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Abstract

Purpose: Systematic review and network meta-analysis to investigate the efficacy of noninvasive respiratory strate-
gies, including noninvasive positive pressure ventilation (NIPPV) and high-flow nasal cannula (HFNC), in reducing
extubation failure among critically ill adults.

Methods: We searched databases from inception through October 2021 for randomized controlled trials (RCTs)
evaluating noninvasive respiratory support therapies (NIPPV, HFNC, conventional oxygen therapy, or a combination
of these) following extubation in critically ill adults. Two reviewers performed screening, full text review, and extrac-
tion independently. The primary outcome of interest was reintubation. We used GRADE to rate the certainty of our
findings.

Results: We included 36 RCTs (6806 patients). Compared to conventional oxygen therapy, NIPPV (OR 0.65 [95% Cl
0.52-0.82]) and HFNC (OR 0.63 [95% Cl 0.45-0.87]) reduced reintubation (both moderate certainty). Sensitivity analy-

ses showed that the magnitude of the effect was highest in patients with increased baseline risk of reintubation. As
compared to HFNC, no difference in incidence of reintubation was seen with NIPPV (OR 1.04 [95% Cl 0.78-1.38], low
certainty). Compared to conventional oxygen therapy, neither NIPPV (OR 0.8 [95% CI 0.61-1.04], moderate certainty) or
HFNC (OR 0.9 [95% Cl 0.66-1.24], low certainty) reduced short-term mortality. Consistent findings were demonstrated
across multiple subgroups, including high- and low-risk patients. These results were replicated when evaluating noninva-
sive strategies for prevention (prophylaxis), but not in rescue (application only after evidence of deterioration) situations.
Conclusions: Our findings suggest that both NIPPV and HFNC reduced reintubation in critically ill adults, compared
to conventional oxygen therapy. NIPPV did not reduce incidence of reintubation when compared to HFNC. These
findings support the preventative application of noninvasive respiratory support strategies to mitigate extubation
failure in critically ill adults, but not in rescue conditions.
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Introduction

Invasive mechanical ventilation is a widely used life-
saving therapy for many critically ill patients [1, 2], but
is also associated with important complications, includ-
ing ventilator-induced lung injury, nosocomial infec-
tions [e.g., ventilator-associated pneumonia (VAP)],
neuromuscular weakness, and delirium [3-5]. Further-
more, invasive mechanical ventilation requires substan-
tial resource utilization, and is one of the most costly
therapies provided in the intensive care unit (ICU) [6].
For all these reasons, providers seek timely and safe lib-
eration of patients from mechanical ventilation [7].

Extubation failure is associated with important harms
[8], including increased mortality [9, 10], and occurs in
approximately 10-15% of extubated patients. Incidence
is even higher (25-40%) in certain patient populations
(e.g., patients with heart failure or chronic obstructive
pulmonary disease) [7, 11]. To mitigate the risk of extu-
bation failure, clinicians have used noninvasive respira-
tory support interventions in the post-extubation period
to optimize gas exchange and decrease patients’ oxygen
cost of breathing [12]. These interventions [noninvasive
positive pressure ventilation (NIPPV) and high-flow nasal
cannula (HFNC)] have been shown to be efficacious in
preventing initial intubation in patients with hypoxemic
respiratory failure [13], but their efficacy in preventing
post-extubation respiratory failure and reintubation is
less clear. These support strategies may also be associ-
ated with increased patient discomfort and healthcare
resource utilization [14]. Further to this, survey studies
have demonstrated provider skepticism regarding the
efficacy of these interventions [15]. As such, there is sub-
stantial practice variation worldwide in the application of
such strategies, with overall limited use [16, 17].

