
HAL Id: hal-03452663
https://hal.science/hal-03452663

Submitted on 27 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assess Queries for Interactive Analysis of Data Cubes
Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Panos

Vassiliadis

To cite this version:
Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Panos Vassiliadis. Assess Queries for
Interactive Analysis of Data Cubes. 24th International Conference on Extending Database Technology
(EDBT)„ Mar 2021, Nicosia, Cyprus. �10.5441/002/edbt.2021.12�. �hal-03452663�

https://hal.science/hal-03452663
https://hal.archives-ouvertes.fr

AssessQueries for Interactive Analysis of Data Cubes
Matteo Francia

DISI - University of Bologna
Bologna, Italy

m.francia@unibo.it

Matteo Golfarelli
DISI - University of Bologna

Bologna, Italy
matteo.golfarelli@unibo.it

Patrick Marcel
University of Tours

Blois, France
patrick.marcel@univ-tours.fr

Stefano Rizzi
DISI - University of Bologna

Bologna, Italy
stefano.rizzi@unibo.it

Panos Vassiliadis
University of Ioannina

Ioannina, Greece
pvassil@cs.uoi.gr

ABSTRACT
Assessment is the process of comparing the actual to the expected
behavior of a business phenomenon and judging the outcome of
the comparison. In this paper we propose assess, a novel query-
ing operator that supports assessment based on the results of a
query on a data cube. This operator requires (1) the specification
of an OLAP query over a measure of a data cube, to define the
target cube to be assessed; (2) the specification of a reference cube
of comparison (benchmark), which represents the expected per-
formance of the measure; (3) the specification of how to perform
the comparison between the target cube and the benchmark, and
(4) a labeling function that classifies the result of this comparison
using a set of labels. After introducing an SQL-like syntax for
our operator, we formally define its semantics in terms of a set
of logical operators. To support the computation of assess we
propose a basic plan as well as some optimization strategies, then
we experimentally evaluate their performance using a prototype.

1 INTRODUCTION
Assume an analyst wants to assess the state of milk sales in France
for 2019. She will have to issue a query against an OLAP server to
obtain a cube, and then ask: “how good, normal, surprising, etc.
is the situation I observe for this particular cube as compared to
some reference data?”. Assessment, as a process, is about compar-
ing the actual to the expected behavior and judging, for instance
through a labeling, the outcome of the comparison. Examples of
how to assess the status of a cube (or of each single cell of a cube)
include its comparison to:

(1) . . . a predefined target goal for the sales, e.g., because of the
existence of a predefined KPI (Key Performance Indicator);

(2) . . . a predefined golden standard, acting as a reference
benchmark (e.g., comparing French milk sales against the
EU average) or, as an example in another domain, compar-
ing a stock value to the S&P 500 index);

(3) . . . sibling cells, i.e., cells describing a similar context and
sharing some dimension values (i.e., compare sales for
yogurt and ice-cream in Greece in 2019, or milk sales in
Spain and Italy for 2019);

(4) . . . the expected status of the cube as can be predicted from
the past (e.g., compare actual milk sales in December 2018
with those that can be predicted from the sales of the
previous six months).

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(5) . . . a new, derived measure produced via a function whose
formula involves other measures (e.g., profit=storeSales-
storeCost).

This kind of tabular data assessment is consistently reported
as a frequent activity of data explorers [3, 12, 23] who often use
SQL in combination with languages like Python and R. Notice-
ably, assessment is one of the user’s intentions considered in the
Intentional Analytics Model (IAM), which has been envisioned
as a way to tightly couple OLAP and analytics [4, 21]. The IAM
approach relies on two major cornerstones: (i) the user explores
the data space by expressing her analysis intentions rather than
by explicitly stating what data she needs, and (ii) in return she
receives both multidimensional data and knowledge insights in
the form of annotations of interesting subsets of data. Among
the five intention operators proposed, assess is meant to judge a
cube measure with reference to some baseline.

