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Abstract: Cryogenic Electron Tomography (cryo-ET) allows structural and dynamics studies of 

macromolecules in situ. Averaging different copies of imaged macromolecules is commonly used to 

obtain their structure at higher resolution and discrete classification to analyze their dynamics. 

Instrumental and data processing developments are progressively equipping cryo-ET studies with the 

ability to escape the trap of classification into a complete continuous conformational variability analysis. 

In this work, we propose TomoFlow, a method for analyzing macromolecular continuous conformational 

variability in cryo-ET subtomograms based on a three-dimensional dense optical flow (OF) approach. The 

resultant lower-dimensional conformational space allows generating movies of macromolecular motion 

and obtaining subtomogram averages by grouping conformationally similar subtomograms. The 

animations and the subtomogram group averages reveal accurate trajectories of macromolecular 

motion based on a novel mathematical model that makes use of OF properties.  This paper describes 

TomoFlow with tests on simulated datasets generated using different techniques, namely Normal Mode 

Analysis and Molecular Dynamics Simulation. It also shows an application of TomoFlow on a dataset of 

nucleosomes in situ, which provided promising results coherent with previous findings using the same 

dataset but without imposing any prior knowledge on the analysis of the conformational variability.  The 

method is discussed with its potential uses and limitations. 

 

Keywords: Cryogenic electron tomography (cryo-ET), continuous conformational variability analysis, 

optical flow, nucleosomes in situ. 
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 1. Introduction 

Cryogenic electron tomography (cryo-ET) is an evolving structural biology technique that allows 

three-dimensional (3D) visualization and modeling of macromolecules in vitro and in situ. It allows 

obtaining volumetric scenes (so-called tomograms) of both thin layers of vitreous ice accommodating 

purified macromolecules and vitrified cell sections containing macromolecules in their native cellular 

environment. Cellular tomography is performed via several steps, including specimen vitrification [1, 2], 

obtaining thin sections or lamellae from the vitrified specimen [3, 4], projecting the thin sections from 

different tilting angles using a cryogenic electron microscope to get a set of 2D images (so-called tilt 

series), and reconstructing a tomogram from the tilt series [5]. 

Obtaining 3D models of macromolecules is essential for understanding their working mechanisms. 

However, macromolecules continuously change their shapes (conformations), which implies that one 

should ideally find the ensemble of 3D models describing the continuous conformational variability 

(conformational landscape) of the macromolecule under study in order to achieve a good understanding 

of its functions [6-9]. In the last decade, there has been a growing interest in methods development for 

continuous conformational variability analysis by cryogenic electron microscopy (cryo-EM) of purified 

complexes, better known as single particle analysis [6-16], and only recently by cryo-ET [17, 18]. 

Cryo-ET data suffers from several challenges in processing and interpretation, including but not 

limited to i) low signal-to-noise ratio (SNR) due to the low electron dose that is used to obtain tilt series 

in order to keep minimum radiation damage of the fragile biological specimens and ii) the so-called 

missing-wedge (MW) artifacts due to the limitation in the tilting range, commonly [-60° to 60°]. MW 

artifacts are data anisotropies in real space that are due to the corresponding empty wedge-shaped 

regions in Fourier space. 

A typical tomogram can contain hundreds of copies of a particular macromolecule at different 

locations, orientations, and conformations. These copies are identified and isolated in independent sub-

volumes commonly referred to as subtomograms [19]. Ideally, identifying and analyzing subtomograms 

can lead to deciphering different conformations of the macromolecule. However, due to the data 

challenges, interpreting individual subtomograms is a difficult task. As a compromise, i) a 3D structural 

determination technique has emerged based on iterative rigid-body alignment and averaging of 
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subtomograms (StA) [20], and ii) conformational variability is usually addressed via classification into 

discrete classes of structures. 

Subtomogram classification methods can be divided into two families. The first family performs 

classification during StA, commonly via maximum-likelihood estimation and multi-reference alignment 

[21, 22]. The second family performs classification on an aligned dataset (posterior to StA) [23, 24], 

typically based on the data covariance matrix of pairwise constrained cross-correlations between the 

subtomograms. There are significant challenges that are witnessed when classifying a dataset exhibiting 

continuous variability, including but not limited to i) the higher the number of classes requested, the 

lower the number of particles in each class, ii) redundant or empty classes are commonly observed, iii) 

stability of classes is not guaranteed, and iv) different algorithms may yield different results. 

Nevertheless, obtaining the proper signal for analyzing individual macromolecules in cells is pursued 

for nearly five decades [25, 26]. In recent years, more attention was drawn towards MW correction and 

denoising that allow analyzing individual subtomograms [27, 28]. Only very recently, individual 

subtomogram analysis has been proposed for an exhaustive analysis of continuous conformational 

variability of macromolecules (HEMNMA-3D method [18]). To find the correct macromolecular 

conformation in a given individual subtomogram, HEMNMA-3D performs flexible fitting of a reference 

model (an atomic structure or a pseudoatomic structure from a density map such as a subtomogram 

average) into the subtomogram using normal modes (simulated directions of atomic or pseudoatomic 

motions). Simultaneously with searching for the correct macromolecular conformation, it searches for 

its correct rigid-body alignment with the subtomogram. Then, it projects the conformational parameters 

obtained by flexible fitting (normal mode amplitudes) for the given set of subtomograms onto a lower-

dimensional space (referred to as conformational space) via a dimensionality reduction technique (e.g., 

Principal Component Analysis (PCA) [29]). However, HEMNMA-3D is computationally expensive and, 

thus, it does not use the entire set of available normal modes but requires choosing a smaller subset of 

potentially most relevant modes. Although the guidelines on how to choose the subset of normal modes 

have been provided, this task remains difficult in general. Besides, as it uses normal modes for the 

subtomogram analysis, HEMNMA-3D relies on prior knowledge of possible motions of the 

macromolecule.  



Harastani et al. doi: https://doi.org/10.1016/j.jmb.2021.167381 

This is a provisional file, not the final typeset article   5 
 

In this work, we propose TomoFlow, a method for an exhaustive analysis of continuous 

conformational variability in a given cryo-ET dataset, which uses no prior knowledge of possible motions 

of the macromolecules and analyses individual subtomograms based on 3D dense OF. Optical flow (OF) 

is a computer vision algorithm that is used in a wide range of applications. The concept of OF was 

proposed in the 1940s, and throughout the years, it has undergone massive improvements in the 

accuracy and computational efficiency of the algorithm until our days [30]. Dense OF takes two images 

of a similar scene as input and finds a vector per pixel that relates the pixels of one image with the pixels 

of the other image. The directions and amplitudes of these vectors give rise to a motion field that can be 

used for rigid and elastic alignment between the images. Some of the recent OF algorithms are very loyal 

to the data and can work with low SNR. OF drew the attention of the cryo-EM community, and several 

OF-based methods for cryo-EM data processing were proposed, including movie refinement [31] and 

mapping images of different conformations to 3D classes from single particle analysis [32]. 

In the TomoFlow method, the OFs are calculated between a reference (e.g., subtomogram average) 

and each of the subtomograms after MW correction and rigid-body alignment. Then, the OFs are used 

to refine the rigid-body alignment considering the conformational variability iteratively. Afterward, the 

OFs are collectively analyzed by constructing their Gram matrix and applying a dimensionality reduction 

technique (e.g., PCA). The resultant lower-dimensional space (referred to as conformational space) 

allows selective grouping of conformationally similar subtomograms and computing subtomogram 

averages from these groups, and it allows generating movies of macromolecular motion by animating 

the reference traversing data distribution manifolds in the conformational space (dense regions in this 

space). The animations and subtomogram group averages can reveal accurate trajectories of the 

macromolecular motion based on a novel derived mathematical model that makes use of the Gram 

matrix and OF properties. 