We conducted a systematic review and network meta-
analysis of randomized controlled trials (RCTs) to evalu-
ate the relative efficacy of conventional oxygen therapy,
NIPPV, HENC, and the strategy of alternating NIPPV
and HENC during the post-extubation period in reducing
extubation failure and short-term mortality among criti-
cally ill adults. We hypothesized that NIPPV, HENC, and
alternating NIPPV and HENC would reduce extubation
failure, as compared to conventional oxygen therapy.

Methods

We followed the Preferred Reporting Items for System-
atic Review and Meta-Analysis (PRISMA) statement
extension for network meta-analysis [18, 19], and reg-
istered our protocol with the Open Science Framework
(https://www.osf.Io/49xgd).

In this network meta-analysis of 36 randomized trials and 6806
patients, we found that both NIPPV and HFNC reduced reintuba-
tion in the post-extubation period, compared to conventional oxy-
gen therapy. Magnitude of benefit was increased among patients at
highest risk of reintubation. The results supported the preventative
or prophylactic application of noninvasive ventilation, but not use
of these interventions for rescue.

Data sources and search strategy

We searched six databases (Medline, PubMed, EMBASE,
Scopus, Web of Science, and the Cochrane Database of
Systematic Reviews) from inception to October 11, 2021.
An experienced health sciences librarian helped develop
the search strategy (Supplemental Fig. 1). We conducted
further surveillance searches using the ‘related articles’
feature [20], and performed a grey literature search,
including screening the reference lists of all included
studies, and subsequent guidelines on non-invasive
ventilation.

Study selection

Two reviewers (SMF and AT) independently screened
titles and abstracts identified through the searches using
Covidence (Melbourne, Australia), and then indepen-
dently assessed full texts of the selected articles from
phase one. Reviewers resolved disagreements by dis-
cussion. We included English-language RCTs (parallel,
cluster, or cross-over) meeting the following criteria: (1)
enrolled adult patients (> 16 years of age); (2) conducted
primarily (>70% of patients) in an ICU setting; (3) rand-
omized patients to receive NIPPV, HFNC, conventional
oxygen therapy, or a combination of the above; (4) con-
ducted in the post-extubation period, and evaluated these
treatments for prevention (i.e. prophylactic application
immediately post-extubation) or rescue (i.e. application
only in patients developing symptoms and signs of res-
piratory failure post-extubation); and (5) reported at least
one of the outcomes of interest. We excluded trials that:
(1) were conducted in the emergency department, oper-
ating room, or post-anesthetic care unit; (2) evaluated the
effect of these interventions on “weaning” (e.g. passing
a spontaneous breathing trial) but did not provide data
on extubation failure; (3) exclusively evaluated patients
with self-extubation; (4) evaluated these interventions
for transitioning to palliative care; and (5) randomized
patients to liberation or post-extubation protocols, rather
than treatments [21].

The primary outcome of interest was extubation fail-
ure, defined as reintubation using an endotracheal tube
and recurrent invasive mechanical ventilation. In the
absence of a widely accepted time-based definition of



“extubation failure” [11], we included trials that evaluated
this outcome at any point during the index ICU admis-
sion. Other important outcomes included short-term
mortality (28-day, 30-day, or in-hospital), incidence of
VAD, patient discomfort (described as a binary outcome
in the included trials), incidence of tracheostomy, time
to re-intubation, ICU length of stay, and total hospital
length of stay. For studies reporting length of stay as a
median (with interquartile range), this was converted to a
mean (with standard deviation), using appropriate meth-
ods [22].

Data extraction

One investigator (SMF) used a pre-designed data extrac-
tion form to collect the following variables: author infor-
mation, publication year, eligibility criteria, and number
of patients (Supplemental Table 1). Two investigators
(SMF and AT) independently collected data related to
descriptions of interventions and outcomes. Disagree-
ments were resolved through discussion.

Risk of bias assessment

Two reviewers (SMF and AT) independently assessed
the risk of bias of the studies, using a modified Cochrane
Collaboration tool [23], that included sequence genera-
tion, allocation sequence concealment, blinding, missing
outcome data, and other biases. Reviewers resolved disa-
greement through discussion.

