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Introduction and notations

In Dunkl analysis for a root system Σ on R d , a crucial role is played by the Dunkl kernel E k (X, Y ) and by the Dunkl heat kernel p t (X, Y ). Finding good estimates of the kernels E k and of the Dunkl heat kernel p t is a challenging and important subject, developed recently in [START_REF] Anker | Harmonic Functions,Conjugate Harmonic Functions and the Hardy Space H 1 in the Rational Dunkl Setting[END_REF][START_REF] Graczyk | Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A n[END_REF]. In this paper we prove exact estimates of both these kernels in the W -radial rational Dunkl case, for the root system A n with arbitrary positive multiplicities.

For a good introduction on rational Dunkl theory, the reader should consider the paper [START_REF] Anker | Harmonic Functions,Conjugate Harmonic Functions and the Hardy Space H 1 in the Rational Dunkl Setting[END_REF] or the book [START_REF] Graczyk | Harmonic and stochastic analysis of Dunkl processes[END_REF]. We provide here some details and notations on Dunkl analysis.

For every root α ∈ Σ, let σ α (X) = X -2 α,X α,α α. The Weyl group W associated to the root system is generated by the reflection maps σ α .

A function k : Σ → R is called a multiplicity function if it is invariant under the action of W on Σ.

Let ∂ ξ be the derivative in the direction of ξ ∈ R d . The Dunkl operators indexed by ξ are then given by

T ξ (k) f (X) = ∂ ξ f (X) + α∈Σ + k(α) α(ξ) f (X) -f (σ α X) α, X .
The T ξ 's, ξ ∈ R d , form a commutative family.

For fixed Y ∈ R d , the Dunkl kernel E k (•, •) is then the only real-analytic solution to the system

T ξ (k)| X E k (X, Y ) = ξ, Y E k (X, Y ), ∀ξ ∈ R d
with E k (0, Y ) = 1. In fact, E k extends to a holomorphic function on

C d × C d .
Its W -invariant version E W k (X, λ) is called a Bessel function of Dunkl type (see [9, p. 57]) or a spherical function ψ λ (X) of type Σ (refer to [START_REF] Sawyer | A Laplace-Type Representation of the Generalized Spherical Functions Associated with the Root Systems of Type A[END_REF]). In this paper we use the latter terminology and notation. We have

ψ λ (X) = E W k (X, λ) = 1 |W | w∈w E k (w • X, λ)
and ψ λ (X) is the only real-analytic solution of the system p(T e 1 , . . . , T e d )(k)| X ψ λ (X) = p(λ) ψ λ (X), ∀λ ∈ R d for every Weyl-invariant polynomial p (here e 1 , . . . , e d represent the standard basis on R d ).

Let ω k (X) := α∈Σ + | α, X | 2 k(α) be the Dunkl weight function on R d . Recall that the Dunkl transform of a W -invariant function

f on R d f (λ) := c -1 k f (x)ψ -iλ (X)ω k (X)dX, λ ∈ R d ,
plays the role of the spherical Fourier transform in W -invariant Dunkl analysis. (here the constant c k is the Macdonald-Mehta-Selberg integral.)

In [11, Conjecture 18], we made the following conjecture on the growth of spherical functions ψ λ (x) of type Σ. We use the Cartan algebra notation a = R d . Then a + denotes the open positive Weyl chamber with respect to a system Σ + of positive roots.

Conjecture 1.1. If λ, X ∈ a + , then ψ λ (e X ) e λ(X) α>0 (1 + α(X) α(λ)) k(α) .
For the root system A n on R d , d ≥ n, and multiplicity k(α) = k > 0, this becomes

ψ λ (e X ) e λ(X) i<j≤n+1 (1 + (x i -x j ) (λ i -λ j )) k , λ, X ∈ a + (1.1)
(the underlying constants here only depend on k).

The notation f g in a domain D means that there exists C 1 > 0 and

C 2 > 0 such that C 1 g(x) ≤ f (x) ≤ C 2 g(x)
with C 1 and C 2 independent of x ∈ D. Recall that for the root system A n on R n+1 , the positive Weyl chamber is defined by a

+ = {X ∈ R n+1 | x 1 > x 2 > . . . > x n+1 }.
Remark 1.2. This conjecture includes the cases of the symmetric spaces of noncompact type POS 1 (n, F), the positive definite matrices of determinant 1 over F where F = R (the real numbers with k = 1/2), F = C (the complex numbers with k = 1), F = H (the quaternion numbers with k = 2 or F = O (the Octonions with k = 4) when n = 3. In [START_REF] Graczyk | Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A n[END_REF], we proved the conjecture for the root system A n in the complex case k = 1.