In this paper we adopt the OLAP-centered nature of the IAM
and operate in the context of a traditional OLAP environment
with cubes, dimensions, hierarchies, and measures. This allows
us to take advantage of the neat logical-level schema structure of
OLAP and focus on the essence of the paper, which is proposing
an assess operator to complement the traditional OLAP roll-up’s
and drill-down’s. The idea of how to perform an assessment for
the measure values of a cube encompasses (a) the specification
of another cube, called benchmark, that represents the expected
or desirable performance of the measure; (b) the comparison
of the measure under investigation to the benchmark measure
(for instance via a simple mathematical difference); and (c) the
characterization, or labeling, of the status of the original cell
based on the result of the comparison.

Example 1.1. Given a SALES cube, the user’s intention de-
scribed above can be expressed with this statement:

with SALES

for year = ’2019’, product = ’milk’
by year, product

assess quantity against 1000

using ratio(quantity, 1000)

labels {[0, 0.9): bad, [0.9, 1.1]: acceptable, (1.1,inf): good}

Intuitively, the total quantity of milk sold in France in 2019 is
labeled as bad/acceptable/good depending on the ratio with the
target value 1000. □

Summary of contributions. Our contributions can be listed
as follows:

• We introduce a novel operator, assess, that allows to au-
tomatically evaluate and characterize the result of a cube
query.

Series ISSN: 2367-2005 121 10.5441/002/edbt.2021.12

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.12

• We introduce alternatives for specifying benchmarks, com-
parison, and labeling schemes against which the results
of a cube query can be compared and evaluated. For each
alternative we provide rigorous definitions and semantics,
based on a set of logical operators, as well an SQL-like
syntax for the specification of an assess statement.

• We discuss alternative plans for the execution of assess
statements and experimentally evaluate them for their
efficiency and scalability.

Roadmap. In Section 2 we formalize the involved concepts
and give definitions. In Section 3 we explain how assessments
are computed and introduce the alternatives of the assess opera-
tor, while in Section 4 we provide its syntax and semantics. In
Section 5 we present alternative strategies for query execution
and in Section 6 we experimentally evaluate them. In Section 7
we discuss the related work. Finally, in Section 8 we summarize
our findings and discuss our future work.

2 FORMALITIES
To simplify the formalization, we will restrict to consider linear
hierarchies.

Definition 2.1 (Hierarchy and Cube Schema). A hierarchy is a
triple ℎ = (𝐿, ⪰, ≥) where:
(i) 𝐿 is a set of categorical levels, each coupled with a domain

of values (a.k.a. as members), 𝐷𝑜𝑚(𝑙) ;
(ii) ⪰ is a roll-up total order of 𝐿; and
(iii) ≥ is a part-of partial order of

⋃
𝑙 ∈𝐿 𝐷𝑜𝑚(𝑙).

The part-of partial order is such that, for each couple of levels
𝑙 and 𝑙 ′ such that 𝑙 ⪰ 𝑙 ′, for each member 𝑢 ∈ 𝐷𝑜𝑚(𝑙) there is
exactly one member 𝑢 ′ ∈ 𝐷𝑜𝑚(𝑙 ′) such that 𝑢 ≥ 𝑢 ′.

A cube schema is a couple C = (𝐻,𝑀) where:
(i) 𝐻 is a set of hierarchies;
(ii) 𝑀 is a tuple1 of numerical measures, each coupled with one

aggregation operator 𝑜𝑝 (𝑚) ∈ {sum, avg, . . .}.

Example 2.2. As a working example we will use cube schema
SALES = (𝐻,𝑀), where

𝐻 = {ℎDate, ℎCustomer, ℎProduct, ℎStore},
𝑀 = ⟨quantity, storeSales, storeCost⟩,
date ⪰ month ⪰ year,

customer ⪰ gender,

product ⪰ type ⪰ category,

store ⪰ city ⪰ country

and 𝑜𝑝 (quantity) = 𝑜𝑝 (storeSales) = 𝑜𝑝 (storeCost) = sum. As
to the part-of partial order we have, for instance, Fresh Fruit ≥
Fruit and 1997-04-15 ≥ 1997. □

Aggregation is the basic mechanism to query cubes, and it
is captured by the following definition of group-by set. As nor-
mally done when working with the multidimensional model, if
a hierarchy ℎ does not appear in a group-by set it is implicitly
assumed that a complete aggregation is done along ℎ.

