properties for the Moyal and standard star products, M and S , and their Borel counterparts * M and * S . It also contains the integral representation formulas for * S , T and T -1 that will be used in the rest of the article.

3 "Convolution" is the operation that corresponds to the multiplication of formal series via formal Borel transform. Beware that Resurgence Theory usually makes use of the formula corresponding to B, rather than β, in accordance with Footnote 2. The image by B of the product (B -1 ϕ)(B -1 ψ) is the function

ξ 0 ϕ(ξ1) ψ(ξ-ξ1) dξ1, whereas the image by β of (β -1 ϕ)(β -1 ψ) is ∂ ∂ξ ξ 0 ϕ(ξ1) ψ(ξ -ξ1) dξ1 .
-Section 3 deals with the definition of algebro-resurgent series and algebro-resurgent germs, and states three lemmas that are instrumental in our proof of Theorems B and C.

-Section 4 introduces the notion of a multivariate polynomial that is "simple with respect to one of its variables", as an algebraic preparation to handle more conveniently the algebraic varieties which appear in the singular loci in the Borel plane.

-Section 5 deals with the "convolution part" of our formula for * S .

-Section 6 deals with the "Hadamard part" of the formula.

-Section 7 explains how to adapt the proof from N = 1 to N arbitrary.

2 Borel counterparts of the Moyal and standard star products 2.1 As explained at the end of § 1.1, we can assume without loss of generality that the Poisson structure π is the standard one (1.6), with 2N variables q 1 , . . . , q N , p 1 , . . . , p N . The formula (1.3) for the star product M is thus

f M g = µ • exp t 2 N j=1 ∂ ∂p j ⊗ ∂ ∂q j - ∂ ∂q j ⊗ ∂ ∂p j ( f ⊗ g).
(2.1) Formula (2.1) (which boils down to (1.9) when N = 1) makes sense in C{q 1 , . . . , q N , p 1 , . .

. , p N }[[t]]

as well as in

Q 2N +1 := C[[q 1 , . . . , q N , p 1 , . . . , p N ]][[t]] = C[[t, q 1 , . . . , q N , p 1 , . . . , p N ]].
The same is true for S , which is defined by the formula (1.5) or, equivalently

f S g = µ • exp t N j=1 ∂ ∂p j ⊗ ∂ ∂q j ( f ⊗ g). (2.2)
Recall that the formal deformation parameter is t = i . It is well-known that S and M are equivalent under the transition operator T defined by (1.7):

T ( f S g) = (T f ) M (T g) with T = exp -t 2 ∂ q j ∂ p j and T -1 = exp t 2 ∂ q j ∂ p j .
In other words, we have

T : Q 2N +1 , S → Q 2N +1 , M isomorphism of associative algebras.
It is with S that we will work most of the time, because the formulas are simpler with it than with M , hence we use abbreviations: Notation 2.1. From now on, we set = S for the standard star product, and * = * S for its Borel counterpart (1.16). We will call * the "Borel-star product".

Example 2.2. With one degree of freedom, N = 1, the definition (1.5) boils down to

f S g = f g = k≥0 t k k! ∂ k p f ∂ k q g . (2.3)
Here is a simple example in that case:

(tp) (tq) = t 2 pq +t 3 , (tq) (tp) = t 2 pq, (tp) M (tq) = t 2 pq + t 3 2 , (tq) M (tp) = t 2 pq -t 3 2 . (2.4) Note that T (t 2 pq) = t 2 pq -t 3 2 .

2.2

We are mostly interested in the subspace C{q 1 , . . . , q N , p 1 , . . . ,

p N }[[t]] of Q 2N +1 .
However, it is important to realize that we cannot restrict ourselves to the too narrow subspace4 C{t, q 1 , . . . , q N , p 1 , . . . , p N } consisting of formal series which converge in a neighbourhood of the origin in C 2N +1 , because even if f and g do not depend on t, their star product or their images by T may be divergent. Here is a simple example taken from [START_REF] Garay | Resurgent deformation quantisation[END_REF], and a variant:

Examples. Take N = 1 as in (2.3). The geometric series (1 -p) -1 and (1 -q) -1 give rise to a divergent series (1 -p) -1 (1 -q) -1 = k≥0 k! t k (1 -p)(1 -q) -k-1 . (2.5)
The logarithm series log(1 -p) and log(1 -q) give rise to a divergent series

log(1 -p) log(1 -q) = log(1 -p) log(1 -q) + k≥1 (k -1)! k t k (1 -p)(1 -q) -k . (2.6)
The transition operator T and its inverse map (1 -p -q) -1 to the divergent series

T ±1 (1 -p -q) -1 = k≥0 (2k)! k! ∓ t 2 k (1 -p -q) -2k-1 . (2.7)
Note however the 1-Gevrey character with respect to t of these examples: the coefficient of t k essentially has at most factorial growth, hence convergence is restored when t k is replaced by ξ k /k!, i.e. their image by the formal Borel transform (1.14) belongs to the space of convergent series C{ξ, q, p}. This is a general phenomenon. Let us extend the definition of the formal Borel transform by the formula

β : ϕ = n≥0 a n (z 1 , . . . , z r )t n ∈ C[[t, z 1 , . . . , z r ]] → ϕ = n≥0 a n (z 1 , . . . , z r ) ξ n n! ∈ C[[ξ, z 1 , . . . , z r ]],
(2.8) and call 1-Gevrey formal series with respect to t the elements of

Q G r+1 := β -1 Q r+1 ⊂ C[[t, z 1 , . . . , z r ]], with Q r+1 := C{ξ, z 1 , . . . , z r }.
(2.9)

We then have, as noted in [START_REF] Garay | Resurgent deformation quantisation[END_REF] in the case of the standard star product,

Theorem D. The subspace Q G 2N +1
is stable under the Moyal star product M and the standard product = S , as well as under the transition operators T and T -1 .

The proof is a consequence of (2.30) in Lemma 2.9. Examples (2.5)-(2.7) are thus elements of Q G 3 ; their images by β are the following elements of Q 3 :

β (1 -p) -1 (1 -q) -1 = (1 -p) -1 (1 -q) -1 1 -ξ (1 -p)(1 -q) -1 -1 ,
(2.10)

β log(1 -p) log(1 -q) = log(1 -p) log(1 -q) + Li 2 ξ (1 -p)(1 -q) -1 , (2.11) where Li 2 (z) = k≥1 z k k 2 = - z 0 log(1 -ζ) ζ dζ (2.12)
(the famous dilogarithm function, which plays an ubiquitous role in mathematical physics along with its quantum variant), and

β • T ±1 (1 -p -q) -1 = (1 -p -q) -1 1 ± 2ξ(1 -p -q) -2 -1/2 . (2.13)
In fact, the divergent series (2.5) is essentially the famous Euler series, a paradigmatic example of 1-Gevrey series, and the most elementary example of resurgent series (see e.g. [START_REF] Mitschi | Divergent Series, Summability and Resurgence[END_REF]).

Remark 2.3. The above examples can be further generalized: for any g = g(t, q, p)

∈ Q G 3 , one has (1 -p) -1 g = n≥0 (1 -p) -n-1 t n ∂ n q g(t, q, p), hence ĝ = β g ∈ Q 3 satisfies (1 -p) -1 * ĝ = β (1 -p) -1 g = (1 -p) -1 ∂ ∂ξ ξ 0 ĝ ξ -ζ, q + ζ(1 -p) -1 , p dζ , (2.14)
and there is a similar formula for (1

-q) -1 g. Note that if θ ∈ R and U is a subset of {(q, p) ∈ C × C | |p -1| ≥ ε} (for some ε > 0
) such that g is Borel-summable in the direction θ when (q, p) ∈ U , i.e. ĝ(ξ, q, p) extends analytically in S θ,ε × U with at most exponential growth at infinity,

|ĝ(ξ, q, p)| ≤ C exp A 1 |ξ| + A 2 |q| + A 3 |p| (2.15) (for some C, A 1 , A 2 , A 3 ≥ 0)
, where S θ,ε is a half-strip {dist(ξ, R ≥0 e iθ ) < ε } (for some ε > 0), then (1 -p) -1 g is Borel-summable in the direction θ when (q, p) ∈ U , where

U := (q, p) ∈ U | q + ξ(1 -p) -1 , p ∈ U for all ξ ∈ S θ,ε .
(2.16)

2.3 Recall that we have defined the Borel counterpart * M of the Moyal star product M by (1.15), and the Borel-star product * = * S , counterpart of the standard star product = S , by (1.16). We will now give general integral representations for them.