 This paper describes TomoFlow with tests on simulated datasets generated using different 

techniques, namely Normal Mode Analysis (NMA) and Molecular Dynamics (MD) simulation. It also 

shows an application on a dataset for nucleosomes in situ. Nucleosomes, fundamental organizers of 

eukaryotic genome into chromatin, are recognized as a family of conformations due to their complex 

intrinsic dynamics, post translational modifications, incorporation of histone variants, and interaction 

with remodelers, transcription factors, etc. [33]. Interestingly, continuous conformational changes of 
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nucleosomes have been predicted [34, 35] as well as detected in vitro [36-38] and in situ [17, 18]. In 

particular, in situ cryo-ET recently enabled capturing nucleosomes directly in their functional 

environment [17, 18, 39], which opens new horizons to explore their continuous conformational space 

in relation to regulation of gene expression, DNA repair and replication. TomoFlow reveals a combination 

of breathing and gaping movements of nucleosomes, in good agreement with previous findings [17, 18]. 

Lastly, the TomoFlow method is discussed with its potential uses and limitations. 

 2. Methods 

This section presents the proposed method, TomoFlow, for macromolecular continuous 

conformational variability analysis in cryo-ET subtomograms using 3D dense OF. It first introduces the 

method’s general scheme and objectives and then walks the reader through its building blocks with the 

necessary mathematical derivations and theoretical background. 

TomoFlow (shown in Figure 1) analyzes the conformational variability in subtomograms after MW-

correction and rigid-body alignment. It performs OF-based matching of the subtomograms with an input 

reference (e.g., global subtomogram average) in the presence of a mask of the region of interest. Then, 

it collectively analyzes the resultant OFs between the input reference and each of the subtomograms by 

finding their Gram matrix and mapping it to a lower-dimensional space called the space of conformations 

(e.g., via PCA). In the conformational space, each point corresponds to a subtomogram, and close points 

correspond to subtomograms containing similar conformations. Accordingly, the conformational space 

is interactively processed by i) grouping close and dense regions and averaging the corresponding 

subtomograms to obtain subtomogram averages at different conformations (without classification), and 

ii) generating movie animations on the input reference while it fits curves in the conformational space 

following data distribution manifolds, i.e., animating the input reference to show the motion following 

the dense regions in the space. 
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Figure 1 Proposed pipeline for analyzing conformational variability in a set of subtomograms using 3D dense 
optical flows between a reference (here, subtomogram average) and each of the subtomograms. 

2.1. Employment of 3D dense OF for elastic and rigid-body matching of subtomograms  

This subsection introduces the working principles of 3D dense OF. It then explains how OF can be 

employed for 3D elastic and rigid-body matching, allowing subtomogram rigid-body alignment 

refinement and continuous conformational variability analysis.  

3D dense OF is an algorithm that aims at finding the voxel-to-voxel correspondence between two 

volumetric images. OF calculations depend on two principles; the first principle is the brightness 

consistency, which means that the gray-level values (i.e., the brightness) of the corresponding voxels in 

the two input volumes are similar. To find the relationship between the voxels of two volumes 𝐼𝐼 and 𝐻𝐻, 

we assume that for a voxel (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in 𝐻𝐻, a voxel in 𝐼𝐼 with similar brightness can be found at some 

distance (𝑢𝑢, 𝑣𝑣,𝑤𝑤) on 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axis respectively: 

𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≈ 𝐼𝐼(𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣, 𝑧𝑧 + 𝑤𝑤) (1) 

The second principle is that the distance (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is small and that a limited number of terms (e.g., 

one term) of a Taylor expansion of the right-hand term of equation (1) is enough to describe the motion: 

𝐼𝐼(𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣, 𝑧𝑧 + 𝑤𝑤) ≈ 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) + 
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Dense OF between 𝐼𝐼 and 𝐻𝐻 can be defined as the set of magnitudes (𝑢𝑢, 𝑣𝑣,𝑤𝑤) for all (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) between 

𝐼𝐼 and 𝐻𝐻 to satisfy (1-2). 

The two principles above established a practical computational background for OF over the years. 

Still, OF has suffered limitations in its functionality when the corresponding pixels (or voxels) in the two 

input images (or volumes) do not have the same brightness or are significantly distanced, which 

rendered OF sensitive to noise and only accounting for small displacements [30]. The 2D OF method of 

Farnebäck [40], which is a more recent approach, deals with these issues by combining two features. 

The first is enforcing local smoothness of the OF  (close pixels move in the same direction) by 

approximating a neighborhood of each pixel in each of two given images with a polynomial (the 

coefficients of the local polynomial are estimated from a weighted least squares fit to the signal values 

in the neighborhood) and by integrating information about the displacement field between the two 

images over a neighborhood of each pixel. The data approximation by local polynomials is similar to local 

data smoothing and the displacement field integration over a pixel neighborhood is similar to local OF 

smoothing. It should also be noted that this method is not based on calculating image gradients (in 

equation (2)), but it finds a solution of a set of linear algebraic equations (the displacement of a pixel is 

calculated by directly evaluating matrices expressed in terms of the polynomial coefficients over a 

neighborhood of the pixel) and this solution is generally unique except in the case when the 

neighborhood is exposed to the aperture problem [40]). The aperture problem refers to the fact that 

when a moving object is viewed through a limited-size aperture, the direction of motion of a local feature 

or a region of the object may be ambiguous. In general, this problem is relevant to rigid objects with 

straight-line edges or flat regions (e.g., for a moving rectangle, motion of an edge in the direction 

perpendicular to that edge can be determined unambiguously, but motion of the edge along itself and 

motion of the inner flat region of the rectangle cannot be determined unambiguously). This problem is 

less relevant to cryo-EM and cryo-ET of biological macromolecules, which are generally flexible with 

curved edges and without flat regions. The second important feature of the method of Farnebäck [40] is 

calculating OF iteratively and over multiple scales of the input images (image pyramids) [41, 42], which 

involves refining an OF estimation from a previous iteration or from a coarser image scale, i.e., 

propagating a refined OF from a coarser to a finer image scale and iterating on each image scale. The 
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two features mentioned above increase robustness to noise, brightness differences, and larger 

displacements, leading to improved accuracy of the OF calculation.  

An extension of the 2D OF method of Farnebäck [40] to deal with volumetric data (Farneback-3D) 

has been recently implemented (https://pypi.org/project/farneback3d) and this 3D OF calculation 

method was used in TomoFlow that is presented here. For more information on the iterative multiscale 

(pyramidal) approach for 3D OF calculation used in TomoFlow, the reader is referred to Supplementary 

Method Description 1 section of Supplementary Material.  

The concept of OF can be employed for 3D elastic and rigid-body matching, as explained hereafter. 

Let 𝑉𝑉 be a reference volume with a high SNR (e.g., a subtomogram average), and let 𝑟𝑟 be the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

coordinates of 𝑉𝑉. Moreover, let 𝑆𝑆 be an MW-corrected and rigid-body aligned subtomogram. Then, the 

following relationship between 𝑉𝑉 and 𝑆𝑆 is valid: 

𝑆𝑆 = 𝑉𝑉(𝑟𝑟 + 𝛿𝛿𝑂𝑂(𝑟𝑟) +  𝛿𝛿𝐶𝐶(𝑟𝑟) + 𝛿𝛿𝐴𝐴(𝑟𝑟)) + 𝑁𝑁 (3) 

Where 𝛿𝛿𝑂𝑂  represents the voxel-to-voxel relationship between 𝑉𝑉 and 𝑆𝑆 to have an ideal rigid-body 

alignment, i.e., it stands for the rigid-body alignment imperfections of 𝑆𝑆; 𝛿𝛿𝐶𝐶  represents the relationship 

between the voxels of 𝑉𝑉 and 𝑆𝑆 to have an ideal elastic matching, i.e., it stands for the conformational 

variability of the subtomograms with respect to the reference; 𝛿𝛿𝐴𝐴 represents the residual anisotropies 

of the subtomogram after MW and Contrast Transfer Function (CTF) correction; 𝑁𝑁 is the subtomogram 

background noise. 