Definition 2.3 (Group-by Set and Coordinate). Given cube schema
C = (𝐻,𝑀), a group-by set of C is a tuple of levels, at most one
from each hierarchy of 𝐻 . The partial order induced on the set
of all group-by sets of C by the roll-up orders of the hierarchies
1When dealing with tuples we will write 𝑡1 = 𝑡2 |𝑠𝑜𝑟𝑡 (𝑡1)

to denote that tuple 𝑡1 is
contained in tuple 𝑡2; (𝑡1, 𝑡2) to denote the tuple that concatenates 𝑡1 and 𝑡2; 𝑡 |𝑋
to denote the projection of tuple 𝑡 on its component(s) 𝑋 [1].

in 𝐻 , is denoted with ⪰𝐻 . A coordinate of group-by set 𝐺 is a
tuple of members, one for each level of 𝐺 . Given coordinate 𝛾 of
group-by set 𝐺 and another group-by set 𝐺 ′ such that 𝐺 ⪰𝐻 𝐺 ′,
we will denote with 𝑟𝑢𝑝𝐺′ (𝛾) the coordinate of 𝐺 ′ whose mem-
bers are related to the corresponding members of 𝛾 in the part-of
orders, and we will say that 𝛾 roll-ups to 𝑟𝑢𝑝𝐺′ (𝛾). By definition,
𝑟𝑢𝑝𝐺 (𝛾) = 𝛾 .

Definition 2.4 (Detailed Cube). Let𝐺0 be the top group-by set
in the ⪰𝐻 partial order (i.e., the finest one). A detailed cube over
C is a partial function 𝐶0 that maps the coordinates of 𝐺0 to a
numerical value for each measure𝑚 in𝑀 .

The function is partial since cubes are normally sparse: not
all possible business events actually occur, and a coordinate par-
ticipates in the function only if the event it describes took place.
Each coordinate𝛾 that participates in𝐶0, with its associated tuple
𝑡 of measure values, is called a cell of 𝐶0 and denoted 𝑐 = ⟨𝛾, 𝑡⟩.
With a slight abuse of notation, we will also consider a cube as
the set of the coordinates corresponding to its cells, so we will
write 𝛾 ∈ 𝐶0 to state that ⟨𝛾, 𝑡⟩ is a cell of 𝐶0.

Example 2.5. Three group-by sets of SALES are

𝐺0 = ⟨date, customer, product, store}⟩
𝐺1 = ⟨date, type, country⟩
𝐺2 = ⟨month, category⟩

where 𝐺0 ⪰𝐻 𝐺1 ⪰𝐻 𝐺2. 𝐺0 is the top group-by set. 𝐺1 ag-
gregates sales by date, product type, and store country (for all
customers), 𝐺2 by month and category (for all customers and
stores). Examples of coordinates of the three group-by sets are,
respectively,

𝛾0 = ⟨1997-04-15, Eric Long, Lemon, SmartMart⟩
𝛾1 = ⟨1997-04-15, Fresh Fruit, Italy⟩
𝛾2 = ⟨1997-04, Fruit⟩

where 𝑟𝑢𝑝𝐺1 (𝛾0) = 𝛾1 and 𝑟𝑢𝑝𝐺2 (𝛾1) = 𝛾2. An example of cell
of a detailed cube over SALES is ⟨𝛾0, ⟨quantity = 5, storeSales =
20, storeCost = 12⟩⟩. □

Definition 2.6 (Cube Query and Derived Cube). Given a detailed
cube 𝐶0 over schema C, a query over 𝐶0 is a quadruple 𝑞 =

(𝐶0,𝐺𝑞, 𝑃𝑞, 𝑀𝑞) where:
(i) 𝐺𝑞 is a group-by set of C;
(ii) 𝑃𝑞 is a (possibly empty) set of selection predicates each

expressed over one level of 𝐻 ;
(iii) 𝑀𝑞 ⊆ 𝑀 .
The result of 𝑞 is called a derived cube, i.e., a partial function that
assigns to each coordinate 𝛾 of 𝐺𝑞 satisfying the conjunction
of the predicates in 𝑃𝑞 and to each measure𝑚 in 𝑀𝑞 the value
computed by applying 𝑜𝑝 (𝑚) to the values of𝑚 for all the coor-
dinates of 𝐶0 that roll-up to 𝛾 , provided that such coordinates of
𝐶0 exist.