For the sake of clarity, we begin with the case of one degree of freedom, N = 1.

Lemma 2.4. For any f , ĝ ∈ C[[ξ, q, p]], f * ĝ(ξ, q, p) = d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 2π 0 dθ 2π f (ξ 1 , q, p+ ξ 3 e -iθ )ĝ(ξ 2 , q+ ξ 3 e iθ , p),
(2.17) where the integrand is considered as element of C[e ±iθ ][[q, p, ξ 1 , ξ 2 , √ ξ 3 ]] and integration in θ is performed termwise.

Moreover, if both factors are convergent, then so is their Borel-star product:

f , ĝ ∈ Q 3 =⇒ f * ĝ ∈ Q 3 . (2.18)
Proof. We expand f and ĝ in powers of ξ as f = f m (q, p) ξ m m! , ĝ = g n (q, p) ξ n n! , so that (2.3) allows us to compute f * ĝ(ξ, q, p) as the image by β of m,n,k≥0

1 k! (∂ k p f m )(∂ k q g n )t m+n+k : f * ĝ(ξ, q, p) = m,n,k≥0 1 k! (∂ k p f m )(∂ k q g n ) ξ m+n+k (n + m + k)! . The identity ξ m+n+k+3 (n+m+k+3)! = ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 ξ m 1 m! ξ n 2 n! ξ k 3 k! differentiated three times yields f * ĝ(ξ, q, p) = d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 n,m,k≥0 (∂ k p f m )(∂ k q g n ) ξ m 1 m! ξ n 2 n! ξ k 3 k! 2 .
For each (m, n), with the notations

a k = 1 k! ∂ k p f m , b k = 1 k! ∂ k q g m , the series a k b k ξ k
3 can be interpreted as the evaluation at ξ 3 of the Hadamard product φ ψ of

φ(ξ) = a k ξ k = f m (q, p + ξ) and ψ(ξ) = b k ξ k = g n (q + ξ, p).
According to Section 6.1, φ ψ(ξ) = a k b k ξ k can be rewritten as

2π 0 φ( √ ξe -iθ )ψ( √ ξe iθ ) dθ 2π with termwise integration in C[e ±iθ ][[ √ ξ]] (see (6.3) infra), thus f * ĝ(ξ, q, p) = d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 m,n≥0 2π 0 dθ 2π f m (q, p + ξ 3 e -iθ )g n (q + ξ 3 e iθ , p) ξ m 1 m! ξ n 2 n! = d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 2π 0 dθ 2π f (ξ 1 , q, p + ξ 3 e -iθ
)ĝ(ξ 2 , q + ξ 3 e iθ , p). Now, suppose f , ĝ ∈ Q 3 = C{ξ, q, p}. The right hand side of (2.17) involves a function G(ξ 1 , ξ 2 , s, q, p) := 2π 0 f (ξ 1 , q, p+se -iθ )ĝ(ξ 2 , q+se iθ , p) dθ 2π which clearly belongs to C{ξ 1 , ξ 2 , s, q, p}. But G(ξ 1 , ξ 2 , s, q, p) = G(ξ 1 , ξ 2 , -s, q, p), hence F (ξ 1 , ξ 2 , ξ 3 , q, p) := G(ξ 1 , ξ 2 , √ ξ 3 , q, p) is a welldefined germ in C{ξ 1 , ξ 2 , ξ 3 , q, p}. The right-hand side of (2.17) can be written as

d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 F (ξ 1 , ξ 2 , ξ 3 , q, p), (2.19)
hence it defines a holomorphic germ in C{ξ, q, p}.

Remark 2.5. The integral formula (2.17) differs from the one given in Proposition 3.3 of [START_REF] Garay | Resurgent deformation quantisation[END_REF], which is not correct. Take for instance f = ξp and ĝ = ξq: we know by the first equation in (2.4) that we must find

(ξp) * (ξq) = pq ξ 2 2! + ξ 3 3! , (2.20)
and the reader may check that our formula produces the right outcome, but not the formula from [START_REF] Garay | Resurgent deformation quantisation[END_REF], which yields a term ξ 3 2! instead of ξ 3 3! .

Remark 2.6. Instead of writing the Hadamard product φ ψ(ξ) as we did in our proof, we could have used the integration variable ζ = √ ξe iθ and then the Cauchy theorem, which yields

φ ψ(ξ) = 1 2πi C φ( ξ z )ψ(z) dz z with any circle C : θ → c e iθ of radius c ∈ |ξ| R φ , R ψ , (2.21)
where R φ and R ψ are the radii of convergence of φ and ψ, and |ξ| < R φ R ψ (see (6.2) infra). Correspondingly, Formula (2.17) can be rewritten

f * ĝ(ξ, q, p) = d 3 dξ 3 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 C dz 2πiz f ξ 1 , q, p + ξ 3 z ĝ(ξ 2 , q + z, p), (2.22)
where C is an appropriate circle: supposing f and ĝ holomorphic in D 3 τ with notation (3.1) and taking ε ∈ (0, τ ), ε ∈ (0, ε 2 ) and c ∈ ( ε ε , ε), formula (2.22) holds for (ξ, q, p)

∈ D ε ×D τ -ε ×D τ -ε . Lemma 2.7. If f , ĝ ∈ C[[ξ, q, p]], then f * M ĝ(ξ, q, p) = d 4 dξ 4 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 ξ-ξ 1 -ξ 2 -ξ 3 0 dξ 4 C 1 dz 1 2πiz 1 C 2 dz 2 2πiz 2 f (ξ 1 , q + z 1 , p + z 2 ) ĝ ξ 2 , q + ξ 4 2z 2 , p - ξ 3 2z 1 (2.23)
with integration on appropriate circles C 1 and C 2 : supposing f and ĝ holomorphic in D 3 τ with notation (3.1) and taking ε ∈ (0, τ ), ε ∈ (0, ε 2 ), formula (2.23) holds for (ξ, q, p)

∈ D ε × D τ -ε × D τ -ε provided C 1 and C 2 are any anticlockwise circles centred at 0 with radii in ( ε ε , ε). Moreover, if both factors are convergent, i.e. f , ĝ ∈ Q 3 , then so is f * M ĝ.
Proof. Using the same kind of argument as in the proof of Lemma 2.4, we compare the righthand side and the left-hand side of (2.23):

RHS = d 4 dξ 4 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 ξ-ξ 1 -ξ 2 -ξ 3 0 dξ 4 n,m ∂ n p ∂ m q f (ξ 1 , q, p) ∂ m p ∂ n q ĝ(ξ 2 , q, p) (-1) m ξ m 3 ξ n 4 2 m+n m! 2 n! 2 = d 4 dξ 4 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 ξ-ξ 1 -ξ 2 0 dξ 3 ξ-ξ 1 -ξ 2 -ξ 3 0 dξ 4 n,m,α,β ∂ n p ∂ m q f α (q, p) ∂ m p ∂ n q g β (q, p) (-1) m ξ α 1 ξ β 2 ξ m 3 ξ n 4 2 m+n α! β! m! 2 n! 2 = n,m,α,β ∂ n p ∂ m q f α (q, p) ∂ m p ∂ n q g β (q, p) (-1) m ξ α+β+m+n 2 m+n m! n! (α + β + m + n)! = LHS,
because the LHS is the Borel image of the Moyal star product of f = α f α (q, p)t α and g = β g β (q, p)t β , which, according to (1.9), can be written

f M g = n,m≥0 (-1) m t n+m 2 n+m n! m! ∂ n p ∂ m q f ∂ m p ∂ n q g = n,m,α,β (-1) m t α+β+n+m 2 n+m n! m! ∂ n p ∂ m q f α ∂ m p ∂ n q g β .
The discussion of convergence is the same as in the proof of Lemma 2.4.