3D dense OF between 𝑉𝑉 and 𝑆𝑆 can provide an estimate of the three voxel relationships combined, 

i.e., 𝛿𝛿𝑂𝑂  +  𝛿𝛿𝐶𝐶 + 𝛿𝛿𝐴𝐴, challenged by the noise 𝑁𝑁. Luckily, recent 3D dense OF implementations are loyal to 

the signal and can operate under very low SNR, especially when helped by a mask that eliminates the 

background. We can apply algorithms that can minimize the data anisotropies, i.e., 𝛿𝛿𝐴𝐴, mainly in terms 

of MW correction [27, 28] and 3D CTF correction [43, 44]. Hence, 3D dense OF between 𝑉𝑉 and 𝑆𝑆 in the 

aforementioned conditions is an estimate of their rigid-body and elastic relationships combined: 

𝑂𝑂𝑂𝑂(𝑉𝑉, 𝑆𝑆) ≈ 𝛿𝛿𝑂𝑂(𝑟𝑟) +  𝛿𝛿𝐶𝐶(𝑟𝑟) (4) 

When OF is calculated, it can be applied to the voxels of 𝑉𝑉 to estimate 𝑆𝑆; this operation is called 

warping, and the result Ŝ will be an estimate of 𝑆𝑆 with high SNR that we will refer to as a “matched” 

https://pypi.org/project/farneback3d
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subtomogram. An illustration of OF calculation and its usage in matching subtomograms is shown in 

Figure 2. 

 
Figure 2 Illustration of the employment of 3D dense OF for elastic and rigid-body matching of subtomograms: V is 
a volume with a high SNR (e.g., a subtomogram average). S is a volume with a low SNR and contains a similar 
object as V but at a different conformation and a slightly different orientation and position (e.g., a MW-corrected 
subtomogram that was rigid-body aligned but not perfectly). Ŝ is an estimation of S found by warping V using 3D 
OF, i.e., Ŝ is a matched version of S using V and the OF. 

2.2. MW correction and refining the rigid-body alignment 

In conventional StA and classification, a compensation for the MW is commonly performed using a 

scoring function that operates in the Fourier space region excluding the MW [45]. However, for analyzing 

individual cryo-ET subtomograms in real space, the MW artifacts should be corrected.  

In the previous subsection, we have shown that MW correction is needed to minimize the data 

anisotropies of an analyzed subtomogram, i.e., 𝛿𝛿𝐴𝐴  in equation (3). Also, we have shown that the 3D 

dense OF can match a subtomogram with a reference in terms of the rigid-body and elastic relationships 

combined, i.e., 𝛿𝛿𝑂𝑂(𝑟𝑟) +  𝛿𝛿𝐶𝐶(𝑟𝑟) in equation (4). Therefore, to analyze the conformational variability of 

subtomograms, it is essential to correct the MW and disentangle between OF’s rigid-body and elastic 

matching, which we will discuss in this subsection. 

 Several methods for MW correction were proposed in the literature [25, 26] and any of them could 

be used in conjunction with the proposed method. Here, we use a simple method to fill the MW of each 

subtomogram in Fourier space by the corresponding section from the aligned average, which was initially 

implemented in Eman2 [46]. We incorporate the MW correction in an iterative rigid-body refinement 

procedure based on OF subtomogram matching. The procedure is shown in Figure 3 has the following 

steps: 

3D op�cal-flow
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optical-�ow
calculation

V

S Ŝ
(V warped to match S)

Mask
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Step 1. Rigid-body alignment: this can be achieved using StA methods [24, 46-49] to obtain a table 

of rigid-body parameters (angles and shifts) that can align the subtomograms to a global subtomogram 

average. Here, we use reference-free rigid-body alignment using the StA protocol in [49]. 

Step 2. MW correction of subtomograms: this can be done using any MW correction algorithm (e.g., 

LoTToR [28]). Here, we fill the subtomogram MW region in Fourier space by the corresponding region of 

an aligned subtomogram average, as initially implemented in Eman2 [46].  

Step 3. Alignment of the MW-filled subtomograms with the average using the StA table: after filling 

the MW of the subtomograms, we apply the rigid-body alignment of the latest StA table and obtain MW-

corrected and aligned subtomograms. 

Step 4. Calculation of 3D OF between the subtomogram average and each MW-filled and aligned 

subtomogram: this should be done in the presence of a mask that determines the region of interest, 

which can be obtained by thresholding the subtomogram average and applying morphological 

operations such as dilating and closing. At this step, we also calculate warped versions of the 

subtomogram average using 3D OF calculated for each subtomogram. These warped versions of the 

subtomogram average are referred to as “matched subtomograms”. 

Step 5. Rigid-body alignment of “matched subtomograms” against the subtomogram average: this 

step disentangles the rigid-body and elastic matchings of OF by searching for rigid-body alignment of 

“matched subtomograms” against the subtomogram average. We perform this step using Fast 

Rotational Matching (FRM) [49]. 

Step 6. Updating the table of rigid-body alignment and calculating a new subtomogram average: this 

is done by combining the initial rigid-body alignment parameters (from the StA table) with the rigid-body 

refinement parameters obtained in the previous step, which is done by multiplying the corresponding 

rotational matrices and finding the rigid-body parameters for the resultant matrix [50].  

This process can be repeated (1-3 times is usually enough), restarting at Step 2, which results in 

subtomograms that are MW-corrected and whose rigid-body alignment is refined. 
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Figure 3 Pipeline for rigid-body alignment of subtomograms, MW correction, and refinement of the rigid-body 
alignment based on OF subtomograms matching. 

2.3. Analyzing the continuous conformational variability based on OF 

Assume that a set of subtomograms {𝑆𝑆𝑖𝑖} has undergone MW correction and rigid-body alignment 

and refinement, following the procedure presented in the previous subsection and Figure 3. Then let 𝑉𝑉 

be a reference for the target macromolecule contained in {𝑆𝑆𝑖𝑖}, e.g., the corresponding subtomogram 

average of {𝑆𝑆𝑖𝑖}. Concurrently, OF calculation in the presence of the mask of the region of interest, 

between 𝑉𝑉 and each subtomogram in {𝑆𝑆𝑖𝑖}, will mainly stand for the term 𝛿𝛿𝐶𝐶(𝑟𝑟) in equation (4) since 

𝛿𝛿𝑂𝑂(𝑟𝑟)  was minimized as a result of the rigid-body refinement. In other words, the OF after MW 
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correction and rigid-body alignment refinement represents the elastic matching relationship between 

the voxels of the 𝑉𝑉 and 𝑆𝑆𝑖𝑖. 

Now let set {𝑂𝑂𝑖𝑖} be the set of OFs between 𝑉𝑉 and {𝑆𝑆𝑖𝑖}: 

𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑂𝑂(𝑉𝑉, 𝑆𝑆𝑖𝑖) (5) 

Let 𝑆𝑆𝑖𝑖  ∈  𝑅𝑅𝑙𝑙∗𝑚𝑚∗𝑛𝑛, then 𝑂𝑂𝑖𝑖  ∈ 𝑅𝑅3∗𝑙𝑙∗𝑚𝑚∗𝑛𝑛 since OF gives a 3D vector for each voxel in 𝑉𝑉 to its matching 

voxel in 𝑆𝑆𝑖𝑖. We note here that cryo-ET subtomograms are usually cubic volumes, therefore 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛. 

The corresponding Gram matrix 𝐺𝐺 of {𝑂𝑂𝑖𝑖} can be defined as: 

𝐺𝐺𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝑖𝑖)𝑇𝑇 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣�𝑂𝑂𝑗𝑗� (6) 

Where 𝑣𝑣𝑣𝑣𝑣𝑣(. ) is the vectorization operation, i.e., it reshapes the matrix to a single column. 

Once the Gram Matrix is found, a dimensionality reduction technique can be applied (e.g., PCA) to 

obtain an essential conformational space.  

2.3.1. Interactively processing the conformational space by selective 3D averages and animating 

trajectories 

In the conformational space, each point assigns an OF, which in turn assigns a subtomogram. Close 

points represent subtomograms of similar conformations and vice versa. Dense regions in the 

conformational space can be grouped interactively, and the corresponding subtomograms can be 

averaged. Comparing the subtomogram averages from different groups can help understand the 

conformational changes of the complex in the given set of subtomograms. 

Data distribution paths (trajectories) can be interactively determined in the conformational space, 

by choosing a set of points {𝑃𝑃𝑖𝑖} across the data distribution. The motion of the macromolecule can be 

obtained by displacing the reference (e.g., the subtomogram average) along the trajectory determined 

by points {𝑃𝑃𝑖𝑖}, as explained below. 