Data synthesis and analysis

For each outcome and each pair of interventions, we
calculated odds ratios (OR) and corresponding 95%
confidence intervals (Cls). Initially, we performed con-
ventional pairwise meta-analysis using a DerSimonian
and Laird random-effects model for all comparisons with
two RCTs or more [24]. We assessed heterogeneity for
each direct comparison using visual inspection of forest
plots, the I statistic and the Chi-squared test. We evalu-
ated the feasibility of conducting network meta-analysis
by evaluating the: (1) availability of evidence (e.g. num-
ber of trials, number of interventions); (2) homogeneity
of study designs, patients, and characteristics of interven-
tions across the body of evidence (transitivity assump-
tion); (3) structural properties of the network of evidence
(e.g. connectivity); and (4) coherence in network (using
the ‘design-by-treatment’ model), and in each closed loop
of the network.

We performed frequentist random-effects network
meta-analysis using multivariate meta-analysis assum-
ing a common heterogeneity parameter [25, 26]. We
confirmed the coherence assumption in the entire net-
work using ‘design-by-treatment’ model (global test), as
described by Higgins et al. [27]. We also used the side

splitting method to assess the presence of incoherence
between direct and indirect estimates of the effect [28,
29]. For each outcome, we estimated ranking probabili-
ties, the Surface Under the Cumulative RAnking Curve
(SUCRA), and generated mean treatment rankings. For
all direct comparisons, we assessed the small-study effect
using Harbord’s test for binary outcomes and Egger’s test
for continuous outcomes when 10 or more RCTs were
available [30]. We conducted all analyses using STATA
16 (StataCorp, College Station, TX, USA).

Subgroups and sensitivity analyses
While most trials included mixed populations of criti-
cally ill patients, we expected that some trials had exclu-
sively recruited particular patient populations. To explore
these between-trial comparisons, we performed network
meta-regression among pre-specified subgroups (mixed
ICU patients, surgical patients, patients at “high risk” for
extubation failure, patients with hypercapnic respiratory
failure, and study continent) to assess for effect modifica-
tion by subgroup. For any subgroup effect that was found
to be statistically significant, we used the Instrument to
assess the Credibility of Effect Modification Analyses
(ICEMAN) to evaluate credibility [31]. Finally, to fur-
ther assess these therapies across various conditions, we
performed network meta-regression to adjust for base-
line risk of reintubation among the included trials. The
baseline risk for reintubation was generated using the
incidence of reintubation among patients receiving con-
ventional oxygen therapy in the included trials. Addition-
ally, we performed a sensitivity analysis using a possible
range of baseline risks for reintubation (range from 5 to
40%, supported by evidence and confirmed by our clinical
experts) to estimate absolute risk reductions and number
need to treat (NNT) for the outcome of reintubation.
Trials may also differ in timing of patient recruitment
and application of noninvasive ventilation. Although
we expected that most trials would test the efficacy of
prophylactic or preventative noninvasive ventilation in
the immediate post-extubation period, some trials may
exclusively recruit patients with evidence of clinical dete-
rioration prior to rescue application of noninvasive ven-
tilation. Consequently, we performed sensitivity analyses
only including trials evaluating the efficacy of noninva-
sive ventilation for prevention of reintubation follow-
ing extubation. We additionally performed conventional
meta-analysis among the trials that used noninvasive
ventilation for rescue in patients with evidence of respira-
tory distress prior to application.