We could also have derived Lemma 2.7 from Lemma 2.4 and the following integral representations of the Borel counterparts of T and T -1 ,

T f := βT β -1 f , T -1 f = βT -1 β -1 f . (2.24) Lemma 2.8. For any f ∈ C[[ξ, q, p]], T f = d dξ ξ 0 dξ 1 C dz 2πiz f ξ -ξ 1 , q + z, p - ξ 1 2z , (2.25) 
T -1 f = d dξ ξ 0 dξ 1 C dz 2πiz f ξ -ξ 1 , q + z, p + ξ 1 2z , (2.26) 
with integration on appropriate circle C. Moreover, if f is convergent, i.e. f ∈ Q 3 , then so is T f .

Proof. Let us compare the right-hand side and the left-hand side of (2.25):

RHS = d dξ ξ 0 dξ 1 C dz 2πi n,m ∂ n q ∂ m p f (ξ -ξ 1 , q, p) n!m! (- ξ 1 2 ) m z n-m-1 = d dξ ξ 0 dξ 1 n ∂ n q ∂ n p f (ξ -ξ 1 , q, p) n! 2 (- ξ 1 2 ) n = β n ∂ n q ∂ n p f (t, q, p) n! • (- t 2 ) n = LHS.
The proof of (2.26) is analogous.

2.4

We now consider the case of an abitrary number of degrees of freedom, say N . We set q = (q 1 , . . . , q N ) and p = (p 1 , . . . , p N ). If f (ξ, q, p)

= ∞ m=0 f m (q, p) ξ m m! , ĝ(ξ, q, p) = ∞ n=0 g n (q, p) ξ n n! , then it follows from (1.5) that f * ĝ(ξ, q, p) = m,n,k 1 ,...,k N ≥0 1 k 1 ! • • • k N ! (∂ k 1 p 1 • • • ∂ k N p N f m )(∂ k 1 q 1 • • • ∂ k N q N g n ) ξ k 1 +•••+k N +n+m (k 1 + • • • + k N + n + m)! .
Lemma 2.9. There are integral representation formulas in N degrees of freedom analogous to those of Lemma 2.4/Remark 2.6, Lemma 2.7 and Lemma 2.8. Specifically, for

f , ĝ ∈ C[[ξ, q 1 , . . . , q N , p 1 , . . . , p N ]], a formula generalising (2.22) is f * ĝ(ξ, q, p) = d N +2 dξ N +2 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 • • • ξ-ξ 1 -•••-ξ N +1 0 dξ N +2 C 1 dz 1 2πiz 1 • • • C N dz N 2πiz N f ξ N +1 , q 1 , . . . , q N , p 1 + ξ 1 z 1 , . . . , p N + ξ N z N ĝ(ξ N +2 , q 1 + z 1 , . . . , q N + z N , p 1 , . . . , p N ), (2.27) a formula generalising (2.23) is f * M ĝ(ξ, q, p) = d 2N +2 dξ 2N +2 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 • • • ξ-ξ 1 -•••-ξ 2N +1 0 dξ 2N +2 C 1 dz 1 2πiz 1 • • • C 2N dz 2N 2πiz 2N f (ξ 2N +1 , q 1 + z 1 , . . . , q N + z N , p 1 + z N +1 , . . . , p N + z 2N ) ĝ ξ 2N +2 , q 1 + ξ N +1 2z N +1 , . . . , q N + ξ 2N 2z 2N , p 1 - ξ 1 2z 1 , . . . , p N - ξ N 2z N ,
(2.28)

and a formula generalising (2.25)-(2.26) is

T ±1 f (ξ, q, p) = d N +1 dξ N +1 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 • • • ξ-ξ 1 -•••-ξ N 0 dξ N +1 C 1 dz 1 2πiz 1 • • • C N dz N 2πiz N f (ξ N +1 , q 1 + z 1 , . . . , q N + z N , p 1 ∓ ξ 1 2z 1 , . . . , p N ∓ ξ N 2z 2N . (2.29)
In each of these formulas, supposing f and ĝ holomorphic in D 2N +1 τ with notation (3.1) and taking ε ∈ (0, τ ), ε ∈ (0, ε 2 ), it is understood that (ξ, q, p) ∈ D ε × D N τ -ε × D N τ -ε and the C j 's are any anticlockwise circles centred at 0 with radii in ( ε ε , ε)-alternatively, C j can be taken to be the parametrized circle θ j ∈ [0, 2π] → ξ j e iθ j , where √ ξ j is any square root of ξ j . These formulas entail that

f , ĝ ∈ Q 2N +1 =⇒ f * ĝ, f * M ĝ, T f , T -1 f ∈ Q 2N +1 .
(2.30)

We leave it to the reader to work out the details of the proof of Lemma 2.9.

As already mentioned, Theorem D is a mere consequence of (2.30).

Algebro-resurgent germs

We shall use the notation

D τ := {z ∈ C | |z| < τ }. (3.1)
We know that if f ∈ C{z 1 , . . . , z n }, then there exists τ > 0, such that f is the germ of a function holomorphic in the polydisc D n τ ⊂ C n . Following [START_REF] Garay | Resurgent deformation quantisation[END_REF], we set the Definition 3.1. For any n ≥ 0, we define the set of "algebro-resurgent germs in n+1 variables" by

Q A n+1 := f ∈ C{ξ, z 1 , . . . , z n } | ∃ proper algebraic subvariety V ⊂ C n+1 ,
such that f admits analytic continuation along any C 1 path γ contained in C n+1 -V and having initial point γ(0) close enough to 0 .

(3.2)

Here "γ(0) close enough to 0" means that γ(0) ∈ D n+1 τ where D n+1 τ is a polydisc where f induces a holomorphic function. We then called "avoidant set" for f any proper algebraic subvariety V satisfying the property indicated in (3.2).

Examples. Formulas (2.10), (2.11) and (2.13) define algebro-resurgent germs in 3 variables, with avoidant sets {(1 -q)(1 -p) = 0 or ξ}, resp. {(1 -q)(1 -p) = 0 or ξ} ∪ {ξ = 0}, resp. {(1 -p -q) 2 = 0 or 2 ξ or -2 ξ}.

Recall that we have defined β : C[[t, z 1 , . . . , z r ]] → C[[ξ, z 1 , . . . , z r ]] as the formal Borel transform with respect to the first variable-cf. (2.8). Definition 3.2. We define Q A n+1 to be the preimage by β of Q A n+1 :

Q A n+1 := β -1 ( Q A n+1 ) ⊂ C[[t, z 1 , . . . , z n ]].
This is the set of all "algebro-resurgent series in n + 1 variables".

Obviously, since

Q A n+1 ⊂ C{ξ, z 1 , . . . , z n } = Q n+1 , we have Q A n+1 ⊂ Q G n+1
: algebro-resurgent series are 1-Gevrey with respect to t. We may also consider the disjoint union of the spaces of algebro-resurgent germs or series in any number of variables:

Q A := n≥0 Q A n+1 , Q A := n≥0 Q A n+1 .
The 1-degree-of-freedom version of Theorem B is

Theorem B'. If f (t, q, p), g(t, q, p) ∈ Q A 3 , then f g(t, q, p) ∈ Q A 3 . Equivalently, f (t, q, p), ĝ(t, q, p) ∈ Q A 3 =⇒ f * ĝ(t, q, p) ∈ Q A 3 . (3.3) 
Sections 4-6 are devoted to the proof of Theorem B'. (Then Section 7 will show how to prove Theorem B, and also Theorems C and A.) Using formula (2.17), the proof will be divided into the following three lemmas. Lemma 3.3. If f (ξ, q, p), ĝ(ξ, q, p) ∈ Q A 3 , then

F (ξ 1 , ξ 2 , ξ 3 , q, p) := 1 2π 2π 0 f (ξ 1 , q, p + ξ 3 e -iθ )ĝ(ξ 2 , q + ξ 3 e iθ , p)dθ (3.4)
is an algebro-resurgent germ in 5 variables.

The proof will be found in Section 6, which is treated as the "Hadamard product part" of formula (2.17).

Lemma 3.4.

If F (z 1 , . . . , z n ) ∈ Q A n and P is a polynomial in n variables vanishing at (0, . . . , 0), then

f (z, z 2 , . . . , z n ) := P (z,z 2 ,...,zn) 0 F (z 1 , z 2 , . . . , z n )dz 1 (3.5)
is an algebro-resurgent germ in n variables.