Like detailed cubes, even derived cubes can be sparse; a co-
ordinate 𝛾 does not participate in the function if there is no
coordinate in 𝐶0 that rolls-up to 𝛾 . Like for detailed cubes, we
will write 𝛾 ∈ 𝐶 to state that 𝛾 is a coordinate of the derived cube
𝐶 . Consistently with this, we will denote with |𝐶 | the number of
coordinates in 𝐶 .

Example 2.7. A cube query over SALES is 𝑞 = (𝐶0,𝐺𝑞, 𝑃𝑞, 𝑀𝑞)
where 𝐺𝑞 = ⟨product, country⟩, 𝑃𝑞 = {type = ’Fresh Fruit’,
country = ’Italy’}, and 𝑀𝑞 = ⟨quantity⟩. A cell of the resulting

122

s e l e c t country , product , sum (qu an t i t y) as q u an t i t y
2 from s a l e s s

j o i n cus tomer c on c . ckey = s . ckey
4 j o i n p roduc t p on p . pkey = s . pkey

where type = ' Fre sh F r u i t ' and count ry = ' I t a l y '
6 group by country , p roduc t

Listing 1: Getting the sales of fresh fruit products in Italy
(Example 2.7)

cube is ⟨⟨Apple, Italy⟩, ⟨quantity = 100⟩⟩. The SQL formulation
of 𝑞 on a star schema is given in Listing 1. □

3 COMPUTING AN ASSESSMENT
Basically, the assessment of the values of a measure𝑚 in a cube
𝐶 (called target cube) is done in three steps:

(1) the specification of a benchmark, i.e., a cube 𝐵 such that
(i) its cells can be mapped one-to-one with the cells of 𝐶 ,
and (ii) it has a measure𝑚′ representing the expected/ac-
ceptable/normal performance of𝑚;

(2) the cell-wise comparison of𝑚 to𝑚′, which can be done
in a basic way (e.g., algebraic/absolute/normalized differ-
ence, percentage) or using more elaborate schemes (e.g.,
z-scoring), possibly after applying some transformations
to𝑚 and𝑚′ (e.g., to compute derived measures);

(3) the characterization, or labeling, of the status of each cell
of 𝐶 based on the result of the comparison; in the sim-
plest case, this is done using a set of rules that map the
result of the comparison to a set of predefined labels (e.g.,
“insufficient”, “excellent”, etc.).

3.1 Benchmarks
The specification of the benchmark is given by the analyst at the
posing of the query. Thus, the question is “tell me how we are
doing with respect to this benchmark”.

A thorough comparison of a target cube 𝐶 against a bench-
mark 𝐵 would require that the latter comes with the same level
members so that, for each cell of 𝐶 , we can map onto a cell of 𝐵.
However, in practical cases, due to cube sparsity, there is no guar-
antee that all cells can be mapped —especially if the benchmark
is retrieved from the web or other external data sources. Thus,
in the following we provide a broad definition of the conditions
under which two cubes are joinable, i.e., one of them can be used
as a benchmark to assess the other; in this definition, we will just
require that the two cubes have the same group-by set.

Definition 3.1 (Cube Joinability). Let a target cube𝐶 over cube
schema C and a benchmark 𝐵 over B (where possibly, but not
necessarily, B = C) be given. Let 𝑞 = (𝐶0,𝐺𝐶 , 𝑃𝐶 , 𝑀𝐶) and
𝑞′ = (𝐵0,𝐺𝐵, 𝑃𝐵, 𝑀𝐵) be the queries that resulted in 𝐶 and 𝐵,
respectively. We say that 𝐶 and 𝐵 are joinable if

𝐺𝐶 = 𝐺𝐵

In OLAP terms, two cubes are joinable if a drill-across is possible
between 𝐶 and 𝐵.