The main tool of the proof of Conjecture 1.1 for root systems A n is the following iterative formula for the spherical functions of type A, proven in [START_REF] Sawyer | A Laplace-Type Representation of the Generalized Spherical Functions Associated with the Root Systems of Type A[END_REF]. Here we do not assume that the elements of the Lie algebra have trace 0. Here the Cartan subalgebra a for the root system A n is isomorphic to R n+1 . For λ ∈ a = R n+1 and X ∈ a + ,we have

ψ λ (e X ) = e λ(X) if n = 1 and ψ λ (e X ) = Γ(k (n + 1)) (Γ(k)) n+1 e λ n+1 n+1 r=1 xr π(X) 1-2 k xn x n+1 • • • x 1 x 2 ψ λ 0 (e Y ) (1.2) n i=1 i j=1 (x j -y i ) n+1 j=i+1 (y i -x j ) k-1 i<j≤n (y i -y j ) dy 1 • • • dy n where λ 0 (U ) = n r=1 (λ r -λ n+1 ) u k and π(X) = i<j≤n+1 (x i -x j ).
Remark 1.3. Formula (1.2) concerns the action of the root system A n on R n+1 . If we assume n+1 k=1 x k = 0 = n+1 k=1 λ k , we have then the action of the root system A n on R n . We can also consider the action of A n on any R m with m ≥ n by deciding on which n + 1 entries x k , the roots act. These considerations do not affect the results of this article.

The Dunkl heat kernel p t (X, Y ) is given as

p t (X, Y ) = 1 2 γ+d/2 c k t -d 2 -γ e -|X| 2 -|Y | 2 4t E k X, Y 2t , (1.3) 
where γ = α>0 k(α). Establishing estimates of the Dunkl heat kernel is equivalent to estimating the Dunkl kernel as demonstrated by equation (1.3).

In [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF]Lemma 4.5], it is shown that

R d p t (X, Y ) ω k (Y ) dY = 1 ∆ k | X p t (X, Y ) = ∂ ∂t p t (X, Y )
where the Dunkl Laplacian ∆ k equals

∆ k f (X) = d i=1 T 2 e i f (X) = ∆ f (X) + 2 α∈Σ + k(α) α, ∇f (X) α, X - f (X) -f (σ α X) α, X 2 .
Here ∆ and ∇ denote the regular Laplacian and gradient.

The formula (1.3) remains true for the W -invariant kernels p W t and E W and translates in a similar relationship between the spherical function ψ λ and the heat kernel p W t (X, Y ):

p W t (X, Y ) = 1 2 γ+d/2 c k t -d 2 -γ e -|X| 2 -|Y | 2 4t ψ X Y 2t . (1.4)
In Section 2, we prove the Conjecture 1.1 for the root system A n , with an arbitrary multiplicity k > 0, i.e. we prove the formula (1.1) providing exact estimates for the spherical functions ψ λ (X) in the two variables X, λ when λ is real.

In Section 3.1, we apply the sharp estimates (1.1) of the spherical functions ψ λ (X) to the W -invariant Dunkl heat kernel p t (X, Y ) for the root system A n , with an arbitrary multiplicity k > 0. In the Theorem 3.1, we obtain sharp estimates of p t (X, Y ) in three variables t, X, Y .

Next, in Sections 3.2 and 3.3, we apply the Theorem 3.1 to the W -invariant Dunkl Newton kernel and to the W -invariant s-stable semigroups, respectively. In all cases, we obtain sharp estimates.

2 Proof of the Conjecture in the case A n .

We will assume from now on that X ∈ a + and λ ∈ a + . Notation 2.1. We will write f (x)

g(x) (f (x) g(x)) for x ∈ D if there exists a constant C > 0 independent of x such that f (x) ≤ C g(x) (f (x) ≥ C g(x)
) for all x ∈ D. We will use the notation

M k = (x k + x k+1 )/2.
Remark 2.2. Suppose i < j. We will use repeatedly the fact that the functions

x 1 + (λ i -λ j ) x and x (1 + (λ i -λ j ) x) k , k ≤ 1
are increasing functions of x. A feature of our proofs will be the distinction between the cases 0 < k ≤ 1 and k > 1.