The proof will be found in Section 5, which is treated as the "convolution product part" of formula (2.17).

Lemma 3.5.

If F (z 1 , . . . , z n ) ∈ Q A n and P is a polynomial in n -1 variables vanishing at (0, . . . , 0), then f (z 2 , . . . , z n ) := P (z 2 ,...,zn) 0

F (z 1 , z 2 , . . . , z n )dz 1 (3.6)
is an algebro-resurgent germ in n -1 variables.

Lemma 3.5 follows almost directly from Lemma 3.4, as will be shown at the end of Section 5.

Simple polynomials with respect to a variable

In this section, we shall work in C n with variables z 1 , . . . , z n and give the definition of z 1 -simple polynomial. The proposition 4.2 is very useful in the following sections and we will prove it carefully. The reason we use the definition 'z 1 -simple polynomial' is that we want the set (4.2) to be non-trivial. Any non-zero polynomial P ∈ C[z 1 , . . . , z n ] can be written in a unique way as

P (z 1 , . . . , z n ) = M i=0 b i (z 2 , . . . , z n ) z i 1 ∈ C[z 1 , . . . , z n ] = C[z 2 , . . . , z n ][z 1 ], with M ≥ 0, b 1 , . . . , b M ∈ C[z 2 , . . . , z n
] and b M = 0. We denote by F the fraction field of C[z 2 , . . . , z n ] and F the algebraic closure of F. Thus, P (z 1 , . . . , z n ) can be written as

b M (z 2 , . . . , z n ) M α=1 z 1 -ω α (z 2 , . . . , z n ) (4.1)
with ω α (z 2 , . . . , z n ) ∈ F.

Definition 4.1. Given a non-zero polynomial F (z 1 , . . . , z n ) ∈ C[z 1 , . . . , z n ] and the representation of it (formula (4.1)),

F is called z 1 -simple polynomial if for any α 1 , α 2 , 1 ≤ α 1 < α 2 ≤ M , we have ω α 1 (z 2 , . . . , z n ) = ω α 2 (z 2 , . . . , z n ). In particular, F is a z 1 -simple polynomial if the de- gree M of F in z 1 is zero.
Proposition 4.2. Any proper algebraic subvariety V of C n can be written as V = K J=1 P -1 J (0), where K is a positive integer and P 1 , . . . , P K are z 1 -simple polynomials.

Proof. Hilbert's basis theorem states that every algebraic variety can be described as a common zero locus of finitely many polynomials. Thus we assume

V = K J=1 V J , V J := {(z 1 , . . . , z n ) ∈ C n | Q J (z 1 , . . . , z n ) = 0}, for J = 1, . . . , K,
where Q J , J = 1, . . . , K, are non-zero polynomials over C n . What we want to prove is, for each Q J , there exists a non-zero z 1 -simple polynomial P J s.t.

Q -1 (0) = P -1 (0). We will use the abridge notations

Q or P later. Suppose Q = M i=0 b i (z 2 , . . . , z n )z i
1 with b i (z 2 , . . . , z n )'s are polynomials of variables z 2 , . . . , z n and b M non-zero polynomial, then it has the following factorization in

F[z 1 ]: b M (z 2 , . . . , z n ) N α=1 z 1 -ω α (z 2 , . . . , z n ) sα ,
where

ω α ∈ F, ω α 1 (z 2 , . . . , z n ) = ω α 2 (z 2 , . . . , z n ) for 1 ≤ α 1 < α 2 ≤ N , integer multiplicities s α ≥ 1 and N α=1 s α = M .
Let us suppose that for some α, s α > 1 (if not, the proof is trivial). We shall use the following notation:

R(z 1 , . . . , z n ) := Q(z 1 , . . . , z n ) b M (z 2 , . . . , z n ) = N α=1 z 1 -ω α (z 2 , . . . , z n ) sα , R(z 1 , . . . , z n ) := N α=1 z 1 -ω α (z 2 , . . . , z n ) . First, we shall prove R(z 1 , . . . , z n ) ∈ F[z 1 ]. In fact, R(z 1 , . . . , z n ) is reducible in F[z 1 ]
(irreducible polynomials are separable polynomials). If we consider the minimal polynomial of each root ω i (y), with Abel's irreducibility theorem, then we get:

R = R 1 • • • R m , R = (R 1 ) σ 1 • • • (R m ) σm
with R 1 , . . . , R m ∈ F[z 1 ] and σ i 's are chosen from {s 1 , . . . , s N }. The idea would be to construct inductively R 1 as the minimal polynomial in F[z 1 ] of ω 1 ∈ F, then σ 1 = s 1 and R 1 is a product of some of the factors z 1 -ω i (z 2 , . . . , z n ) including i = 1, and we go on with R 2 minimal polynomial of one of the ω J i 's which has not been included in R J 1 , etc.

Up to now, we have R ∈ F[z 1 ] as announced, and we have decompositions for Q in F[z 1 ]:

Q(z 1 , . . . , z n ) = b M (z 2 , . . . , z n )R 1 (z 1 , . . . , z n ) σ 1 • • • R m (z 1 , . . . , z n ) σm .
And each factor R j (j = 1, . . . , m) can be written as

R j (z 1 , . . . , z n ) = 1 L j (z 2 , . . . , z n ) R j (z 1 , . . . , z n )
taking for L j the l.c.m. of the denominators of the coefficients of R j in F, and 

R j (z 1 , . . . , z n ) is a primitive polynomial in C[z 2 , . . . , z n ][z 1 ]. Gauss's lemma implies that the coefficients of R σ 1 1 • • • R σm m are relatively prime in C[z 2 , . . . , z n ]. Hence the coefficients of Q are also in C[z 2 , . . . , z n ], which implies that b M (L 1 ) σ 1 •••(Lm) σm ∈ C[z 2 , . . . , z n ]. We define P = b M L σ 1 -1 1 • • • L σm-1 m R 1 • • • R m = b M L σ 1 1 • • • L σm m R 1 • • • R m which is the desired z 1 -simple polynomial since R 1 • • • R m have distinct root in z 1 by the con- struction. Finally, P -1 (0) = Q -1 (0) is obviously because both P and Q have common factors b M L σ 1 1 •••L σm m , R 1 , • • • , R m which are all polynomials in C[z 2 , . . . , z n ][z 1 ]. Lemma 4.3. Given a z 1 -simple polynomial F (z 1 , . . . , z n ) ∈ C[z 1 , . . . ,
) := z M F ( ξ z , z 2 , . . . , z n ) which is contained in C[ξ, z, z 2 , . . . , z n ] is both ξ- simple polynomial and z-simple polynomial.
Proof. The proof is standard and left to the reader. Lemma 4.4. If F (z 1 , . . . , z n ) is a z 1 -simple polynomial, which means that

F (z 1 , . . . , z n ) = b M (z 2 , . . . , z n ) M α=1 z 1 -ω α (z 2 , . . . , z n ) with b M = 0, ω α 1 = ω α 2 if 1 ≤ α 1 < α 2 ≤ M , then (z 2 , . . . , z n ) | ω α 1 (z 2 , . . . , z n ) = ω α 2 (z 2 , . . . , z n ) for some 1 ≤ α 1 < α 2 ≤ M (4.2)
is an algebraic variety.

Proof. The set (4.2) is actually 

{(z 2 , . . . , z n ) | Syl(F, ∂ z 1 F ) = 0},

Convolution Product

In this section, our goal is to prove lemma 3.4. Let F (z 1 , . . . , z n ) ∈ Q n A , which means it is holomorphic at origin and there exists an algebraic variety V F ⊂ C n such that F admits analytic continuation along any path which starts near origin and avoids V F . From the definition of f (z, z 2 , . . . , z n ) in formula (3.5), it is obvious that f (z, z 2 , . . . , z n ) ∈ C{z, z 2 , . . . , z n } since F (z 1 , . . . , z n ) ∈ C{z 1 , . . . , z n } and P is a polynomial which vanishes at origin. The remaining part will be proved by constructing an algebraic variety V f which f should avoid in general.