Once a trajectory is determined in the conformational space (points {𝑃𝑃𝑖𝑖} are chosen), the inverse 

mapping should be applied (e.g., using inverse PCA) on {𝑃𝑃𝑖𝑖}, and the result will be a set of vectors {𝐺𝐺�𝑖𝑖} 

of the same length as the columns of the Gram matrix 𝐺𝐺  given in equation (6). To proceed on how 
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animations can be obtained, we need to rewrite equation (6) alternatively. Let 𝑂𝑂  be the matrix of 

vectorized OFs in its columns as follows: 

𝑂𝑂𝑖𝑖 =  𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝑖𝑖) (7) 

Then, 𝐺𝐺 can be written as: 

𝐺𝐺 =  𝑂𝑂𝑇𝑇 ∗ 𝑂𝑂 (8) 

Hence, any column of 𝐺𝐺 can be expressed as: 

𝐺𝐺𝑖𝑖 =  𝑂𝑂𝑇𝑇 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝑖𝑖) (9) 

We take advantage of the representation of 𝐺𝐺 in equation (9) to approximate a set of OFs {𝑂𝑂𝚤𝚤�} that 

correspond to {𝐺𝐺�𝑖𝑖} as follows: 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝚤𝚤�) ~ (𝑂𝑂𝑇𝑇)+ ∗ 𝐺𝐺�𝑖𝑖 (10) 

Where the (. )+ is the Moore-Penrose matrix pseudoinverse operation 

The retrieved set of {𝑣𝑣𝑣𝑣𝑣𝑣�𝑂𝑂𝚤𝚤��} can be reshaped to OFs: 

𝑂𝑂𝚤𝚤� = 𝑣𝑣𝑣𝑣𝑣𝑣3∗𝑙𝑙∗𝑚𝑚∗𝑛𝑛
−1 �𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝚤𝚤�)� (11) 

The set of retrieved OFs, i.e., {𝑂𝑂𝚤𝚤�}, can be used to warp the input reference, which will generate a set 

of Trajectory Volumes {𝑇𝑇𝑉𝑉𝚤𝚤� } that represent the set of trajectory points {𝑃𝑃𝑖𝑖}. Finally, displaying {𝑇𝑇𝑉𝑉𝚤𝚤� } 

shows a movie-like animation of the reference while traversing the selected trajectory. 

 3. Results 

This section first provides a step-by-step showcase and evaluation for the proposed method, 

TomoFlow, on simulated datasets. Then, it shows an application of TomoFlow on an experimentally 

obtained dataset for nucleosomes in situ. 

3.1. Tests on simulated datasets with continuous and discrete conformational variability 

The experiments presented in this section were carefully designed to demonstrate the ability of the 

method to retrieve continuous and discrete conformational variabilities under simulated microscope 
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conditions. These experiments are not claimed realistic in terms of their biological significance; rather, 

they are as realistic as possible in terms of the sophistication of simulating noise, MW artifacts, CTF, and 

radiation damage compared to other works [22, 23, 51]. For a quantitative assessment of the algorithm 

for mapping conformations while disentangling it from the subtomographic-approach limitations such 

as MW and rigid-body (angular and shift) variability, the reader is referred to Supplementary Experiment 

1 section of Supplementary Material. 

3.1.1.  Simulating datasets with discrete and continuous macromolecular conformational 

variability 

In order to test the proposed method, we synthesized two conformationally different datasets, each 

with different noise intensities.  

The first dataset simulates discrete conformational variability. It was created using Normal Mode 

Analysis (NMA) [52]. We will call this dataset the “NMA-dataset”. NMA is a method for molecular 

mechanics simulation with wide usage in flexible fitting and conformational variability analysis [6, 13, 

18, 53]. This dataset comprises 999 subtomograms at three simulated conformations of chain A of the 

atomic PDB:4AKE structure of adenylate kinase. More precisely, we synthesized 333 subtomograms for 

each of the three conformations simulated using normal modes 7 and 8 of chain A of the atomic 

PDB:4AKE structure (in this example, we have chosen to simulate the data using the first two non-rigid-

body normal modes of the atomic structure, considering that the first six modes correspond to rigid-

body movements and are commonly not used). We performed NMA using the ContinuousFlex plugin 

with default parameters [13]. The three conformations in this dataset correspond to the following 

normal mode amplitudes (mode 7, mode 8)  ∈  {(−100, 0), (100, 0), (0, 100)}.  The ground-truth 

conformational space for NMA-dataset is determined by the amplitudes along normal modes 7 and 8. A 

visual representation of this space and the conformations it contains is presented in Figure 4 (A). 

The second dataset simulates continuous conformational variability. It was created using Molecular 

Dynamics (MD) [54]. We will call this dataset the “MD-dataset”. MD is a simulation approach for 

exploring conformational dynamics by generating trajectories describing a structure evolving over time. 

This dataset comprises 1000 subtomograms representing a continuum of conformations generated using 

an MD trajectory between two conformations of adenylate kinase chain A from the PDB structures 
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PDB:4AKE (most open conformation) and PDB:1AKE (most closed conformation). We simulated this 

trajectory using GENESIS [55]. The ground-truth conformational space of the MD-dataset will be 

presented here by its first two principal axes (PCA). A visual representation of this space and the 

conformations it contains is presented in Figure 4 (B). 

 
Figure 4 Ground-truth conformational spaces for the two simulated datasets. (A) NMA-dataset: mode 7 and 8 
amplitude space with the corresponding three conformations that it contains. (B) MD-dataset: principal axes 1 
and 2 showing a continuum of conformations (MD trajectory) between the PDB structures 4AKE (most open 
conformation) and 1AKE (most closed conformation). 

While simulating data, we followed the best practices presented in the literature [18, 22, 23, 51] to 

make the data challenging while keeping the objectives clear and letting the method achieve its goals. 

For each subtomogram, we convert the PDB structure that represents the desired conformation (i.e., 

either one of the three conformations in the NMA-dataset or one of the continuum of conformations in 

the MD-dataset) to a volume of size 643 voxels and voxel size of 2.2 Å3 [56]. Then, we lowpass filter the 

volume to 6 Å resolution in order to simulate radiation damage and other effects such as data 

misalignments incorporated at the tomogram reconstruction step (skipping lowpass filtering would 

result in better retrieval of conformational variability but is less realistic). Afterward, we rotate and shift 

this volume in 3D space using random Euler angles and random 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 shifts in the radius of 5 voxels 

from the center. To obtain a tilt series, we project the rotated and shifted volume using tilt values -60° 

to +60° with 2° step. We simulate microscope conditions by adding noise and modulating the tilt series 

with a CTF of defocus -1 µm. Then we add noise again (half of the noise will be modulated by the CTF, 

and the other half will not). The same procedure is repeated for three different SNR values (0.1, 0.03, 
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0.01) and without noise. Then, we invert the CTF phase. Finally, we reconstruct a volume (our synthetic 

subtomogram) using a Fourier reconstruction method [57]. Figure 5 shows four examples of the 

simulated subtomograms (without noise and at the three different SNR values) for the same 

conformation, orientation, and position of the macromolecule, along with the corresponding ideal 

(ground-truth) density volume (the volume with no noise and no missing wedge artifacts, which is not a 

result of the reconstruction but obtained by converting the atomic structure of that conformation). To 

give the reader an idea of the resolutions of these subtomograms, we compared them with the ground-

truth volume of the same conformation and found the resolutions of 6.4 Å, 13.9 Å, 19.9 Å and 23.6 Å for 

the simulated subtomogram without noise and with SNR of 0.1, 0.03, and 0.01, respectively (volumes in 

Figure 5),  based on the Fourier Shell Correlation (FSC) between the non-masked volumes and the FSC 

threshold of 0.5. 

 
Figure 5 Central slices in real and Fourier spaces of a simulated subtomogram without noise and at different 
SNRs compared to the corresponding ideal volume. 
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3.1.2. Rigid-body alignment and refinement with MW correction 

We applied the proposed procedure in 2.2 and Figure 3 for rigid-body alignment and refinement with 

MW correction on the simulated datasets as follows: 

Step 1. Performed reference-free rigid-body alignment using the StA protocol in [49]. This StA 

protocol uses an exhaustive angular search (with FRM), a shifting search within a region of interest, and  

MW compensation. The shifting search was set to the range of 10 voxels from the center, and the 

maximum searched normalized frequency to 0.25. The iterative alignment was performed for 15 

iterations (complete stability was achieved in the rigid-body alignment parameters and the resulting 

average). 