Proposition 2.3. Conjecture 1.1 is equivalent to

I (n) π(X) 2 k-1 i<j≤n+1 ((1 + (λ i -λ j )(x i -x j )) k (2.1)
where

I (n) = xn x n+1 • • • x 1 x 2 e -n i=1 (λ i -λ n+1 ) (x i -y i ) i≤j≤n (x i -y j ) i<j≤n+1 (y i -x j ) k-1 i<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k dy 1 . . . dy n .
Proof. The integral I (n) corresponds to a constant multiple of e -λ(X) π(X) 2 k-1 ψ λ (e X ) in which we have replaced ψ λ 0 (e Y ) in (1.2) by its asymptotic expression conjectured in (1.1).

We start by two technical results.

Lemma 2.4. For k > 0 and x ≥ 0, we have

x 0 u k-1 e -u du x 1 + x k . Proof. The result is clearly true if 0 ≤ x < 1 (use e -1 ≤ e -x ≤ 1 and integrate). If x ≥ 1 then 1 0 u k-1 e -u du ≤ x 0 u k-1 e -u du < ∞ 0 u k-1 e -u du
and the result follows.

Proposition 2.5. Assume that γ = x n -x n+1 is the largest positive root and let

I 1 = xn Mn • • • x 1 x 2 e -n i=1 (λ i -λ n+1 ) (x i -y i ) i≤j≤n (x i -y j ) i<j≤n+1 (y i -x j ) k-1 i<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k dy 1 . . . dy n . Then I 1 I (n) . Proof. Let I 2 = I (n) -I 1 .
In I 1 and I 2 , consider only the corresponding integral in y n , calling the resulting expressions Ĩ1 and Ĩ2 . Observing that y n -x n+1 γ for y n ∈ [x n , M n ], we have

Ĩ1 γ k-1 xn Mn e -(λn-λ n+1 ) (xn-yn) i≤n (x i -y n ) k-1 i<n y i -y n (1 + (λ i -λ n )(y i -y n )) k dy n . If 0 < k ≤ 1 then, Ĩ1 e -(λn-λ n+1 ) γ/2 γ k-1 xn Mn (x 1 -y n ) k-1 n i=2 (x i -y n ) k-1 i<n x i+1 -y n (1 + (λ i -λ n ) γ) k dy n γ k-1 e -(λn-λ n+1 ) γ/2 xn Mn i<n (x i+1 -y n ) k (1 + (λ i -λ n ) γ) k (x 1 -y n ) k-1 dy n γ k-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n ) γ) k xn Mn (x n -y n ) (n-1) k (x 1 -y n ) k-1 dy n γ (n+1) k-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n ) γ) k . Indeed, if n > 1 then (x 1 -y n ) k-1 γ k-1
and the rest can easily be integrated.

If n = 1, then xn Mn (x n -y n ) (n-1) k (x 1 -y n ) k-1 dy n = xn Mn (x n -y n ) k-1 dy n γ k . If k > 1, we have Ĩ1 γ k-1 e -(λn-λ n+1 ) γ/2 xn Mn n-1 i=1 (x i -y n ) k-1 i<n y i -y n (1 + (λ i -λ n )(y i -y n ) k (x n -y n ) k-1 dy n γ k-1 e -(λn-λ n+1 ) γ/2 xn Mn i<n y i -y n 1 + (λ i -λ n )(y i -y n ) k (x n -y n ) k-1 dy n γ k-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n ) γ) k xn Mn i<n (y i -y n ) k (x n -y n ) k-1 dy n γ k-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n ) γ) k xn Mn (x n -y n ) n k-1 dy n γ (n+1) k-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n ) γ) k .
On the other hand for k > 0, observing that x i -y n γ and y i -

y n γ for y n ∈ [M n , x n+1 ], we have Ĩ2 γ n (k-1) i<n γ (1 + (λ i -λ n )γ) k Mn x n+1 e -(λn-λ n+1 ) (xn-yn) (y n -x n+1 ) k-1 dy n γ n (k-1)+n-1 e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n )γ) k Mn x n+1 (y n -x n+1 ) k-1 dy n γ n (k-1)+n-1+k e -(λn-λ n+1 ) γ/2 i<n (1 + (λ i -λ n )γ) k

Ĩ1

which allows us to conclude.

Theorem 2.6. Conjecture 1.1 holds for the root system A n , n ≥ 1 with root multiplicity k > 0.