By the proposition 4.2, let us assume

V F = K J=1 V J F , V J F := {(z 1 , . . . , z n ) ∈ C n | P J F (z 1 , . . . , z n ) = 0}, for J = 1, . . . , K,
where P J F , J = 1, . . . , K, are z 1 -simple polynomials over C n .

We shall construct algebraic variety V J f , J = 1, . . . , K correspondingly, s.t. if F admits analytic continuation along any path which avoids the set (P J F ) -1 (0), then f admits analytic continuation along any path which avoids the set V J f . Thus finally, the avoidant set of f is an algebraic variety

V f = K J=1 V J f .
Let us write

P J F (z 1 , . . . , z n ) = b M (z 2 , . . . , z n ) M α=1 z 1 -ω α (z 2 , . . . , z n ) (5.1) with b M = 0, ω 1 , . . . , ω M ∈ F and ω α 1 = ω α 2 if 1 ≤ α 1 < α 2 ≤ M .
One may keep in mind that M , b M and the ω α 's actually depend on J.

Definition 5.1. We define V J f in following two cases. Case 1: If P J F (P (z, z 2 , . . . , z n ), z 2 , . . . , z n ) = 0 for some z, z 2 , . . . , z n , (5.2) then

V J f := C n -(z, z 2 , . . . , z n ) ∈ C n (P J F ) (z 2 ,.
..,zn) (z 1 ) has M distinct non-zero roots and (P J F ) (z 2 ,...,zn) (P ) = 0 , (5.3) where (P J F ) (z 2 ,...,zn) (z 1 ) := P J F (z 1 , . . . , z n ) is treated as a polynomial of one variable z 1 with the coefficients in

C[z 2 , . . . , z n ]. Case 2: If P J F (P (z, z 2 , . . . , z n ), z 2 , . . . , z n ) = 0 for all z, z 2 , . . . , z n , (5.4) 
then

V J f := C n -(z, z 2 , . . . , z n ) ∈ C n (P J F ) (z 2 ,...,zn) (z 1 ) has M distinct non-zero roots . (5.5)
More precisely, the definition (5.3) is equivalent to

V J f =            (z, z 2 , . . . , z n ) ∈ C n b M (z 2 , . . . , z n ) = 0 or P J F (0, z 2 , . . . , z n ) = 0 or (P J F ) (z 2 ,.
..,zn) (z 1 ) has a multiple root or

P J F (P , z 2 , . . . , z n ) = 0            , (5.6) 
and the definition (5.5) is equivalent to

V J f =      (z, z 2 , . . . , z n ) ∈ C n b M (z 2 , . . . , z n ) = 0 or P J F (0, z 2 , . . . , z n ) = 0 or (P J F ) (z 2 ,...,zn) (z 1 ) has a multiple root or      .
(5.7)

In both case, one may observe that, by the assumption (5.1) and lemma 4.4, V J f we defined above is an algebraic variety.

From the discussion above, to prove lemma 3.4, the following lemma is needed.

Lemma 5.2. We suppose f (z, z 2 , . . . , z n ) := P (z,z 2 ,...,zn) 0 F (z 1 , . . . , z n )dz 1 , where F is holomorphic at the origin and admits analytic continuation along any path which avoids the algebraic variety

V J F = {(z 1 , . . . , z n ) ∈ C n | P J F (z 1 , . . . , z n ) = 0}.
Then f is holomorphic at origin and it admits analytic continuation along any path γ which avoids V J f defined above.

Now we only think about case 1. Case 2 will be discussed at the end of this section. We begin with a definition of γ-homotopy. Definition 5.3.

For a path γ(t) := (γ z (t), γ z 2 (t), . . . , γ zn (t)) ∈ C n , a continuous map H :

[0, 1] × [0, 1] → C, (t, s) → H t (s) := H(t, s) is called a γ-homotopy if for any s, t ∈ [0, 1], H t (0) = 0; H 0 (s) = s • P (γ(0)); H t (1) = P (γ(t)); P J F (H t (s), γ z 2 (t), . . . , γ zn (t)) = 0. (5.8)
To prove the lemma 5.2 in case 1 it is sufficient to prove the following two claims.

Claim 5.4. Let γ : [0, 1] → C n -V J f be a path such that γ(0) is near the origin. If there exists a γ-homotopy, then f can be analytically continued along γ.

Claim 5.5. For any path γ : [0, 1] → C n -V J f such that γ(0) is near the origin, there exists a γ-homotopy.

Notation 5.6. For each t ∈ [0, 1], we denote by γ| t the truncated path defined as follows:

γ| t : τ ∈ [0, t] → γ(τ ) ∈ C n .
We denote by cont γ|t f the holomorphic germ at γ(t) obtained from f by analytic continuation along γ| t .

The proof of claim 5.4

One may prove that, if there exists γ-homotopy, then the analytic germ at γ(t) of f is

cont γ|t f (z, z 2 , . . . , z n ) = Ht cont (H|t(s),γz 2 |t,...,γz n |t) F (z 1 , . . . , z n )dz 1 + P (z,z 2 ,...,zn) P (γ(t))
cont (H|t(1),γz 2 |t,...,γz n |t) F (z 1 , . . . , z n )dz 1 , (5.9) where H| t (s) is the truncated path of H t (s) when we fixed s in [0, 1]. The proof of this claim is concluded with cont γ|t 1 f (z, z 2 , . . . , z n ) = cont γ|t 2 f (z, z 2 , . . . , z n ) when t 1 and t 2 are close enough by using Cauchy integral. See [START_REF] Mitschi | Divergent Series, Summability and Resurgence[END_REF] for details.

The proof of claim 5.5

When f is continued analytically along γ which starts near the origin and avoids V J f , the corresponding γ-homotopy H t (s) has some moving points to be avoided, i.e. the germ of F at (H t (s), γ z 2 (t), . . . , γ zn (t)) should be well-defined (see formula (5.9)). From the last condition of (5.8) and the form of P J F (see formula (5.1)), we know these moving points are ω i (t) := ω i (γ z 2 (t), . . . , γ zn (t)) ∈ C, for i = 1, . . . , M.

(5.10)

In the set (5.6), the first and third conditions mean that there are always M distinguished moving points ω i (t). The second and fourth conditions mean that these w i (t)'s will not touch the starting point of the homotopy H t (0) = 0 and the ending point of the homotopy H t (1) = P (γ z (t), γ z 2 (t), . . . , γ zn (t)), correspondingly. Now we want to find the γ-homotopy H t (s). The idea is to find a family of maps (Ψ t ) t∈[0,1] : C × R → C × R such that for any s, H t (s) := Π C (Ψ t (H 0 (s))) yield the desired homotopy, where Π C is the projection from C × R to C. Let ω 0 (t) := P (γ(t)). If γ(t) avoids V J f , thanks to our assumption (5.2), we have ω i (t) = ω 0 (t), ω i (t) = 0 and ω i (t) = ω j (t) ∀i, j = 1, . . . , M, i = j and ∀t ∈ [0, 1].

(5.11)

See Figure 1.

Figure 1: Upper-left: f is holomorphic in D n τ which contains γ(0). Upper-right: F is integrated over a line segment H 0 (s) contained in D τ . When f is continued analytically along γ| t in the lower-left picture, the corresponding homotopy H t (s) (red curve in lower-right) always exists thanks to the conditions (5.11).

To find the γ-homotopy is suffices to find the injective maps Ψ t : C × R → C × R satisfies the following conditions:

(1 • ) : Ψ 0 = id;

(2 • ) : Ψ t (0, 0) = (0, 0);

(3 • ) : Ψ t (ω 0 (0), 0) = (ω 0 (t), L ω 0 (t) ), where L ω 0 (t) := (4 • ) : Ψ t (ω i (0), λ) = (ω i (t), λ + L ω i (t) ), for i = 1, . . . , M.