Assessment of certainty of evidence

We used the Grading of Recommendations, Assess-
ment, Development, and Evaluation (GRADE) approach
to assess the certainty of evidence for each comparison
[32]. The certainty assessment addresses the domains
of risk of bias, imprecision, inconsistency, indirectness,
intransitivity, publication bias, and incoherence [32].
Imprecision for each comparison was assessed at the net-
work level, and not at the level of the direct or indirect
estimate. Given our presumption that blinding clinicians
to noninvasive treatments would not be possible in the
included trials, and that a lack of blinding might lead to
potential differences in adjunctive therapies (e.g., suc-
tioning, positioning) that might affect the outcome, we
decided to rate down our GRADE certainty for subjective
outcomes (e.g., extubation failure), but not objective out-
comes (e.g., mortality). We applied a minimally contextu-
alized approach to evaluate certainty in effect estimates
and draw conclusions from network meta-analyses [33].

Results

Search results, study characteristics, and risk-of-bias

Of 6899 citations (Supplemental Fig. 2) identified in the
search, we screened 6605 following removal of dupli-
cates, and 58 underwent full-text review. We included
36 RCTs [34-69], examining 6806 patients (all ICU
patients). Characteristics of the included trials are shown
in Table 1, and detailed characteristics are shown in Sup-
plemental Table 2. Of these, 29 studies (2129 patients,
31.3% of patients) investigated conventional oxygenation
therapy (delivered via nasal prongs or facemask) [34—
43, 45-47, 49-58, 60, 62, 63, 67-69], 24 studies (2149
patients, 31.3%) investigated NIPPV (using facemask
interface) [34, 38, 40, 41, 43, 44, 4651, 54-56, 59-61, 63,
64, 66-69], 18 studies (2189 patients, 32.2%) investigated
HENC [35-37, 39, 42, 44, 45, 48, 52, 53, 57-59, 61, 62,
64-66], and 1 study (339 patients, 5.0%) evaluated the
combination of alternating NIPPV and HENC [65]. Risk-
of-bias assessments are shown in Supplemental Table 3.
While the majority of trials were considered low risk-of-
bias in most domains, all trials were considered to have
probable high risk-of-bias with regard to blinding, given
the practical inability to blind treating providers to non-
invasive respiratory strategies.

Reintubation

The network plot for reintubation is displayed in Fig. 1,
and the summary of findings, including network esti-
mates, is shown in Table 2. We found that, compared to
conventional oxygen therapy, both NIPPV (OR 0.65 [95%
CI 0.52-0.82]; absolute risk difference — 5.18 [95% CI

Table 1 Characteristics of the 36 randomized clinical trials

Overall (36 studies,
n=6806)

Number Number
of studies of patients
(%) (%)

Continent of study

Europe 14 (38.9) 4062 (59.7)
Asia 14 (38.9) 1596 (23.4)
North America 3(8.3) 163 (2.4)
Australia 2(5.6) 495 (7.3)
Multicontinental 3(8.3) 490 (7.3)
Year of publication
1995-1999 1(28) 93 (1.4)
2000-2004 2(5.6) 302 (4.4)
2005-2009 4(11.1) 415 (6.1)
2010-2014 8(22.2) 1317 (194)
2015-2021 21 (58.3) 4679 (68.7)
Sites
Single center 19 (52.8) 1941 (28.5)
Multicenter 17 (47.2) 4865 (71.5)
Intensive care unit population
Medical/mixed 14 (38.9) 2273 (334)
Surgical 10(27.8) 2259 (33.2)
High-risk patients 7(19.4) 1859 (27.3)
Hypercapnic respiratory failure 5(13.9) 415 (6.1)
Interventions studied
Conventional oxygen therapy 29 (80.6) 2129 (31.3)
Noninvasive positive pressure ventilation 24 (66.7) 2149 (31.6)
High-flow nasal cannula 18 (50) 2189 (32.2)
Combined noninvasive positive pressure 1 (2.8) 339 (5)
ventilation and high-flow nasal cannula
Indication for noninvasive ventilation
Prevention/prophylaxis 31 (86.1) 6092 (89.5)
Rescue 5(13.9) 714 (10.5)