Proof. The result is proven using induction. Using Proposition 2.5 with n = 1, we have, using u = (λ 1 -λ 2 ) (x 1 -y 1 ) and Lemma 2.4,

I (1) I 1 = x 1 M 1 e -(λ 1 -λ 2 ) (x 1 -y 1 ) (x 1 -y 1 ) k-1 (y 1 -x 2 ) k-1 dy 1 (x 1 -x 2 ) k-1 x 1 M 1 e -(λ 1 -λ 2 ) (x 1 -y 1 ) (x 1 -y 1 ) k-1 dy 1 = (x 1 -x 2 ) k-1 (λ 1 -λ 2 ) -k (λ 1 -λ 2 ) (x 1 -x 2 )/2 0 e -u u k-1 du (x 1 -x 2 ) k-1 (x 1 -x 2 )/2 1 + (λ 1 -λ 2 ) (x 1 -x 2 )/2
k which proves the formula (2.1) in the case n = 1.

Assume that the result holds for the root systems A 1 , A 2 , . . . , A n-1 . We will use Proposition 2.3 and will proceed by assuming, in turn for each m < n, that α m = x m -x m+1 is the largest root. We will discuss the case m = n at the end.

We will proceed as follows. As in the proof of Proposition 2.5, we will divide the integral in two parts I 1 and I 2 , show that I 1 has the desired asymptotics and that I 2 I 1 .

Assume now that α

m = x m -x m+1 , 1 ≤ m ≤ n-1, is the largest root. Noting that x i -y j α m , i ≤ m, m < j ≤ n, y i -x j α m , i ≤ m, j ≥ m + 2, y i -y j α m , i ≤ m, m < j ≤ n, for y m ∈ [M m , x m ], we have I 1 = xn x n+1 • • • xm Mm • • • x 1 x 2 e -n i=1 (λ i -λ n+1 ) (x i -y i ) i≤j≤m (x i -y j ) i<j≤m+1 (y i -x j ) k-1 m<i≤j≤n (x i -y j ) m<i<j≤n+1 (y i -x j ) k-1    i≤m<j≤n (x i -y j ) i≤m, m+1<j≤n+1 (y i -x j )    k-1 i<j≤m y i -y j (1 + (λ i -λ j )(y i -y j )) k m<i<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k i≤m<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k dy 1 . . . dy n α 2 m (n-m) (k-1) m i≤m<j≤n α m (1 + (λ i -λ j )α m ) k xn x n+1 • • • xm Mm • • • x 1 x 2 e -n i=1 (λ i -λ n+1 ) (x i -y i ) i≤j≤m (x i -y j ) i<j≤m+1 (y i -x j ) k-1 m<i≤j≤n (x i -y j ) m<i<j≤n+1 (y i -x j ) k-1 i<j≤m y i -y j (1 + (λ i -λ j )(y i -y j )) k m<i<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k dy 1 . . . dy n = α 2 m (n-m) (k-1)+m (n-m) m i≤m<j≤n (1 + (λ i -λ j )α m ) k xm Mm • • • x 1 x 2 e -m i=1 (λ i -λ n+1 ) (x i -y i ) i≤j≤m (x i -y j ) i<j≤m+1 (y i -x j ) k-1 i<j≤m y i -y j (1 + (λ i -λ j )(y i -y j )) k dy 1 . . . dy m xn x n+1 • • • x m+1 x m+2 e -n i=m+1 (λ i -λ n+1 ) (x i -y i ) m<i≤j≤n (x i -y j ) m<i<j≤n+1 (y i -x j ) k-1 m<i<j≤n y i -y j (1 + (λ i -λ j )(y i -y j )) k dy m+1 . . . dy n α m (n-m) (2 k-1) m i≤m<j≤n (1 + (λ i -λ j ) α m ) k i<j≤m (x i -x j ) 2 k-1 i<j≤m (1 + (λ i -λ j ) (x i -x j )) k i≤m (1 + (λ i -λ n+1 ) (x i -x m+1 )) k m<i<j≤n+1 (x i -x j ) 2 k-1 (1 + (λ i -λ j ) (x i -x j )) k
which has the desired asymptotics (we used Proposition 2.5 and the induction hypothesis on A m and on A n-m ).