(5.12) Indeed, the maps Ψ t will be generated by the flow of a non-autonomous vector field (X(ξ, λ, t), |X(ξ, λ, t)|) defined as follows:

X(ξ, λ, t) = N i=0 N i (ξ, λ, t) N i (ξ, λ, t) + η i (ξ, λ, t) (ω i (t), |ω i (t)|),
where N 0 (ξ, λ, t) := dist((ξ, λ), (S(t), R) ∪ {(0, 0)});

N i (ξ, λ, t) := dist((ξ, λ), (S i (t), R) ∪ {(0, 0)} ∪ {(ω 0 (t), L ω 0 (t) )}) for i = 1, . . . , N ; η 0 (ξ, λ, t) := dist((ξ, λ), (ω 0 (t), L ω 0 (t) )); One can check N i + η i = 0 for i = 1, . . . , N . The Cauchy-Lipschitz theorem on the existence and uniqueness of solutions to differential equations applies to (dξ,dλ) dt = (X(ξ, λ, t), |X(ξ, λ, t)|): for every (ξ, λ) ∈ C × R and t 0 ∈ [0, 1] there is a unique solution t → Ψ t 0 ,t (ξ, λ) such that Ψ t 0 ,t 0 = id. Let us set t 0 = 0 and Ψ t := Ψ 0,t for t ∈ [0, 1]. It is easy to see that this family of maps are injective and satisfy the conditions(5.12) of Ψ. We conclude the proof of lemma 5.2 in case 1.

η i (ξ,
Here are two simple examples in case 1.

Example 5.7. f (z, z 2 ) := z 0 1 z 2 z 1 +1 dz 1 = 1 z 2 log(z 2 z + 1).
One can find a path in C 2 to prove that the singular set of f is {(z, z 2 ) | z 2 (z 2 z + 1) = 0}. And {z 2 = 0} is actually the first condition in (5.6), {z 2 z + 1 = 0} is the fourth condition.

Example 5.8. f (z, z 2 ) := z 0 1 (z 1 +1)(z 1 +z 2 +1) dz 1 = 1 z 2 (log(z + 1) -log(z + z 2 + 1) + log(z 2 + 1)). The singular set of f is {(z, z 2 ) | z 2 (z + 1)(z + z 2 + 1)(z 2 + 1) = 0}. {z 2 = 0} is actually the third condition in (5.6), {(z + 1)(z + z 2 + 1) = 0} is the fourth condition, and {z 2 + 1 = 0} is the second condition.

Remark 5.9. Although the definition V J f gives the possibly singular set, which means that maybe a subset of V J f is regular, from these two simple examples, one can observe that all the conditions in (5.6) make sense. Now we discuss the lemma 5.2 in case 2. The following example helps us to understand how case 2 happens.

Example 5.10. Consider

f (z, z 2 ) := z 2 0 1 z 2 -z 1 log(1 -(z 2 -z 1 ))dz 1 . We know that F (z 1 , z 2 ) := 1 z 2 -z 1 log(1 -(z 2 -z 1 )
) is holomorphic at (0, 0) and has singular set

V f = {(z 1 , z 2 ) | (z 1 -z 2 )(z 1 -(z 2 -1)) = 0}. We thus have ω 1 (z 2 ) = z 2 = P (z 2 ) and ω 2 (z 2 ) = z 2 -1. The change of variable u = z 2 -z 1 yields f (z, z 2 ) = z 2 0 1 u log(1 -u)du = -Li 2 (z 2 ).
(5.13)

It is obvious that the singular set of f is {z 2 = 0 or 1} (compute the partial derivative ∂f ∂z 2 ).

We will use the following homotopy in case 2: H t (0) = 0; H 0 (s) = s • P (γ(0)) ∀s ∈ [0, 1]; H t (1) = P (γ(t)); P J F (H t (s), γ z 2 (t), . . . , γ zn (t)) = 0 ∀s ∈ [0, 1).

(5.14)

In order to prove lemma 5.2, we will use the same procedure as in case 1. We shall use the same formula (5.9) to write down the analytic continuation of f along γ(t). The only difference between γ -homotopy and γ-homotopy is the ending points (when s = 1) of the fourth condition in (5.8) and (5.14). Thus we shall prove the germs cont (H|t(1),γz 2 |t,...,γz n |t) F (z 1 , . . . , z n ) inside integral representation (5.9) are well-defined.

Let ω i (t) := ω i (γ z 2 (t), . . . , γ zn (t)) ∈ C, for i = 1, . . . , M and P (γ(t)) = ω 1 (t). Actually, ω 1 (t) is not a singular point for γ -homotopy because variable (z 1 -P ) always lies in the principle sheet when we move along γ. It will be clear after we change the variable:

f (z, z 2 , . . . , z n ) = P (z, z 2 , . . . , z n ) 0 -1 G(ζ, z 2 , . . . , z n )dζ with G(ζ, z 2 , . . . , z n ) := F P (z, z 2 , . . . , z n )(1 + ζ), z 2 , . . . , z n . We can find sufficient small R > 0 s.t. G(ζ, z 2 , . . . , z n ) = 1 2πi ∂D R G(ξ, z 2 , . . . , z n ) ξ -ζ dξ.
Indeed, the set (5.5) which γ(t) should avoid implies that the moving singular points of G η i (t) := ω i (t) ω 1 (t) -1, for i = 2, . . . , M never touch 0. This allows us to choose sufficient small R s.t. η i (t) always lie outside D R . One can prove that such G always holomorphic at (0, γ z 2 (t), . . . , γ zn (t)). We conclude the proof of lemma 5.2 in case 2.

Proof of lemma 3.5. Given P (z 2 , . . . , z n ) ∈ C[z 2 , . . . , z n ], we may apply lemma 3.4 treating P as an element of

C[z 1 , . . . , z n ]: f (z 2 , . . . , z n ) = g(z, z 2 , . . . , z n ) with g ∈ Q A n .
We observe that formulas (5.6) and (5.7) yield

V g = C × V f , hence f ∈ Q A n-1 .
6 Hadamard Product

Introduction to Hadamard product on C

In this section, we study the analytic continuation of the Hadamard product.

Definition 6.1. The Hadamard product of two formal series f

(ξ), g(ξ) ∈ C[[ξ]], f (ξ) = ∞ n=0 a n ξ n and g(ξ) = ∞ m=0
b m ξ m , is defined to be the formal series:

f g(ξ) = ∞ n=0 a n b n ξ n . (6.1)
If f, g ∈ C{ξ}, then, denoting by R f and R g their positive radii of convergence, we have f g ∈ C{ξ} with radius of convergence R f g ≥ R f R g . Indeed, for any positive c < R f , we have the integral representation (using notation (3.1))

ξ ∈ D cRg =⇒ f g(ξ) = C f (z)g ξ z dz 2πiz = C f ξ z g(z) dz 2πiz , (6.2) where C is the parametrized circle s ∈ [0, 2π] → c e is . Note that if |ξ| < min{R 2 f , R 2 g } then one can use C = parametrized circle θ ∈ [0, 2π] → √ ξ e iθ , where √ ξ is any square root of ξ, which yields f g(ξ) = 2π 0 f ( ξe iθ )g( ξe -iθ ) dθ 2π = 2π 0 f ( ξe -iθ )g( ξe iθ ) dθ 2π . (6.3) 
The following theorem is related to the classical "Hadamard multiplication theorem", and is in fact a weaker version of a theorem proved in [START_REF] Li | Hadamard Product and Resurgence Theory[END_REF].

Theorem E. If f, g ∈ Q A
1 , which means, f, g ∈ C{ξ} and they admit analytic continuation along any path which avoids finite sets S f and S g respectively, then f g ∈ Q A 1 and it admits analytic continuation along any path which starts near origin and avoids {0} ∪ S f • S g . Example 6.2. If f (ξ) = log(1 -ξ), then one can compute

d dξ (f f )(ξ) = - 1 ξ log(1 -ξ),
which means the singular points of f f are 0 and 1. In fact f f = Li 2 as in (2.12).