— 8.09 to — 2.26]) and HFNC (OR 0.63 [95% CI 0.45—
0.87]; absolute risk difference, — 3.84 [95% CI — 6.7 to
— 0.98]) reduced the incidence of reintubation (mod-
erate certainty). NIPPV had no effect on reintubation
compared to HFNC (OR 1.04 [95% CI 0.78-1.38]; abso-
lute risk difference — 1.34 [95% CI — 4.40 to 1.72], low
certainty). The combination of alternating HFNC and
NIPPV did not decrease the incidence of reintubation, as
compared to NIPPV alone (OR 0.58 [95% CI 0.3-1.11];
absolute risk difference — 5.07 [95% CI — 13.38 to 3.24]),
or HFNC alone (OR 0.6 [95% CI 0.33—1.08]; absolute risk
difference — 6.41 [95% CI — 14.13 to 1.31]), based on low
certainty evidence. Direct estimates, indirect estimates,
and SUCRA table are shown in Supplemental Table 4.



A Re-intubation B Mortality
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Fig. 1 Network plots for A reintubation; and B short-term mortality. The size of the node corresponds to the number of patients randomized to
that intervention. The thickness of the line and the associated numbers correspond to the number of studies comparing the two linked interven-
tions. HFNC high-flow nasal cannula, N/PPV noninvasive positive pressure ventilation

Table 2 Network and absolute estimates evaluating the efficacy of the interventions for prevention of reintubation
in critically ill adults

Network odds Absolute risk difference (95% Cl) Number needed to treat GRADE

ratio (95% Cl)
NIPPV vs conventional oxygen 0.65 (0.52-0.82) — 5.18 (= 809 to — 2.26) 20 (13 to 45) Moderate®
HFNC vs conventional oxygen 0.63 (0.45-0.87) — 384 (— 6.7 to — 0.98) 26 (15to0 102) Moderate?
NIPPV vs HENC 1.04 (0.78-1.38) —134(—441t01.72) N/A Low?P
HFENC + NIPPV vs conventional oxygen 0.38 (0.19-0.74) — 10.25 (— 1849 to — 2.01) 10 (6 to 50) Moderate®
HFNC+ NIPPV vs NIPPV 0.58 (0.3-1.11) — 507 (—13.38t03.24) N/A Low?P
HFENC + NIPPV vs HENC 0.6 (0.33-1.08) — 641 (= 14.13t0 1.31) N/A Low??

NIPPV noninvasive positive pressure ventilation, HFNC high-flow nasal cannula, GRADE grading of recommendations assessment, development, and evaluation, OR
odds ratio, C/ confidence interval

2 Lowered for risk of bias

b Lowered one level for imprecision as Cls don’t exclude harm

Mortality Ventilator-associated pneumonia, discomfort, and other
The efficacy of these treatments in preventing short- outcomes

term all-cause mortality is depicted in the network plot =~ Compared to conventional oxygen therapy, both NIPPV
(Fig. 2b), with summary findings displayed in Table 3. (OR 0.39 [95% CI 0.25-0.61]) and HENC (OR 0.35 [95%
Compared to conventional oxygen therapy, neither CI0.21-0.59]) were associated with a reduced incidence of
NIPPV (OR 0.8 [95% CI 0.61-1.04]; absolute risk differ- VAP (moderate certainty) (Supplemental Table 5). As docu-
ence — 1.65 [95% CI — 3.81 to 0.5], moderate certainty), mented by clinician ratings or patient-reported experience,
nor HFNC (OR 0.9 [95% CI 0.66—1.24]; absolute risk dif- =~ NIPPV was associated with increased patient discomfort
ference — 0.29 [95% CI — 1.58 to 1.01]), were associated ~ (OR 30.89 [95% CI 1.48-645.7], low certainty), compared
with reduced short-term mortality, based on low cer- to conventional oxygen therapy (Supplemental Table 6).
tainty evidence. NIPPV did not reduce mortality com-  Finally, comparison between the treatments and outcomes
pared to HENC (OR 0.89 [95% CI 0.69-1.13]; absolute  including ICU length of stay (Supplemental Table 7) and
risk difference — 1.37 [95% CI — 3.47 to 0.72], moder- incidence of tracheostomy (Supplemental Fig. 3) were
ate certainty). Direct estimates, indirect estimates, and  uncertain, due to very low certainty of evidence.