It remains to show that I 2 = I (n) -I 1 I 1 . As in the proof of Proposition 2.5, it suffices to show that Ĩ1 Ĩ2 where Ĩ1 (respectively Ĩ2 ) is the portion of I 1 (I 2 ) integrated with respect to y m . Now, since y m -x j α m , m < j ≤ n + 1, and y m -

y j α m , m < j ≤ n, when y m ∈ [M m , x m ], we have Ĩ1 α (n+1-m) (k-1)+n-m m m<j≤n (1 + (λ m -λ j ) α m ) k xm Mm e -(λm-λ n+1 ) (xm-ym) i≤m (x i -y m ) k-1 i<m y i -y m (1 + (λ i -λ m ) (y i -y m )) k dy m . If k > 1 then Ĩ1 α (n+1-m) (k-1)+n-m m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 xm Mm i≤m (x m -y m ) k-1 i<m x m -y m (1 + (λ i -λ m ) α m ) k dy m α (n+1-m) (k-1)+n-m m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 i<m (1 + (λ i -λ m ) α m ) k xm Mm (x m -y m ) m (k-1)+m-1 dy m = α (n+1) k-1 m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 i<m (1 + (λ i -λ m ) α m ) k . If 0 < k ≤ 1 then Ĩ1 α (n+1-m) (k-1)+n-m m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 xm Mm i<m α k-1 m (x m -y m ) k-1 i<m x m -y m (1 + (λ i -λ m ) α m ) k dy m = α (n+1-m) (k-1)+n-m+(m-1) (k-1) m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 i<m (1 + (λ i -λ m ) α m ) k xm Mm (x m -y m ) m-1+k-1 dy m α (n+1-m) (k-1)+n-m+(m-1) (k-1) m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 i<m (1 + (λ i -λ m ) α m ) k α m-1+k m = α (n+1) k-1 m m<j≤n (1 + (λ m -λ j ) α m ) k e -(λm-λ n+1 ) αm/2 i<m (1 + (λ i -λ m ) α m ) k . On the other hand, since x i -y m α m , i ≤ m, and y i -y m α m , i < m, when y m ∈ [x m+1 , M m ], Ĩ2 α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k Mm x m+1 e -(λm-λ n+1 ) (xm-ym) m<j≤n+1 (y m -x j ) k-1 m<j≤n y m -y j (1 + (λ m -λ j ) (y m -y j )) k dy m . If k > 1 then Ĩ2 α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 Mm x m+1 m<j≤n (y m -y j ) k-1 m<j≤n y m -y j (1 + (λ m -λ j ) (y m -y j )) k (y m -x n+1 ) k-1 dy m = α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 Mm x m+1 m<j≤n y m -y j 1 + (λ m -λ j ) (y m -y j ) k (y m -x n+1 ) k-1 dy m α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 α k m m<j≤n α m 1 + (λ m -λ j ) α m k Ĩ1 . If 0 < k ≤ 1 then Ĩ2 α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 Mm x m+1 m+1<j≤n+1 (y m -x j ) k-1 m<j≤n y m -x j+1 (1 + (λ m -λ j ) (y m -x j+1 )) k (y m -x m+1 ) k-1 dy m = α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 Mm x m+1 m<j≤n y m -x j+1 1 + (λ m -λ j ) (y m -x j+1 ) k (y m -x m+1 ) k-1 dy m α m (k-1) m i<m α m (1 + (λ i -λ m ) α m ) k e -(λm-λ n+1 ) αm/2 α k m m<j≤n α m 1 + (λ m -λ j ) α m k Ĩ1 .
By the structure of the root system A n , the case α n maximal is equivalent to the case α 1 maximal. Indeed, in formula (1.2), one does not assume that λ ∈ a + . We also know that ψ λ (e X ) is invariant under permutation of its λ argument. Hence one can re-write (1.2) by exchanging λ 1 and λ n+1 ,

ψ λ (e X ) = e λ(X) if n = 1 and ψ λ (e X ) = Γ(k (n + 1)) (Γ(k)) n+1 e λ 1 n+1 r=1 xr ( i<j≤n+1 (x i -x j )) 1-2 k xn x n+1 • • • x 1 x 2 ψ λ 0 (e Y ) n i=1 i j=1 (x j -y i ) n+1 j=i+1 (y i -x j ) k-1 i<j≤n (y i -y j ) dy 1 • • • dy n
where λ 0 (U ) = n+1 r=2 (λ r -λ 1 ) u r . We used the fact that

ψ [λ n+1 -λ 1 ,λ 2 -λ 1 ,...,λn-λ 1 ] (e Y ) = ψ [λ 2 -λ 1 ,...,λn-λ 1 ,λ n+1 -λ 1 ] (e Y ).
Conjecture 1.1 is equivalent to

J (n) π(X) 2 k-1 i<j≤n+1 ((1 + (λ i -λ j )(x i -x j )) k
where

J (n) = xn x n+1 • • • x 1 x 2 e -n i=1 (λ 1 -λ i+1 ) (y i -x i+1 ) i≤j≤n (x i -y j ) i<j≤n+1 (y i -x j ) k-1 i<j≤n y i -y j (1 + (λ i+1 -λ j+1 )(y i -y j )) k dy 1 . . . dy n .
The term J (n) corresponds to a constant multiple of e -λ(X) π(X) 2 k-1 ψ λ (e X ) in which we have replaced ψ λ 0 (e Y ) in (1.2) by its asymptotic expression conjectured in (1.1). One then proves the case α n maximal as one proves the case α 1 maximal.

