Mitigating errors by quantum verification and post-selection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Mitigating errors by quantum verification and post-selection

Résumé

Correcting errors due to noise in quantum circuits run on current and near-term quantum hardware is essential for any convincing demonstration of quantum advantage. Indeed, in many cases it has been shown that noise renders quantum circuits efficiently classically simulable, thereby destroying any quantum advantage potentially offered by an ideal (noiseless) implementation of these circuits. Although the technique of quantum error correction (QEC) allows to correct these errors very accurately, QEC usually requires a large overhead of physical qubits which is not reachable with currently available quantum hardware. This has been the motivation behind the field of quantum error mitigation, which aims at developing techniques to correct an important part of the errors in quantum circuits, while also being compatible with current and near-term quantum hardware. In this work, we present a technique for quantum error mitigation which is based on a technique from quantum verification, the so-called accreditation protocol, together with post-selection. Our technique allows for correcting the expectation value of an observable $O$, which is the output of multiple runs of noisy quantum circuits, where the noise in these circuits is at the level of preparations, gates, and measurements. We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise. Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol. We validate our findings by running our technique on currently available quantum hardware.

Dates et versions

hal-03452702 , version 1 (27-11-2021)

Identifiants

Citer

Rawad Mezher, James Mills, Elham Kashefi. Mitigating errors by quantum verification and post-selection. 2021. ⟨hal-03452702⟩
77 Consultations
0 Téléchargements

Altmetric

Partager

More