Step 2. Filled the MW region in Fourier space for each subtomogram by the corresponding region of 

the aligned subtomogram average. 

Step 3. Rigid-body aligned the MW-corrected subtomograms. 

Step 4. Calculated the 3D OFs between the subtomogram average and each MW-filled and aligned 

subtomogram using Farneback-3D after multiplying both volumes with a mask. We generated this mask 

by binarizing the subtomogram average, dilating it by a structural element of size three, keeping its 

largest connected component, and smoothing its boundaries with a Gaussian filter of standard deviation 

equal to two. This step results in “matched subtomograms”. In all experiments in this article, Farneback-

3D was run with a 2-level volume pyramid of scaling factor of 0.5 (meaning a pyramid with the levels of 

643 and 323 voxels in the case of these two test datasets), a window size of 10 × 10 × 10 voxels for 

integrating the displacement field over a neighborhood of each voxel, 10 iterations of the algorithm at 

each pyramid level, and with default values of all other parameters. It should be noted that 323 voxels is 

the coarsest pyramid level allowed by Farneback-3D. 

Step 5. Performed rigid-body alignment of “matched subtomograms” against the subtomogram 

average using FRM (the same method used for StA but here without MW compensation) in the range of 

4 voxels from the center. 

Step 6. Combined the StA table with the rigid-body refinement parameters obtained in the previous 

step and calculated a new subtomogram average (refined reference).  
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We iterated the MW correction and rigid-body refinement process by first performing Step 1 once 

and Steps 2-6 three times. Table 1 shows the obtained rigid-body alignment results before and after 

applying this refinement algorithm. They show that the refinement globally reduces the distances 

between the estimated and ground-truth rigid-body parameters (angles and shifts) in the presence of 

noise and conformational variability (Table 1). 

3.1.3. Conformational variability analysis 

The datasets are ready for continuous conformational variability analysis after applying the MW 

correction and rigid-body refinement algorithm. Subsequently, we calculated the OFs between the 

refined reference and the MW corrected and rigid-body aligned subtomograms for each dataset. Then, 

we found the Gram matrix of OFs based on equations (5-6) and applied PCA. The conformational space, 

represented by the space of the first two principal vectors, for each dataset, at different noise intensities, 

is shown in  Figure 6. A comparison between the ground-truth conformational spaces in Figure 4 and the 

retrieved conformational spaces in Figure 6 shows that i) for the NMA-dataset, the separation between 

the three conformations in the retrieved conformational space is evident for all the tested noise 

intensities, and ii) for the MD-dataset, the trajectory is more evident for lower noise intensity (higher 

SNR), and it is the least evident when the SNR is 0.01. 

Dataset Noise Before/After 
Refinement 

Angular distance [deg] Shifting distance [vox] 
Mean STD Mean STD 

NMA-dataset 

No Noise 
Before 2.8 1.5 1.9 0.2 
After 2.5 1.4 0.9 0.1 

SNR = 0.1 
Before 2.8 1.5 1.2 0.2 
After 2.5 1.3 1.2 0.2 

SNR = 0.03 
Before 3.1 3.1 1.3 0.4 
After 2.4 2.3 1.2 0.4 

SNR = 0.01 
Before 17.0 39.3 2.7 2.5 
After 16.5 39.7 2.6 2.4 

MD-dataset 

No Noise Before 3.3 2.5 1.4 0.2 
After 3.1 2.4 1.0 0.2 

SNR = 0.1 
Before 2.6 1.6 1.5 0.2 
After 2.5 1.7 1.5 0.2 

SNR = 0.03 
Before 4.0 2.9 1.6 0.2 
After 3.9 2.7 1.4 0.2 

SNR = 0.01 
Before 4.8 3.4 1.2 0.4 
After 4.5 3.1 1.0 0.3 

Table 1 Mean and standard deviation (STD) of the absolute distance between ground-truth and estimated rigid-
body parameters via StA before and after the proposed rigid-body refinement algorithm applied to NMA-dataset 
and MD-dataset.  
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To give the reader a sense of what the method can achieve when applied to challenging datasets 

expected in experimental studies, we will base our evaluation of the retrieved conformations for both 

datasets on the most challenging noise case (SNR = 0.01), in which the molecule is barely visible in the 

subtomograms (Figure 5). 

3.1.3.1.  Conformational variability analysis for the NMA-dataset 

This subsection presents the results of analyzing the conformational variability in the NMA-dataset 

at SNR = 0.01 using TomoFlow. Figure 7 presents the retrieved conformational space of this dataset, 

highlighting three distinct groups of points in this space and their corresponding subtomogram averages. 

Moreover, each group average is compared with its ground-truth atomic structure at the corresponding 

conformation by docking this atomic structure into the average volume and displaying the volume at 

40% opacity.  

 
Figure 6 Plots showing the output conformational spaces found by TomoFlow on NMA-dataset and MD-dataset 
for different noise intensities. The ground-truth conformational spaces for these datasets are shown in Figure 4. 
We note here that only the distribution should be compared with the ground-truth, which indicates that the inter-
relationship between the conformations was retrieved correctly (i.e., similar conformations were mapped to close 
points and vice versa); the limits of the horizontal and vertical axes do not correspond to those of the ground-
truth since the ground-truth conformational space relates atomic structures (NM amplitudes or PCA of MD 
trajectory) and retrieved conformational space relates OFs. 
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We compared the three obtained subtomogram averages with the ground-truth volumes of the 

corresponding conformations (the atomic structures of these conformations converted into volumes), 

based on the FSC between non-masked volumes and the FSC threshold of 0.5. The obtained resolutions 

of the three volumes from left to right in Figure 7 are 9.6 Å, 9.5 Å, and 9.5 Å, respectively. Note here that 

each of the three volumes was obtained by averaging around 300 subtomograms (Figure 7) and recall 

that the resolution of an individual subtomogram is around 24 Å for SNR = 0.01. Thus, we observe that 

the resolution was improved by more than 50 % by averaging only 300 subtomograms, which were 

aligned in terms of molecular conformation, orientation and position using TomoFlow. 

Since the conformational variability in this dataset is discrete, animations are not presented for this 

dataset.  

3.1.3.2. Conformational variability analysis for the MD-dataset 

This subsection presents the results of analyzing the conformational variability in the MD-dataset at 

SNR = 0.01. Figure 8 (A) presents the retrieved conformational space of this dataset, highlighting six 

selected groups of subtomograms in this space and their corresponding averages. Moreover, each group 

average is compared with the ground-truth atomic structure found as the group's centroid at the 

corresponding conformation by docking this atomic structure in the average volume and displaying the 

volume at 40% opacity (Figure 8 (A)). Regarding the number of groups and their locations, it is 

encouraged to try more and fewer groups, which may help to better understand the conformational 

variability. TomoFlow software provides a graphical interface for an interactive selection of the regions 

in the low-dimensional conformational space in which subtomograms will be summed and their averages 

computed. Usually, the averages will be calculated from the densest regions (the regions with the largest 

numbers of points, i.e., subtomograms). The density of points can be visualized using different shades of 

coloring the points (from the lowest density indicated by the lightest color to the highest density 

indicated by the darkest color). The size (radius) of each subtomogram averaging region in the 

conformational space should be selected carefully. Indeed, small-radius regions should still contain 

enough subtomograms to produce subtomogram averages with sufficiently attenuated noise and MW-

induced deformations. Also, large-radius regions should not result in smooth subtomogram averages 

because the conformational differences between such smooth averages from different regions may not 
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be distinguishable. In general, the higher the resolution and the number of subtomograms, the more it 

is possible to select denser regions of smaller radii and reveal the conformational variability of the 

targeted macromolecule, and vice versa. 