This concludes the proof of the estimate (1.1) for X ∈ a + (recall that the formula (1.2) holds for X ∈ a + ). The estimates that we find for ψ λ (e X ) extend to X ∈ a + by continuity.

Applications

Estimates of the W -invariant Dunkl Heat Kernel

The following theorem establishes, for root systems A n and for any multiplicity k > 0, the estimates of the W -invariant Dunkl Heat Kernel conjectured in the Conjecture 18 of [START_REF] Graczyk | Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A n[END_REF].

Theorem 3.1. For the root systems of type A, we have for

X, Y ∈ a + p W t (X, Y ) t -d/2 e -|X-Y | 2 /(4 t) α>0 (t + α(X) α(Y )) k . Proof. Consider the relation (1.4) p W t (X, Y ) = t -d/2-γ e -|X-Y | 2 /(4 t) ψ X (Y /(2 t)) with γ = α>0 k(α) = k|Σ + |. From Theorem 2.6, we have p W t (X, Y ) t -d/2-γ e -(|X| 2 +|Y | 2 )/(4 t) e X,Y /(2 t) α>0 (1 + α(X) α(Y /(2 t))) k = t -d/2-γ+k |Σ + | e -(|X| 2 +|Y | 2 )/(4 t) e X,Y /(2 t) α>0 (2 t + α(X) α(Y )) k t -d/2 e -|X-Y | 2 /(4 t) α>0 (t + α(X) α(Y )) k .

Estimates of the W -invariant Dunkl Newton Kernel

The W -invariant Dunkl Newton kernel N W (X, Y ) is the kernel of the inverse operator of the Dunkl Laplacian ∆ W . It is the fundamental solution of the problem ∆ W u = f where f is given and |u(x)| → 0 as x → ∞. It is defined by

N W (X, Y ) = ∞ 0 p W t (X, Y ) dt,
where p W t (X, Y ) is the heat kernel of ∆ W . In [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF], we stated the following conjecture for the Weyl invariant Newton kernel for d ≥ 3 and proved it for complex root systems. 

J := ∞ 0 u 3 k-1 e -u du (a + b 1 u) k (a + b 2 u) k (a + b 3 u) k ln(2 + b 1 /a) (a + b 1 ) k (a + b 2 ) k (a + b 3 ) k . Proof. If b 1 ≤ a then ∞ 1 u 3 k-1 e -u du (a + a u) k ((a + b 2 ) u) k ((a + b 3 ) u) k ≤ J ≤ ∞ 0 u 3 k-1 e -u du a k (a + b 2 u) k (a + b 3 u) k
and the result follows in this case using Lemma 3.3 for the upper bound.

If

a ≤ b 1 ≤ b 2 ≤ b 3 then J 2 a/b 1 u 3 k-1 du (b 1 u) k (b 2 u) k (b 3 u) k ln(2 b 1 /a) (b 1 b 2 b 3 ) k while J a/b 1 0 u 3 k-1 du a k (b 2 u) k (b 3 u) k + 2 a/b 1 u 3 k-1 du (b 1 u) k (b 2 u) k (b 3 u) k + ∞ 2 u 3 k-1 e -u du (b 1 u) k (b 2 u) k (b 3 u) k 1 b k 1 b k 2 b k 3 + ln(2 b 1 /a) b k 1 b k 2 b k 3 + 1 b k 1 b k 2 b k 3
and the result follows in this case. 

N W (X, Y ) = ∞ 0 p W t (X, Y ) dt ∞ 0 t -d/2 e -|X-Y | 2 /(4 t) dt α>0 (t + α(X) α(Y )) k |X -Y | 2-d ∞ 0 u d/2-2 e -u du α>0 (|X -Y | 2 /(4 u) + α(X) α(Y )) k |X -Y | 2-d ∞ 0 u k|Σ + |+d/2-2 e -u du α>0 (|X -Y | 2 + α(X) α(Y ) u) k |X -Y | 2-d 1 α>0 (|X -Y | 2 + α(X) α(Y )) k |X -Y | 2-d α>0 |X -σ α Y | 2 k (we have used Lemma 3.3 and the fact that |X -σ α Y | 2 = |X -Y | 2 + 2 α(X) α(Y )).
Proposition 3.7. If d = 2, the Newton kernel in the A 1 case satisfies

N W (X, Y ) ln 1 + |X-σαY | 2 |X-Y | 2 |X -σ α Y | 2 k X, Y ∈ a + .
Here, it is important to recall that for X, Y ∈ a + , we have |X -σ α Y | ≥ |X -Y | and therefore, the numerator of the last expression is at least ln 2 for X = Y . This remark also applies to the estimate in Proposition 3.8.