SUCRA table are shown in Supplemental Table 4.



Table 3 Network estimates evaluating the efficacy of the interventions for prevention of short-term all-cause mortality

in critically ill adults

[Comparison Network odds ratio (95% CI) Absolute risk difference (95% Cl) GRADE
NIPPV vs conventional oxygen 0.8 (0.61-1.04) —165(=3.81t00.5) Moderate®
HFNC vs conventional oxygen 0.9 (0.66-1.24) —029(—158t01.01) Low?
NIPPV vs HENC 0.89 (0.69-1.13) —137(=347t00.72) Moderate®
HFNC + NIPPV vs conventional oxygen 0.95 (0.56-1.62) 041 (—5361t06.18) Low?
HFNC + NIPPV vs NIPPV 1.19(0.73-1.95) 2.07 (— 39310 807) Low?®
HENC + NIPPV vs HENC 1.05 (0.69-1.62) 0.7 (— 49310 6.33) Low?

NIPPV noninvasive positive pressure ventilation, HFNC high-flow nasal cannula, GRADE grading of recommendations assessment, development, and evaluation, OR

odds ratio, Cl confidence interval
Imprecision only incorporated at network level not at direct or indirect
2 Lowered two levels for imprecision as wide Cls don't exclude important harm

° Lowered one level for imprecision as Cls don’t exclude harm

Subgroup and sensitivity analyses
The results of network meta-regression among the sub-
groups of interest (proportion of surgical patients, pro-
portion of “high risk” patients, proportion of hypercapnic
patients, and by continent) for the outcomes of reintuba-
tion and short-term mortality are shown in Supplemental
Tables 8—9. We did not find evidence of an effect modi-
fication among subgroups of patient populations, but
did find evidence for statistically significant effect modi-
fication by continent of study publication, with trials
conducted in Europe demonstrating greater efficacy of
NIPPV and HENC, as compared to conventional oxygen
therapy. However, the credibility of this subgroup find-
ing was judged to be low. Table 4 shows that compared
to conventional oxygen, the predicted absolute effect
of NIPPV, HENC, and alternating HFNC and NIPPV
for prevention of reintubation are highest in patients at
increased baseline risk of reintubation.

The sensitivity analyses that only included studies test-
ing the efficacy of noninvasive respiratory support for
prevention or prophylaxis are shown in Supplemental

Tables 10—12, and are consistent with the primary anal-
yses. Conversely, pairwise meta-analyses did not dem-
onstrate benefit of noninvasive ventilation in reducing
reintubation or death when provided as rescue therapy
(Supplemental Figs. 4-5).

Discussion

Extubation failure is a critical outcome that is prognos-
tically important (i.e., associated with mortality) and is
patient-important [9, 10]. Therefore, treatments that
may mitigate the risk of reintubation are of value to a
variety of stakeholders [70]. Although noninvasive res-
piratory support in the post-extubation period has been
studied, there is variation in its use in this setting [71],
and providers have expressed skepticism in its efficacy
[15]. In this context, we found evidence suggesting that
both NIPPV and HENC reduced reintubation in the
post-extubation period compared to conventional oxy-
gen therapy, with increased effect size in patients with
the highest baseline risk for reintubation. These effects
were present when noninvasive respiratory support

Table 4 Predicted absolute network estimates (with 95% confidence intervals) for efficacy of the interventions for pre-
vention of reintubation in critically ill adults, using baseline risk for reintubation