 

 
Figure 7 The conformational space found using TomoFlow on the NMA-dataset with SNR = 0.01 (the ground-truth 
conformational space is shown in Figure 4). The shown volumes are averages of three groups of subtomograms 
identified by the highlighted ellipses. The number shown inside an ellipse corresponds to the number of points it 
encloses. The bottom row displays the averages at 40% opacity with their corresponding ground-truth atomic 
structure docked inside for comparison. 

The averages obtained from the six selected groups of subtomograms in Figure 8 (A) (the selected 

regions of the conformational space of the MD-dataset at SNR = 0.01) were compared with the 

corresponding ground-truth volumes (the volumes obtained by converting the atomic structure of the 

group's centroid at the corresponding conformation), based on the FSC between non-masked volumes 

and the FSC threshold of 0.5.  The obtained resolutions of the six volumes from left to right in Figure 8 

are 9.8 Å, 9.7 Å, 9.7 Å, 9.8 Å, 11.6 Å, and 15.8 Å, respectively. It can be noted that these resolutions are 

correlated with the numbers of subtomograms averaged in each group (the numbers shown in Figure 8 

(A)). For instance, the subtomogram average of the lowest resolution (15.8 Å) was obtained from the 

lowest number of subtomograms (80). Also, note that the resolution is 11.6 Å for averaging 101 

subtomograms and it is below 10 Å for averaging 112 subtomograms (the averaging of 112-185 
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subtomograms resulted in the resolution of 9.7-9.8 Å). Thus, we observe that the resolution can improve 

by more than 50 % with respect to the resolution of an individual subtomogram (24 Å for SNR = 0.01) by 

averaging as little as around 100 subtomograms, if these subtomograms are aligned in terms of 

molecular conformation, orientation and position using TomoFlow. 

Figure 8 (B) presents an animation following the data distribution manifold. This animation is 

generated by applying the inverse PCA mapping on the identified points (the ten numbered red points 

shown in the space), then using equations (10-11) to generate the corresponding OF for each point. 

These generated OFs are then used to warp the subtomogram average (the global average found after 

refinement) to generate volumes. The latter volumes correspond to the animation frames, shown as the 

numbered volumes at the bottom row. When these volumes are displayed sequentially, they show an 

animation that reveals the MD trajectory used to create the data. This animation is provided in the 

supplementary material (Supplementary Movie 1). 

 

Figure 8 Continuous conformational variability analysis via selective subtomogram averages and animation using 
TomoFlow conformational space of the MD-dataset with SNR = 0.01. (A) Subtomogram averages of six groups of 
subtomograms identified by the highlighted areas of the conformational space. The number shown inside a 
highlighted area corresponds to the number of points it encloses. The bottom row displays the averages at 40% 
opacity with their corresponding ground-truth atomic structure (group centroid) docked inside for comparison. 
(B) Displacement of the global subtomogram average along the direction of the data distribution in the 
conformational space (molecular motion along a trajectory); animation consisting of ten frames represented by a 
sequence of red dots (from 1 to 10, see also Supplementary Movie 1). The ground-truth conformational space is 
shown in Figure 4. 
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3.2. Conformational variability of nucleosomes in situ 

This section describes the application and results of TomoFlow on nucleosomes in situ, in their 

interphase nucleus context. We use a dataset containing 666 subtomograms (EMPIAR-10679) of 

nucleosomes extracted from cryo tomographic reconstruction of a vitreous section of a high-pressure 

frozen Drosophila embryonic brain [17, 18], with a subtomogram volume size of 643 and voxel size of 4.4 

Å3. Reference-free rigid-body StA of this dataset was previously performed using 

SubTomogramAveraging script of Artiatomi (https://github.com/uermel/Artiatomi) [58] and the average 

was deposited in EMDB under the accession code EMDB-12699 [18]. For the full details about this 

dataset acquisition and StA, we direct the reader to Section S1 (supplementary materials) of [18]. 

 The nucleosome conformational variability detected in this dataset in previous works [17, 18] was 

mainly described as gapping and breathing motions of the nucleosome [35]. However, these 

conformational variabilities were previously identified either via manual measurements [17] or via 

selecting a set of motions of interest (set of normal modes) for data analysis [18]. Here, our goal is to 

check if TomoFlow can detect the expected movements without using any prior knowledge about the 

nucleosome conformational variability. 

First, we used the StA parameters to reproduce the global subtomogram average. We used the 

average to generate a mask of the region of interest, which was then used to refine rigid-body alignment 

and analyze the conformations in the data. We generated the mask by binarizing the subtomogram 

average, dilating it by a structuring element of size three, keeping its largest connected component, and 

smoothing its boundaries with a Gaussian filter of standard deviation equal to two. Second, we 

performed seven MW correction and rigid-body refinement iterations following the procedure shown in 

Figure 3 (the theoretical details of the MW correction and rigid-body refinement are explained in 2.2, 

and its practical implementation in 3.1.2). Third, we followed the procedure described in 2.3 to analyze 

the conformational variability after rigid-body alignment and MW correction of subtomograms. We 

applied PCA on the Gram matrix of OFs, and the conformational space determined by the first two 

principal axes is shown in Figure 9.  

By inspecting the conformational space, we notice that the first principal axis has significantly larger 

variability than the second principal axis. We analyzed the variability carried along the first principal axis 
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by analyzing two subtomogram averages and an animation generated along this principal axis. We 

selectively generated subtomogram averages from groups of points at the beginning and the end of the 

data distribution. The regions for the groups of points are shown as highlighted areas in Figure 9 (A), 

along with their corresponding subtomogram averages. The averages are generated for the MW-

corrected and rigid-body aligned subtomograms. Also, we generated animation for the variability along 

the first principal axis, within the limits of the data distribution manifold represented by the line D in 

Figure 9 (B). This animation is generated by estimating the OFs for ten points along line D, then warping 

the global subtomogram average using these estimated OFs. The resulting volumes are displayed 

sequentially to generate the animation (Supplementary Movie 2 and Figure 9 (B)). 

 

Figure 9 TomoFlow applied to cryo-ET dataset of nucleosomes in situ. (A) group averages for two regions specified 
by highlighted areas in the conformational space and the corresponding averages. The number inside a highlighted 
area indicates the number of subtomograms the area encloses. (B) an illustration showing the displacement of 
the global subtomogram average along the first axis in the limits of the data distribution shown by line D in the 
conformational space. The arrows on the different views of the global average show the direction of the 
movement in this animation. The animation is provided in the supplementary material (Supplementary Movie 2). 
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The main differences between the two group averages (Figure 9 (A)) and the motion observed along 

line D (Figure 9 (B) and Supplementary Movie 2) indicate that TomoFlow detected a combined breathing 

and gapping motion of the nucleosome, with the breathing motion more expressed. These results are 

consistent with those of our previous study of conformational variability using the same dataset [18] but 

without imposing any prior knowledge on the analysis of the conformational variability. 

 4. Software implementation 

The software of TomoFlow is open-source and available as a part of the ContinuousFlex plugin of 

Scipion [59, 60]. Our software provides a user-friendly Graphical User Interface (GUI). Using the default 

parameters, the current implementation takes 32 seconds to calculate an OF between a subtomogram 

and a reference of size 643 voxels (tested on Nvidia Quadro RTX 5000). One calculation of OF per 

subtomogram is required per rigid-body refinement iteration, and one more OF calculation is required 

per subtomogram for continuous variability analysis. The OF calculation requires the most data 

processing time, and therefore, the OF calculation is GPU parallelized. The number of OFs that can be 

calculated simultaneously depends on the number of available GPUs (one OF calculation uses one entire 

GPU). Our method's second most time-demanding task is rigid-body alignment (used during rigid-body 

refinement), which we implemented using FRM [49]. We parallelized the FRM implementation using a 

Message Passing Interface (MPI) scheme. The number of subtomograms that can be processed 

simultaneously using our parallelized version of FRM depends on the number of available CPU threads 

(one subtomogram is processed using one CPU thread). Three refinement iterations of a dataset of 1000 

subtomograms of size 643 require around 36 hours using a single GPU card and 20 CPU threads (tested 

on Nvidia Quadro RTX 5000 and 2.2 GHz Intel Xeon Silver 4214 CPU processors). TomoFlow requires StA 

to be performed in advance. TomoFlow software provides one StA implementation that is based on FRM 

[49], but it also allows importing StA parameters obtained with Dynamo or TOM2-toolbox (other StA 

software may be made compatible with TomoFlow in the future). 