Let C = (𝐻,𝑀) be the schema of the target cube 𝐶 , and 𝐶0 be
the detailed cube from which 𝐶 is derived. There are four types
of benchmarks we consider in our approach:

• Constant benchmarks. Here the user simply wants to assess
the cells of the target cube 𝐶 against some fixed value, as
typically done with key performance indicators. In this
case, the benchmark 𝐵 has schema B = (𝐻, ⟨𝑚𝑐𝑜𝑛𝑠𝑡 ⟩);

its cells have exactly the same coordinates as 𝐶 , and all
of them store a constant value in𝑚𝑐𝑜𝑛𝑠𝑡 . The cell-to-cell
mapping is trivially based on equality of coordinates.

• External benchmarks. Here the user’s goal is to assess the
target cube against the data stored in a cube with schema
B = (𝐻 ′, 𝑀 ′). In principle, as long asB includes the group-
by of the target cube (which ensures joinability), it is not
necessary to impose further constraints on B. However,
for simplicity, in the following we will assume that the
external benchmark has been reconciled with the target
cube so that 𝐻 = 𝐻 ′ and that all necessary transcodings
to level members have been applied (see e.g. [10] for an
approach that can be pursued to this end). Thus, also in
this case, mapping is based on equality of coordinates.

• Sibling benchmarks. The idea here is to compare the values
of a measure in a slice on member 𝑢 ∈ 𝐷𝑜𝑚(𝑙) with the
values of the same measure in another slice of 𝐶 related
to a sibling member 𝑢𝑠𝑖𝑏 ∈ 𝐷𝑜𝑚(𝑙) (e.g., assess the sales
of fruit in Italy with reference to those in France). In this
case, the benchmark has the same schema C of the target
cube. Both cubes have the same group-by set, but while
the cells in 𝐶 are those obtained from 𝐶0 using predicate
𝑙 = 𝑢, those in 𝐵 are obtained from 𝐶0 using predicate
𝑙 = 𝑢𝑠𝑖𝑏 . Then the cell-to-cell mapping is established by
replacing 𝑢 with 𝑢𝑠𝑖𝑏 in each coordinate of 𝐶 .

• Past benchmarks. In this case the user wants to assess the
values taken by a measure𝑚 in some time slice with the
values that can be predicted for𝑚 based on a number of
past time slices. Like in the previous case, it is B = C. The
cells of 𝐵 have exactly the same coordinates as 𝐶 , but the
(actual) values of𝑚 are replaced with the predicted ones.

Example 3.2. Let𝐶 be the derived cube obtained by query 𝑞 in
Example 2.7 (total quantity sold by product and country for fresh
fruit products and Italy). An example of (joinable) sibling bench-
mark is 𝐵 returned by 𝑞′, being 𝑞′ obtained from 𝑞 by replacing
Italy with France. 𝐵 can be used to assess the sales of fresh fruit
in Italy against those in France. The cell-to-cell mapping is estab-
lished by replacing Italy with France; so, for instance, coordinate
⟨Apple, Italy⟩ is mapped onto ⟨Apple, France⟩. □

3.2 Comparison & Transformation
The essence of assessment is to contrast the actual performance
against its expected value. Thus, the goal of this step is to provide
the means to express and perform the evaluation of how far apart
the query result and the benchmark are. We refer to this action
as comparison to express the idea that this is not necessarily
a simple measure difference. Modeling-wise, we assume that a
library of comparison functions, all with signature 𝛿 : R × R→
R, is available to the users. Practically, a cell-wise comparison
between measures of the target and benchmark can be easily
implemented via different functions obeying the above signature,
the simplest choice being a difference (either algebraic, or absolute,
or normalized, etc.). In our examples, we will use two library
functions of our system, named difference and ratio.