Proof. With computations similar as in the case d ≥ 3, using Lemma 3.4,

N W (X, Y ) = ∞ 0 t -1 e -|X-Y | 2 /(4 t) dt (t + α(X) α(Y )) k ∞ 0 u k-1 e -u du (|X -Y | 2 + α(X) α(Y ) u) k ln(2 + α(X) α(Y )/|X -Y | 2 ) (|X -Y | 2 + α(X) α(Y )) k = ln 2 |X-Y | 2 +α(X) α(Y ) |X-Y | 2 (|X -Y | 2 + α(X) α(Y )) k = ln 3 2 + 1 2 |X-σαY | 2 |X-Y | 2 (|X -Y | 2 + α(X) α(Y )) k ln 1 + |X-σαY | 2 |X-Y | 2 |X -σ α Y | 2 k . Proposition 3.8. If d = 2, the Newton kernel in the A 2 case satisfies N W (X, Y ) ln 1 + |X-σω Y | 2 k |X-Y | 2 |X -σ α Y | 2 k |X -σ β Y | 2 |X -σ α+β Y | 2 k , X, Y ∈ a + ,
where ω gives the minimum of |X -σ ω Y | for ω ∈ {α, β}.

Proof. With computations similar as in the case d ≥ 3, using Lemma 3.5,

N W (X, Y ) ∞ 0 t -1 e -|X-Y | 2 /(4 t) dt (t + α(X) α(Y )) k (t + β(X) β(Y )) k (t + (α + β)(X) (α + β)(Y )) k ∞ 0 u 3 k-1 e -u du η∈{α,β,α+β} (|X -Y | 2 + η(X) η(Y ) u) k ln(2 + ω(X) ω(Y )/|X -Y | 2 ) η∈{α,β,α+β} (|X -Y | 2 + η(X) η(Y )) k ln 1 + |X-σω Y | 2 |X-Y | 2 |X -σ α Y | 2 k |X -σ β Y | 2 k |X -σ α+β Y | 2 k .
where ω gives the minimum of |X -σ ω Y | for ω ∈ {α, β}.

Remark 3.9. In the Dunkl analysis, an important role is played by the intertwining operator V k , defined as a unique linear isomorphism on the space of polynomial functions on R d which intertwines the Dunkl operators with the usual partial derivatives:

T ξ V k = V k ∂ ξ for all ξ ∈ R d
and is normalized by V k (1) = 1.

The following general formula for the Dunkl Newton kernel N k (x, y) involving the intertwining operator V k was proven in [START_REF] Gallardo | Newtonian potentials and subharmonic functions associated to root systems[END_REF]:

N k (X, Y ) = 2 2 γ ((d -2)/2) γ |W | (d -2) w d π(ρ) V k (|Y | 2 -2 X, • + |X| 2 ) (2-d-2 γ)/2 (Y )
(we are using a slightly different normalization of the operator V k than [START_REF] Graczyk | Harmonic and stochastic analysis of Dunkl processes[END_REF][START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF], see [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF] for details.) Little is known explicitly on the intertwining operator. Theorem 3.6 and the formula N W (X, , Y ) = Fractional powers of the Dunkl Laplacian and related semigroups and processes were considered for s = 1 in [15, p.75], [16, Section 5] and for any s ∈ (0, 2) in [START_REF] Bouzeffour | On the fractional Dunkl Laplacian[END_REF][START_REF] Rejeb | Some results related to the fractional Dunkl Laplacian[END_REF]. Stable semigroups on Riemannian symmetric spaces of non-compact type were studied in [START_REF] Getoor | Infinitely divisible probabilities on the hyperbolic plane[END_REF][START_REF] Graczyk | Transition density estimates for stable processes on symmetric spaces[END_REF].