Although a more general statement is proved in [START_REF] Li | Hadamard Product and Resurgence Theory[END_REF], for the sake of completeness, let us mention here how Theorem E can be proved. Let us introduce the following Definition 6.3. A γ C -homotopy for the one-dimensional case is a continuous map H :

(t, s) ∈ [0, 1] × [0, 2π] → H t (s) ∈ C such that: H 0 (s) = ce is , H t (s) = 0, H t (s) ∩ S f = ∅, γ(t) H t (s) ∩ S g = ∅.
Claim 6.4. If there exists a γ C -homotopy, then we can do analytic continuation in the following way: then F admits analytic continuation along any γ which avoids the set V JK F . Thus finally, the avoidant set of F is an algebraic variety

(cont γ|t f g)(ξ) = 1 2πi Ht (cont H |t (s) f )(z)(cont γ| t H |t (s) g)( ξ z ) dz z . ( 6 
V F = J,K V JK F .
For simplifying the notation, let 

P J f (ξ, q, p) = a M (ξ, q) M α=1 p -ω α (ξ, q) , Q K g (ξ, q, p) = b N (ξ, p) N β=1 q -Ω β (ξ, p) , (6.5) with a M , b N = 0, ω α 1 = ω α 2 if 1 ≤ α 1 < α 2 ≤ M , Ω β 1 = Ω β 2 if 1 ≤ β 1 < β 2 ≤ N ,
(τ )×D(τ )×D( τ 2 4 )× D( τ 2 ) × D( τ 2 
). We shall choose a point (ξ 1 , ξ 2 , ξ 3 , q, p) in this polydisc, then there exists c > 0, s.t.

|ξ 3 | τ 2 < c < τ 2 .
The formula (3.4) is equivalent to

F (ξ 1 , ξ 2 , ξ 3 , q, p) = 1 2πi C f (ξ 1 , q, p + z)g(ξ 2 , q + ξ 3 z , p) dz z (6.6)
where C is the circle of radius c with center at origin. Let us consider the polynomials

P J f (ξ 1 , q, p + z) := a M (ξ 1 , q) M α=1 (z -ω α (ξ 1 , q, p)) ∈ C[ξ 1 , q, p, z], Q K g (ξ 2 , q + z, p) := b N (ξ 2 , p) N β=1 (z -Ω β (ξ 2 , q, p)) ∈ C[ξ 2 , q, p, z].
(6.7)

From the lemma 4.3, we know that these two polynomials are both z-simple polynomials, which means that we have

a M = 0, ω α 1 = ω α 2 if 1 ≤ α 1 < α 2 ≤ M, b N = 0, Ω β 1 = Ω β 2 if 1 ≤ β 1 < β 2 ≤ N. (6.8)
We shall define the avoidant set of F in C 5 by using the notations above. One may notice that it is a 'symmetry' condition: Definition 6.6.

V JK F := C 5 -     
(ξ 1 , ξ 2 , ξ 3 , q, p) ∈ C 5 P ξ 1 ,q,p (z) has M distinct non-zero roots, and Q ξ 2 ,q,p (z) has N distinct non-zero roots, and

ξ 3 / ∈ {ω α Ω β } ∪ {0}     
, where P ξ 1 ,q,p (z) := P J f (ξ 1 , q, p + z) is treated as a polynomial of one variable z with the coefficients in C[ξ 1 , q, p] and Q ξ 2 ,q,p (z) := Q K g (ξ 2 , q + z, p) is treated as a polynomial of one variable z with the coefficients in C[ξ 2 , q, p]. Remark 6.7. In fact, V JK F will be simplified to one sentence:

V JK F = C 5 -(ξ 1 , ξ 2 , ξ 3 , q, p) ∈ C 5 z N P ξ 1 ,q,p (z)Q ξ 2 ,q,p ( ξ 3 z ) has M + N distinct non-zero roots .

(6.9) By the lemma 4.4, we know V JK F is an algebraic variety.

From the discussion above, to prove Lemma 3.3 it is sufficient to prove the following claim: Claim 6.8. If f and g admit analytic continuation along any path which avoids V J f and V K g respectively, then F defined by formula (6.6) admits analytic continuation along any path γ which avoids V JK F defined above.

By using following eight conditions, we explain V JK F more precisely,

V JK F =                                   
(ξ 1 , ξ 2 , ξ 3 , q, p) ∈ C 5 a M (ξ 1 , q) = 0 or b N (ξ 2 , p) = 0 or ω α 1 (ξ 1 , q, p) = ω α 2 (ξ 1 , q, p) for some α 1 = α 2 or Ω β 1 (ξ 2 , q, p) = Ω β 2 (ξ 2 , q, p) for some β 1 = β 2 or ω α (ξ 1 , q, p) = ξ 3 Ω β (ξ 2 , q, p)

for some α, β or ω α (ξ 1 , q, p) = 0 for some α or Ω β (ξ 2 , q, p) = 0 for some β or

ξ 3 = 0                                    (6.10)
where α, α 1 , α 2 ∈ {1, . . . , M } and β, β 1 , β 2 ∈ {1, . . . , N }. We assume that γ : t ∈ [0, 1] → γ(t) = (γ ξ 1 (t), γ ξ 2 (t), γ ξ 3 (t), γ q (t), γ p (t)) ∈ C 5 has its starting point γ(0) close to 0. To perform analytic continuation, we shall adapt Definition 6.3 to this situation: Definition 6.9. A γ C -homotopy is a continuous map H : (t, s) ∈ [0, 1] × [0, 2π] → H t (s) ∈ C s.t. for any t, s, α, β: H 0 (s) = ce is , H t (s) = 0, H t (s) = ω α γ ξ 1 (t), γ q (t), γ p (t) , H t (s) = γ ξ 3 (t) Ω β γ ξ 2 (t), γ q (t), γ p (t) .

One shall prove that if there exists such a γ C -homotopy, then (cont γ|t F )(ξ 1 , ξ 2 , ξ 3 , q, p) = 1 2πi Ht cont (γ ξ |t,γq|t,γp|t+H|t(s)) f (ξ 1 , q, p + z)

• cont 

Conclusion of the proof for an arbitrary number of degrees of freedom

We now assume N ≥ 1, q = (q 1 , . . . , q N ) and p = (p 1 , . . . , p N ), and want to prove Theorem B, i.e. that f , ĝ

∈ Q A 2N +1 =⇒ f * ĝ ∈ Q A 2N +1 .
Recall the integral formula (2.27):

f * ĝ(ξ, q, p) = d N +2 dξ N +2 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 • • • ξ-ξ 1 -•••-ξ N +1 0 dξ N +2 2π 0 dθ 1 2π • • • 2π 0 dθ N 2π
f (ξ N +1 , q 1 , . . . , q N , p 1 + ξ 1 e -iθ 1 , • • • , p N + ξ N e -iθ N ) ĝ(ξ N +2 , q 1 + ξ 1 e iθ 1 , • • • , q N + ξ N e iθ N , p 1 , • • • , p N ) (7.1) (we have chosen C j = parametrized circle θ j ∈ [0, 2π] → ξ j e iθ j , where √ ξ j is any square root of ξ j ). We will make use of the following Definition 7.1. Suppose 1 ≤ i < j ≤ n. We define the Hadamard-Taylor operator on coordinates (i, j) as the linear operator n i,j : F (z 1 , . . . , z n ) ∈ C{z 1 , . . . , z n } → ( n i,j F )(ξ, z 1 , . . . , z n ) ∈ C{ξ, z 1 , . . . , z n }, with ( n i,j F )(ξ, z 1 , . . . , z n ) := 2π 0 F (z 1 , . . . , z i-1 , z i + ξe -iθ , z i+1 , . . . , z j-1 , z j + ξe iθ , z j+1 , . . . , z n ) dθ 2π .

Notice that the number of variables is not the same in the source and target spaces: a new variable is inserted in first position. In particular, starting with the following function of 4N + 2 variables, F (ξ N +1 , z 1 , . . . , z 2N , ξ N +2 , z 2N +1 , . . . , z 4N ) := f (ξ N +1 , z 1 , . . . , z 2N ) ĝ(ξ N +2 , z 2N +1 , . . . , z 4N ) (7.2) we find that G 1 := 4N +2 2N +1,3N +2 F is a function of 4N + 3 variables with the following property: evaluating G 1 on (ξ N , ξ N +1 , z 1 , . . . , z 2N , ξ N +2 , z 2N +1 , . . . , z 4N ) with (z 1 , . . . , z 4N ) := (q, p, q, p), (7.3) we get the integrand of (7.1) with just the θ N -integration performed. Similarly, G 2 := 4N +3 2N +1,3N +2 G 1 is a function of 4N + 4 variables; if we evaluate it on (ξ N -1 , ξ N , ξ N +1 , z 1 , . . . , z 2N , ξ N +2 , z 2N +1 , . . . , z 4N ) with the z j 's as in (7.3), then we get the integrand of (7.1) with the θ N -integration and the θ N -1 -integration performed. Note that, although we use (i, j) = (2N + 1, 3N + 2) in both Hadamard-Taylor operators, the effect of the first one is on a pair (q N , p N ), while the effect of the second one is on a pair (q N -1 , p N -1 ) because the insertion of a new variable in first position shifts the old ones by one unit.