NIPPV (compared to conventional

HFNC (compared to conventional

HFNC + NIPPV (compared to conven-

oxygen) oxygen) tional oxygen)
Absolute estimate® NNT Absolute estimate NNT Absolute estimate
5% risk of reintubation  —1.69(—24to—081) 60(42to124) —184(—274t0—057) 55(37t0176) —3.09(—406to—1.11) 33(25t091)
10% risk of reintubation — 3.26 (—4.64to — 1.56) 31 (22t065) —356(—534t0—1.09) 29(19t092) —6.05(—804t0—212) 17(121t048)
20% risk of reintubation — 6.02 (—869to —2.82) 17(12t036) — 6.58(— 10.09 to 16 (10to51)  — 1153 (= 15.69t0 9 (7 to 26)
—1.97) — 3.86)
40% risk of reintubation — 9.77 (— 14.63 to 11 (7 to 23) —10.73 (= 1732t03.03) N/A — 2021 (—29.29to 5(@to17)
— 4.38) — 6.08)

HFNC high-flow nasal cannula, NIPPV noninvasive positive pressure ventilation, NNT number needed to treat

@ Absolute estimates refer to the risk difference between the interventions (NIPPV, HFNC, and HFNC + NIPPV) and conventional oxygen therapy



was used prophylactically following extubation, but not
when it was applied for rescue in patients who were
deteriorating post-extubation. Finally, no difference
between NIPPV and HENC was detected in prevention
of reintubation. These data have important implications
for providers, patients, and clinical practice guidelines.

The most recent iteration of the European Respiratory
Society and American Thoracic Society clinical practice
guidelines on the use of NIPPV, published in 2017, pro-
vided a conditional recommendation (low certainty) for
its use in high-risk patients post-extubation, and a condi-
tional recommendation (low certainty) against the use of
NIPPV in low-risk patients post-extubation [72]. These
recommendations were based on evidence existing at the
time of guideline development, which showed benefit of
NIPPV only in selected populations. Use of post-extuba-
tion HENC was addressed in the more recent European
Society of Intensive Care Medicine guideline, which pro-
vided a conditional recommendation (low certainty) for
its use in high-risk patients who had received invasive
ventilation for more than 24 h [73].

Our work has important implications in this regard.
Here, we found evidence suggesting that both NIPPV and
HENC reduced the incidence of extubation failure in het-
erogeneous cohorts of ICU patients, without effect modi-
fication in higher risk patients, as demonstrated in our
subgroup analyses. This reduction in reintubation likely
contributed to the lower incidence of VAP among patients
receiving noninvasive ventilation. Previous work com-
paring the use NIPPV during weaning against invasive
ventilation has demonstrated its superiority in reducing
mortality, while preventing weaning failure and reduc-
ing ICU length of stay [74]. Our review builds upon this
existing work, and shows that NIPPV is likely superior
to conventional oxygen therapy in reducing reintubation
in the post-extubation period. Compared to the existing
guideline recommendations, our results are aligned with
and reinforced by more recent randomized data, support-
ing more widespread use of noninvasive ventilation in the
post-extubation period. In light of these new trials and
findings, updated guidelines are warranted.

Further to this, our review evaluated heterogeneity of
treatment effect, which has implications for the appli-
cation of our findings. Of note, the effect size of these
interventions was greatest for patients at highest base-
line risk of reintubation. For example, as compared to
conventional oxygen, NIPPV had a NNT for prevention
of reintubation of 60 among patients with a 5% baseline
risk of reintubation, but a NNT of 11 in patients with a
40% baseline risk. This is important in evaluating the use
of these therapies relative to their resource use and indi-
vidual costs. That is, routine use of noninvasive ventila-
tion may be considered in high-risk patient populations,

but the purported benefits may not outweigh associated
resource use and costs in low-risk populations.