 5. Discussion and conclusion 

Cellular cryogenic electron tomography (cryo-ET) is currently undergoing its “resolution revolution” 

reaching a near atomic resolution in situ [61] and allowing studying macromolecules in their 
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physiological environment that affects their conformational landscape [18, 62]. This article presented 

TomoFlow method that addresses continuous macromolecular conformational variability captured in 

cryo-ET subtomograms. TomoFlow employs dense 3D optical-flow, posterior to conventional StA, to 

refine the rigid-body alignment and analyze the conformational variability. The method maps the 

subtomograms to a space of conformations and allows i) interactively generating subtomogram averages 

of different conformations (without classification), and ii) navigating the conformational space of the 

macromolecule via animations based on a reference (e.g., the global subtomogram average).  

It should be noted that grouping similar structures and computing their averages for improving SNR, 

as it is done in the traditional StA workflows, is not the main objective of TomoFlow. Its main objective 

is to obtain the conformational landscape that can be easily visualized (in two or three dimensions 

determined by the first two or three principal axes) and explored in terms of molecular flexibility 

animations along different directions (animated displacements of a reference conformation). Yet, 

TomoFlow allows making such groups of similar structures and computing their averages, but in contrast 

to the traditional, discrete classification methods, the number of groups in TomoFlow is not defined prior 

to the analysis and it is selected according to the conformational distribution in the low-dimensional 

conformational space. Furthermore, using traditional StA workflows, less dominant conformations are 

likely to be undiscovered as being wiped out through the global or class averages blindly (no possibility 

of visualizing all conformations in a common frame and selecting the conformations to average 

accordingly). On the contrary, TomoFlow provides a visualization of the full conformational space and, 

thus, allows discovering less dominant conformations (as less dense regions in this space) and prevents 

from wiping such conformations out thanks to an interactive selection of the regions from which the 

averages will be calculated. However, TomoFlow is not designed for analyzing all types of structural 

variabilities such as macromolecular disassembly or binding and unbinding of ligands, but it can be 

combined with discrete classification methods to disentangle such structural variabilities and then 

analyze continuous intraclass variability using class averages as references instead of the global 

subtomogram average. 

We presented the method with simplified yet sufficient mathematical derivations that are necessary 

for understanding and implementing it. We tested the method by synthesizing two datasets under 

challenging conditions and testing its capability in retrieving their ground-truth conformational spaces. 
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The results of the tests with simulated data indicate that i) the proposed rigid-body refinement can 

improve the alignment quality in the presence of conformational variability, and ii) the proposed 

conformational variability analysis can accurately recover hidden conformations. Additionally, we tested 

TomoFlow using a cryo-ET dataset of nucleosomes in situ, which provided promising results coherent 

with previous findings using the same dataset [18] but without imposing any prior knowledge on the 

analysis of the conformational variability. 

It should be reminded that better statistics (including those produced by PCA) are obtained for larger 

datasets. The cryo-ET datasets that can be collected (thus, analyzed by TomoFlow method) nowadays 

are still much smaller than those produced by single-particle cryo-EM. However, the goal of the PCA in 

TomoFlow is to reveal the major motions of the complex. In this context, a dataset of 2000 

subtomograms that can be obtained nowadays may be considered large enough for such PCA and should 

allow revealing the main motions of the complex. In this article, we have shown the results of an 

experiment with 666 in-situ cryo-ET nucleosome subtomograms, which appears to be sufficient for 

revealing the breathing and gapping motions of the nucleosome, the two main motions of the 

nucleosome that have also been detected using two different methods in situ [17, 18] as well as in a 

theoretical study [35]. 

TomoFlow performs the analysis in real space. Hence, it requires MW correction since the MW 

compensation as in reciprocal space analysis is not possible in real space. MW correction algorithms exist 

and TomoFlow can work in conjunction with any of them. Here, we used a method for MW correction 

based on filling the MW region of subtomograms with the corresponding region of the global 

subtomogram average. A more advanced MW correction method can be used in the future and might 

lead to better results.  

OF is a powerful and robust image analysis algorithm. Earlier OF approaches were detecting small 

changes, typically in a few pixels/voxels range. Recent OF methods, such as Farneback-3D used in 

TomoFlow, cope with this limitation by combining OFs from multiple scales (pyramid-scheme 

processing). Nevertheless, TomoFlow will be more efficient for smaller conformational variability in the 

data (for a systematic test of TomoFlow matching different conformational variability magnitudes, the 

reader can see Supplementary Experiment 1 in Supplementary Material). Additionally, Farneback-3D 



Harastani et al. doi: https://doi.org/10.1016/j.jmb.2021.167381 

This is a provisional file, not the final typeset article   29 
 

method enforces the smoothness of the motion field between the two given volumes (the volumes 

between which the OF should be calculated), which allows a correct calculation of the OF under very 

heavy noise and resisting against MW artifacts. However, the OF smoothness enforcement induces 

smoothness of the generated animation (a smooth version of the warped reference in each frame, e.g., 

Figure 8 (B)). Finally, obtaining animations requires Moore-Penrose pseudoinverse to be found for a large 

matrix given in equation (10). This matrix is defined as the matrix of column-wise vectorized OFs that 

can be three times the dimensions of the input subtomogram dataset; for instance, generating 

animations after processing a dataset that comprises 1000 subtomograms of volume size 643 will require 

the inversion of 3*643 rows by 1000 columns, which becomes computationally challenging for large 

datasets, mainly in terms of the required memory. However, a downsampling (e.g., by 2) of the OFs 

before reconstructing the matrix significantly reduces the computational requirements, resulting in less 

detailed animations. 

Despite the limitations discussed above, the presented TomoFlow method provides a promising new 

insight into what can be achieved in cryo-ET studies of macromolecular conformational variability. The 

advancement in OF development might allow even better TomoFlow performance in the future. 

TomoFlow is not directly applicable to analyzing 2D images. However, it can analyze 3D volumes 

reconstructed from 2D images, potentially coming from other cryo-EM modalities, such as single-particle 

images. A TomoFlow application to analyzing continuous conformational variability in single-particle EM 

maps would require combining with discrete-classification approaches to get the EM maps 

reconstructed from as conformationally homogeneous groups of single-particle images as possible. In 

the future, we will work on extending the method to single-particle cryo-EM applications. 
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Supplementary Method Description 1:  

Multiresolution pyramidal approach for 3D optical flow calculation 
In this section, we describe the multiresolution pyramidal approach for 3D optical flow (OF) calculation with 
Farneback-3D toolbox (https://pypi.org/project/farneback3d), which is used in TomoFlow.  

The 3D OF pyramidal approach involves (i) creating a multiresolution volume pyramid by downsampling the 
volume at each pyramid level (Supplementary Figure 1), (ii) calculating OF iteratively at each pyramid level, and 
(iii) propagating the OF calculated at a coarser level to the next finer level in order to refine it, until the finest 
(original volume) level is reached. Between the pyramid scales, the OF propagation is done by upsampling the 
OF found on a coarser level to the next finer level and applying this upsampled OF onto the reference volume at 
the finer level to create a warped reference that is then used to find the OF at that finer level.  
 
In Farneback-3D, an anti-aliasing Gaussian filtering is applied onto the volume at each pyramid level before the 
volume is downsampled (the Gaussian standard deviation is adjusted to the scaling factor selected for 
downsampling). The scaling factor of 0.5 was used in the experiments in this article, meaning that each volume 
dimension was reduced by 2 at each pyramid level. In the experiments in this article, the coarsest volume pyramid 
level is 32x32x32 voxels, which is the coarsest level allowed by Farneback-3D; also, we used 2-level pyramids 
for volumes of size 643 voxels and 3-level pyramids for volumes of 1283 voxels. We used a window size of 10 × 
10 × 10 voxels for integrating the displacement field over a neighborhood of each voxel and 10 iterations of the 
algorithm at each pyramid level. All other parameters of Farneback-3D were used with their default values. 
TomoFlow graphical interface allows modifying these values. 
 