In fact, we can rewrite the formula (7.1) as f * ĝ(ξ, q, p) =

d N +2 dξ N +2 ξ 0 dξ 1 ξ-ξ 1 0 dξ 2 • • • ξ-ξ 1 -•••-ξ N +1 0
dξ N +2 G(ξ 1 , . . . , ξ N +2 , q, p), (7.4)

. 4 )

 4 Proof. Similar to the proof of claim 5.4.

Figure 2 :

 2 Figure 2: Upper-left: f g is holomorphic in D R f •Rg which contains γ(0). Upper-right: Using C to be the integral curve when t = 0, we notice that the singular points of f are outside D R f •Rg and the "moving singular points" of the homotopy are inside D R f •Rg . When f g is continued analytically along γ| t in the lower-left picture, the corresponding homotopy H t (s)(red curve in lower-right) always exists thanks to the conditions on the ω(t)'s.

  means F admits analytic continuation along γ (see the proof of claim 5.4 for details).

  z n ], M be the highest power of z 1 , then, G(p, z, z 2 , . . . , z n ) := F (p + z, z 2 , . . . , z n ) which is contained in C[p, z, z 2 , . . . , z n ] is both psimple polynomial and z-simple polynomial.G(ξ, z, z 2 , . . . , z n

  λ, t) := |ξ -ω i (t)|, for i = 1, . . . , N ;

	S(t) := {ω 1 (t), . . . , ω n (t)};
	S i (t) := S(t) -{ω i (t)}.

  Definition 5.11. For a path γ(t) := (γ z (t), γ z 2 (t), . . . , γ zn (t)) ∈ C n , a continuous map H :[0, 1] × [0, 1] → C, (t, s) → H t (s) := H(t, s) is called a γ -homotopy if for any t ∈ [0, 1],

  just like what we have done in Section 5. We should keep in mind that a M , M , and the ω α 's depend on J, and b N , N , and the Ω β 's depend on K.By the formula (3.4), one can easily prove that F is holomorphic inside D

However, the even smaller subspace of polynomials C[t, q1, . . . , qN , p1, . . . , pN ] is stable under M and .
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Claim 6.5. If γ starts near origin and it avoids {0} ∪ S f • S g , then there exists γ C -homotopy.

Proof. Suppose S f = {f 1 , . . . , f s }, S g = {g 1 , . . . , g r }. Without loss of generality, we assume g i = 0 for all i = 1, . . . , r. Indeed, if g 1 = 0, it has no influence on the γ C -homotopy because γ(t) never touch 0. Let ω i (t) = γ(t) g i , i = 1, . . . , r, be the moving singular points of homotopy. By the assumption, γ(t) = 0 implies that ω i (t) = ω j (t) for i = j and ω i (t) = 0, γ(t) = S f • S g implies that ω j (t) = f i .

To find the homotopy, it is sufficient to find the flow Ψ t : C → C which satisfies:

See the picture below.

Then we shall use the non-autonomous vector field:

The Cauchy-Lipschitz theorem on the existence and uniqueness of solutions to differential equations applies to dξ dt = X(ξ, t): for every ξ ∈ C and t 0 ∈ [0, 1] there is a unique solution t → Φ t 0 ,t (ξ) such that Φ t 0 ,t 0 (ξ) = ξ. Then we shall define our flow Ψ t = Φ 0,t for t ∈ [0, 1] and the γ C -homotopy H t (s) := Φ t (H 0 (s)).

Proof of lemma 3.3

Suppose f (ξ, q, p), ĝ(ξ, q, p) ∈ Q A 3 . We thus may assume that f and ĝ are holomorphic on D 3 τ for some τ > 0 and that there are avoidant algebraic sets of the form

where the P J f 's are p-simple polynomials and the Q K g 's are q-simple polynomials.

For each J = 1, . . . , R, K = 1, . . . , S, we shall construct algebraic variety

Now we assume γ avoids V JK F . To find the desired homotopy, it is sufficient to find a flow Ψ t : C → C which satisfies:

where ω N +j (t) := γ ξ 3 (t) Ω j (t) , j = 1, . . . , M . Here we use ω α (t) and Ω β (t) to simplify the notation ω α (γ ξ 1 (t), γ q (t), γ p (t)) and Ω β (γ ξ 2 (t), γ q (t), γ p (t)) respectively.

The conditions in (6.10) ensure that, if γ avoids V JK F , then ω i (t) = ω j (t) and ω i (t) = 0 for 1 ≤ i = j ≤ M + N . Thus we can use the non-autonomous vector field:

where η i (ξ, t) := dist(ξ, {0} ∪ j =i ω j (t)) and τ i (ξ, t) := dist(ξ, ω i (t)). The Cauchy-Lipschitz theorem on the existence and uniqueness of solutions to differential equations applies to dξ dt = X(ξ, t): for every ξ ∈ C and t 0 ∈ [0, 1] there is a unique solution t → Φ t 0 ,t (ξ) such that Φ t 0 ,t 0 (ξ) = ξ. Then we shall define our flow Ψ t = Φ 0,t for t ∈ [0, 1] and the desired γ C -homotopy H t (s) := Ψ t (ce is ). This concludes the proof of claim 6.8.

Example 6.10. The functions f (ξ, q, p) := log(3 -ξ -q -p) and g(ξ, q, p) :=

are holomorphic in D(1) × D(1) × D(1). From the discussion above, we know that the corresponding F is holomorphic in D(1) × D(1) × D( 1 4 ) × D( 1 2 ) × D( 1 2 ). We choose γ ξ 3 (0) = 1 8 , then there exists c > 0 (we may choose c = 3 8 ) s.t.

From the formula (6.6), we compute

with ω := 3 -ξ 1 -q -p, A := 3 -ξ 2 -q -p and B := 4 -ξ 2 -2q -p, and a residue computation yields

Thus, we directly see that F is an algebro-resurgent germ, with avoidant set

Here we have P f (ξ 1 , q, p) = 3 -ξ 1 -q -p = ω, thus ω 1 (ξ 1 , q, p) = ω, and P g (ξ 2 , q, p) = AB, thus Ω 1 = A, Ω 2 = B/2, so formula (6.10) leads to

is not singular for the principal branch of F , but it is for some branches of its analytic continuation.

Remark 6.11. The above computation gives an example where the fourth, fifth and seventh conditions in definition (6.10) are necessary. One may find examples for the other conditions.

where G(ξ 1 , . . . , ξ N +2 , q, p) is the evaluation of

where n := 4N + 2 and (i, j) = (2N + 1, 3N + 2), at (ξ 1 , . . . , ξ N , ξ N +1 , z 1 , . . . , z 2N , ξ N +2 , z 2N +1 , . . . , z 4N ) with the z j 's as in (7.3).

In view of Lemmas 3.4 and 3.5, to prove f * ĝ ∈ Q A 2N +1 it is thus sufficient to prove the following lemma:

Proof. We assume

where N is the smallest number such that Q is a polynomial. Treating Q ξ,z 1 ,...,zn (z) := Q(z, ξ, z 1 , . . . , z n ) as a polynomial in one variable z, of order M , with coefficients in C[ξ, z 1 , . . . , z n ], one can prove that n i,j F admits analytic continuation along any path contained in (ξ, z 1 , . . . , z n ) ∈ C n+1 |Q ξ,z 1 ,...,zn (z) has M distinct non-zero roots .

(7.5)

The details are left to the reader.

At this stage, Theorem B is proved. In view of formula (2.29), exactly the same kind of argument, when applied to (2.29), yields Theorem C, i.e.

Theorem A then directly follows from Theorems B and C.

Remark 7.3. Theorem A can also be proved more directly by rewriting (2.28) in the same way we have rewritten (2.27) as (7.4), and using Lemmas 7.2, 3.4 and 3.5.