We performed further sensitivity analyses compar-
ing the use of noninvasive respiratory support therapies
for prevention/prophylaxis, or rescue of symptomatic
patients. Our findings were replicated among trials eval-
uating use of noninvasive ventilation for prevention or
prophylaxis, supporting the efficacy of these therapies
in this context. However, we did not find similar effi-
cacy of noninvasive ventilation in the rescue of sympto-
matic patients post-extubation. We found only one ICU
trial demonstrating benefit of NIPPV in the rescue set-
ting [46], and this trial was conducted in post-operative
patients where post-extubation hypoxemia is most likely
secondary to atelectasis, and where NIPPV has been
shown to have some evidence of benefit in ward patients
[75, 76]. In mixed ICU populations, rescue use of NIPPV
post-extubation was not beneficial, and indeed may be
associated with harm [38]. Together, our work impor-
tantly differentiates between these two clinical indica-
tions, and identifies disparate conclusions favouring use
in prophylactic application, but not rescue.

Our findings were less conclusive when examining
the differences in effect between NIPPV and HFNC.
Although HENC does have some theoretical benefits
compared to NIPPV (e.g., improved patient comfort, and
fewer hemodynamic consequences), we found no dif-
ference in terms of reintubation or mortality for NIPPV
compared to HFNC. HFNC generally consumes fewer
healthcare resources and is more suitable for use outside
the ICU setting, while NIPPV is typically applied in an
ICU or step-down unit [52]. Whether NIPPV is superior
to HENC in this context remains unclear, underscoring
the need for further trials. Finally, we evaluated the alter-
nating combination of HENC and NIPPV, and found that
it did not reduce the incidence of reintubation, compared
to either alone (low certainty evidence). For now, the use
of this combination could be considered efficacious in
patients at high risk of extubation failure (as shown in the
HIGH-WEAN trial [65]), and if tolerated, could be con-
sidered over either NIPPV or HFENC alone.

This review has several strengths, including a broad
search, and a pre-registered protocol. We included 36
RCTs with over 6800 patients. We conducted rigor-
ous subgroup and sensitivity analyses to test the robust-
ness of our findings across populations and indications,
and applied GRADE to rate the certainty of estimates.
There are also important limitations. First, all included
trials were judged to be at potentially high risk-of-bias
for blinding, as blinding of treating clinicians to treat-
ment allocation among noninvasive respiratory sup-
port interventions is difficult. However, we accounted



for this through GRADE ratings, downrating confidence
for subjective outcomes (e.g., reintubation). The results
of network meta-analyses may potentially be influenced
by indirect evidence, which may have issues related to
transitivity. However, in this review, we did not find
issues with intransitivity, and the network estimates were
largely driven by direct data, with coherent indirect data.
Second, the included trials enrolled heterogeneous sub-
groups, as well as combined studies evaluating various
indications for noninvasive ventilation (prevention vs.
rescue). However, we mitigated concerns related to this
through important subgroup and sensitivity analyses,
which indicate the scenarios where noninvasive respira-
tory support may be of greatest benefit. Unfortunately,
there were some sources of heterogeneity (such as defini-
tion of “extubation failure’, definition of “VAP’, or propor-
tion of patients with obesity) that could not be accounted
for by secondary analyses, and must be taken into consid-
eration. Third, we included only English-language RCTs.
Finally, trials did not report costs such as consumables,
clinician time, and other aspects of resource utilization,
which may influence practice or policy decisions.

Conclusion

Our results suggest that both NIPPV and HFNC are effi-
cacious in reducing the incidence of reintubation, com-
pared to conventional oxygen therapy. The magnitude
of treatment effect of these interventions is highest in
patients at increased baseline risk of reintubation. Finally,
these therapies appear efficacious in prophylactic appli-
cation, but not for rescue in symptomatic patients follow-
ing extubation. Taken together, our study has important
implications for clinicians caring for mechanically venti-
lated adults, and should prompt re-evaluation of guide-
lines for the use of noninvasive respiratory support for
the treatment of critically ill patients post-extubation.
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