The OF is first calculated on the coarsest pyramid level (lowest scale) and, then, it is refined on the first finer 
pyramid level (larger scale), followed by the refinement on the next one etc., until the refinement on the finest 
pyramid level (original scale, i.e., the input volumes). For each pyramid level, the OF is calculated iteratively. In 
each iteration, the calculated OF is applied onto the reference volume to warp it; this warped reference is then 
used to find the OF in the next iteration and produce the reference for the following iteration, etc., until the 
convergence is achieved (the OF between two successive iterations does not change significantly).  
 

 

 

 

 

 

 

 
Supplementary Figure 1: Multiresolution data pyramid scheme. 
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Supplementary Experiment 1:  

Robustness to noise while matching different magnitudes of displacements, disentangling 
conformational mapping from the subtomographic-approach limitations 

In this section, we show the performance of the Farneback 3D optical flow (OF) method in matching different 
conformational variability magnitudes, challenged by noise only. Also, we provide a quantitative assessment of 
the algorithm for mapping conformations while disentangling it from the subtomographic-approach limitations 
such as missing wedge and rigid-body (angular and shift) variability. The PDB:4AKE chain A structure (obtained 
at 2.2 Å resolution by X-ray crystallography and referred here to as AK) was used to synthesize three 
conformations by elastic deforming AK using its normal mode 7 and gradually increasing the amplitude of the 
mode. The three synthesized conformations were then converted into volumes (volume size: 1283 voxels; voxel 
size: 1 Å3) and noise was applied directly onto these volumes (without low-pass filtering of the volumes or 
synthesizing tilt series and calculating 3D reconstructions). 

The conformational distance of each of the three synthetic conformations is reflected by the selected amplitude 
of normal mode 7. The following three values of the amplitude were used: 1) -75 (the structure referred to as 
AK_75), 2) -125 (the structure referred to as AK_125), and 3) -200 (the structure referred to as AK_200). The 
four atomic structures (AK, AK_75, AK_125 and AK_200) are shown in Supplementary Figure 2. These 
structures converted into volumes are shown in Supplementary Figure 3.  

The root mean square deviations (RMSDs) of the AK_75, AK_125 and AK_200 structures with respect to the 
AK structure are shown in Supplementary Table 1, along with the cross-correlations (CC) between the AK volume 
and each of the AK_75, AK_125 and AK_200 volumes. 

Random Gaussian noise was added to each of the AK_75, AK_125 and AK_200 volumes in such a way to obtain 
the following 6 values of the signal-to-noise ratio (SNR): 1) 0.5, 2) 0.1, 3) 0.05, 4) 0.01, 5) 0.005, and 6) 0.001. 
In Supplementary Figure 4, we show the different SNR values of the volumes using central slices of the noisy 
AK_125 volumes as an example. 

The OF was calculated using Farneback-3D with a 3-level volume pyramid of scaling factor of 0.5 (meaning a 
pyramid with the levels of 1283, 643 and 323 voxels for the test datasets analyzed in this section, where 323 voxels 
is the coarsest pyramid level allowed by Farneback-3D). 

We calculated the OFs between the non-noisy AK volume and the noisy AK_75, AK_125 and AK_200 volumes 
(6 SNR values for each of AK_75, AK_125 and AK_200). Each OF was used to warp the AK volume. The 
obtained warped AK volumes are the non-noisy estimates of the noisy AK_75, AK_125 and AK_200 volumes 
and are called “matched” volumes (the term introduced in the main text of the article). 

The “matched” volumes for AK_75, AK_125 and AK_200 are shown in Supplementary Figures 5, 6 and 7 
respectively. The CCs between the non-noisy versions of each of the AK_75, AK_125 and AK_200 volumes and 
the corresponding “matched” volumes are presented in Supplementary Table 2. 

The visual comparison in Supplementary Figures 5-7 and the corresponding results in Supplementary Table 2 
indicate that the “matched” volume approached the conformation in all different noisy volumes (the CC between 
the “matched” volume and each of the non-noisy versions of the AK_75, AK_125 and AK_200 volumes is always 
higher than the original cross correlation before the matching). Better results were obtained for smaller 
magnitudes of the conformational change and lower noise levels (Supplementary Table 2).  
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AK AK_75 AK_125 AK_200 

    
AK + AK_75 + AK_125 + 

AK_200 
AK + AK_75 AK+ AK_125 AK + AK_200 

    
Supplementary Figure 2: Atomic structures used in the experiment. See the text in this section for details on how they were obtained.  

 

AK AK_75 AK_125 AK_200 

    
AK + AK_75 + AK_125 + 

AK_200 
AK + AK_75 AK+ AK_125 AK + AK_200 

    
Supplementary Figure 3: Volumes used in the experiment. See the text in this section for details on how they were obtained. 
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 Central slice 
SNR XY XZ YZ 

0.5 

   

0.1 

   

0.05 

   

0.01 

   

0.005 

   

0.001 

   
Supplementary Figure 4: Central slices of the volume AK125 at different values of the signal-to-noise ratio (SNR). 
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Before OF matching 

AK AK_75 AK + AK_75 

   
 

After OF matching 
Matched SNR 0.5 Matched SNR 0.5 + AK_75 Matched SNR 0.1 Matched SNR 0.1 + AK_75 

    
Matched SNR 0.05 Matched SNR 0.05 + AK_75 Matched SNR 0.01 Matched SNR 0.01 + AK_75 

    
Matched SNR 0.005 Matched SNR 0.005 + AK_75 Matched SNR 0.001 Matched SNR 0.001 + AK_75 

    
Supplementary Figure 5: OF-based matching of the non-noisy AK volume to different noisy versions of the AK_75 volume. 
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Before OF matching 

AK AK_125 AK + AK_125 

   
 

After OF matching 
Matched SNR 0.5 Matched SNR 0.5 + AK_125 Matched SNR 0.1 Matched SNR 0.1 + AK_125 

    
Matched SNR 0.05 Matched SNR 0.05 + AK_125 Matched SNR 0.01 Matched SNR 0.01 + AK_125 

    
Matched SNR 0.005 Matched SNR 0.005 + 

AK_125 
Matched SNR 0.001 Matched SNR 0.001 + 

AK_125 

    
Supplementary Figure 6: OF-based matching of the non-noisy AK volume to different noisy versions of the AK_125 volume. 
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Before OF matching 

AK AK_200 AK + AK_200 

   
 

After OF matching 
Matched SNR 0.5 Matched SNR 0.5 + AK_200 Matched SNR 0.1 Matched SNR 0.1 + AK_200 

    
Matched SNR 0.05 Matched SNR 0.05 + AK_200 Matched SNR 0.01 Matched SNR 0.01 + AK_200 

    
Matched SNR 0.005 Matched SNR 0.005 + 

AK_200 
Matched SNR 0.001 Matched SNR 0.001 + 

AK_200 

    
Supplementary Figure 7: OF-based matching of the non-noisy AK volume to different noisy versions of the AK_200 volume. 
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 AK_75 AK_125 AK_200 
RMSD compared to AK [Å] 1.8431 3.0719 4.915 

CC with AK 83.78% 73.27% 61.59% 
Supplementary Table 1: Quantitively measure of the difference between the AK conformation and each of the three synthetic 
conformations used here (AK_75, AK_125 and AK_200), expressed in terms of the root mean square deviation (RMDS) between the 
atomic structures and in terms of the cross-correlation (CC) between the volumes from these atomic structures. Note here that the CC 
in this table is calculated for non-noisy volumes. 

 

 SNR 0.001 SNR 0.005 SNR 0.01 SNR 0.05 SNR 0.1 SNR 0.5 
AK_75 94.75% 98.18% 98.50% 98.96% 99.01% 99.06% 
AK_125 92.71% 97.23% 97.90% 98.52% 98.65% 98.65% 
AK_200 86.23% 95.27% 96.56% 97.46% 97.53% 97.63% 

Supplementary Table 2: Cross-correlation between the “matched” AK volume and the non-noisy AK_75, AK_125 and AK_200 
volumes. The AK volume “matching” was done with respect to different noisy versions of the AK_75, AK_125 and AK_200 
volumes. 
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