Like the heat semigroup p W t (X, Y ), the densities h W t (X, Y ) are to be considered with respect to the Dunkl weight function ω k (Y ) on R d . We have

h W t (X, Y ) = ∞ 0 p W u (X, Y ) η t (u) du
where η t (u) is the density of the s/2-stable subordinator, i.e. of a positive Lévy process (Y t ) t>0 with the Laplace transform E (exp(z Y t )) = exp(-t z s/2 ), z > 0 (see [START_REF] Bertoin | Lévy Processes[END_REF] for more details). Denote by h R d t (X, Y )) t≥0 the s-stable rotationally invariant semigroup on R d , with generator (-∆) s/2 . It is known ( [START_REF] Blumenthal | Markov processes and potential theory[END_REF] Theorem 3.12. Consider the W -invariant Dunkl Laplacian in the A n case with multiplicity k > 0.

Then for X, Y ∈ a + ,

h W t (X, Y ) h R d t (X, Y ) α>0 (t 2/s + |X -σ α Y | 2 ) k h R d t (X, Y ) α>0 (t 2/s + |X -Y | 2 + α(X)α(Y )) k .

Lemma 3 . 5 .

 35 Suppose k > 0, a ≥ 0 and 0 ≤ b 1 ≤ b 2 ≤ b 3 then

Theorem 3 . 6 .

 36 For the root system A n and d ≥ 3, we have for X, Y ∈ a + N W (X, Y ) |X -Y | 2-d α>0 |X -σ α Y | 2 k . Proof. We have, using Theorem 3.1 and the change of variables u = |X -Y | 2 /(4 t)

Corollary 3 . 10 .

 310 w∈W N k (w X, Y ) imply the following explicit asymptotic formula. For the root system A n and d ≥ 3, we have forX, Y ∈ a + V k (|Y | 2 -2 |W | w∈W w X, • + |X| 2 ) (2-d-2 γ)/2 (Y ) |X -Y | 2-d α>0 |X -σ α Y | 2 k .3.3 Heat semigroups for fractional powers of ∆ W kLet s ∈ (0, 2). The fractional powers (-∆ W k ) s/2 of the W -invariant Dunkl Laplacian are the infinitesimal generators of important semigroups (h W t (X, Y )) t≥0 , called W -invariant Dunkl s-stable semigroups.

  ) that + |X -Y | 2 ) (d+s)/2 . (3.1) Remark 3.11. It is useful to note that min t -d/s , t|X -Y | -(d+s) = t -d/s if and only if t 2/s ≥ |X -Y | 2 .

	h R d t (X, Y ) min	1 t d/s ,	t |X -Y | d+s	(t 2/s	t
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Conjecture 3.2. For X, Y ∈ a + and d ≥ 3, we have α) . In this section, we prove the conjecture in the case of root systems of type A and prove a similar result in the case d = 2.

The next three lemmas will be useful to derive sharp estimates for the Newton kernel.

Let Λ be the (possibly empty) set of indices where a ≤ b i .

(we understand an empty product to be equal to 1).

Lemma 3.4. Suppose k > 0, a > 0 and b ≥ 0. Then

and the result holds. We now assume a ≤ b. We then have

Proof. The proof is inspired by the proof of [4, Theorem 3.1] providing estimates of stable semigroups on fractals.

Given Remark 3.11, it will make sense to consider the cases t 2/s ≥ |X -Y | 2 and t 2/s ≤ |X -Y | 2 separately. In the proof, m will denote the number of positive roots.

We start by showing that our estimate is an upper bound with an appropriate constant. In [4, (14), page 168], it it shown that the subordinator density η t (u) satisfies

Hence, using our estimates of the W -invariant Dunkl heat kernel in Theorem 3.1 and the change of variable u = |X -Y | 2 /(4 w), we have

with an application of Lemma 3.3 to get the last equivalence. This proves the upper bound in the case |X -Y | 2 ≥ t 2/s . We use Theorem 3.1 and the inequality (3.2) again with the change of variable u = t 2/s w -2/s . Let Λ be the set of α > 0 such that t 2/s ≤ α(X) α(Y ) with m the number of elements in Λ. We have

This proves the upper bound in the case |X -Y | 2 ≤ t 2/s . Now we will justify the lower bound. Recall (see [4, (9,10), page 167] or [12, (9), page 89]) that for u ≥ t 2/s , we have

If |X -Y | 2 ≥ t 2/s then using formula (3.3), Theorem 3.1 and the change of variable u = |X -Y | 2 /(4 w), we have

which proves the lower bound in that case. Now assume |X -Y | 2 ≤ t 2/s . We use formula (3.3) and Theorem 3.1. Then, since

u) ≤ 0 for u ≥ t 2/s , using the change of variable u = t 2/s w, we have