One could possibly expect that, once the target cube and the
benchmark have been obtained, their comparison is immediately
applicable. Interestingly, this is not always the case, since the
comparison may require the computation of derived measures.
For instance, with reference to the SALES cube, comparing the
actual profit for some given sales requires to compute a derived
measure as profit = storeSales− storeCost. Clearly, this requires

123

de f d i f f e r e n c e (a , b) :
2 r e t u r n a − b

4 de f minmaxnorm (a) :
minv = a . min ()

6 maxv = a . max ()
r e t u r n (a − minv) / (maxv − minv)

Listing 2: Implementation of the difference and
minmaxnorm functions

that either of, or both, the target and the benchmark measures
pass through a set of transformations to be actually compara-
ble. The transformations that are applicable to target cubes and
benchmarks can be simple (like the above mentioned one, where
the measures are computed via simple per-cell arithmetic opera-
tions), or more complex ones (like ranking or z-scoring) which
require a holistic scan of the entire cube and cannot produce the
new value on a per-cell basis.

We forego the formalities of the computation of the derived
measures (to be discussed in Section 4.2) and simply mention
that we assume a functional-style composition of the invocation
of functions from our library of functions in a nestable way. For
example, the min-max normalization of the difference between
storeSales and target value 1000 is computed as

minMaxNorm(difference(storeSales,1000))

Listing 2 shows the implementation of these two functions in
Python using Pandas DataFrames.

3.3 Labeling
The goal of this step is to associate each cell of the target cube
with a label, taken from a predefined set, to express an evaluation
of that cell with reference to the benchmark. Clearly, ordinal
labeling will frequently be the case, however, for the sake of
generality we assume labels to be nominal, i.e., categorical. Given
a finite set of distinct values 𝐿, a labeling function has the form
_ : R→ 𝐿. Each value resulting from the comparison of a target
cube cell with the corresponding benchmark cell is fed to the
labeling function, and assigned the appropriate label.

There are some properties of interest for a labeling function:
• The labeling of comparison values is generic enough to
also incorporate the labeling based on the actual value of
the cell, without the usage of any benchmark and com-
parison. One simply needs to assign a fixed benchmark of
zeros for all cells and a simple arithmetic difference as the
comparison function.

• A labeling function should partition the values of the com-
parison into equivalence classes, i.e., there must be a com-
plete mapping of the values of the domain of the compari-
son to a set of non-overlapping, disjoint labels. Thus, every
cell of the result is assigned to exactly one label.

• The labeling function does not necessarily have to be pre-
defined before the query. Assuming, for example, that a
Likert-like scale based on the absolute difference value
is to be adopted, the labeling function is produced after
the results are obtained and split into a fixed number of
groups (say 5).

With reference to the last point, in the sequel we introduce
and explain two cases of labeling functions.

3.3.1 Labeling based on explicit ranges. In this case, we label
each cell based on the result of the comparison between the

de f 5 s t a r s (a) :
2 r e t u r n pd . cu t (a , [−1 , −0 . 6 , −0 . 2 , 0 . 2 , 0 . 6 , 1 . 0] ,

i n c l u d e _ l owe s t = True ,
4 l a b e l s =[" ∗ " , " ∗ ∗ " , " ∗ ∗ ∗ " , " ∗ ∗ ∗ ∗ " , " ∗ ∗ ∗ ∗ ∗ "])

Listing 3: Implementation of the 5stars function

measure values of (a) the target and (b) the benchmark cube, using
a set of explicitly-specified rules. This is the case, e.g., where the
organization has predetermined goals to achieve (expressed via
the benchmark), and the (positive or negative) deviation from
these goals characterizes the extent of success or failure.

Example 3.3. Let a query be given that computes the total
store sales by customer gender, returning a target cube 𝐶 with
two cells, say 𝐶 = {⟨male, 4400⟩, ⟨female, 6900⟩}. Assume that
we have specified an external benchmark with two cells also, 𝐵 =

{⟨male, 5400⟩, ⟨female, 6400⟩}. Finally, assume that we specify a
range-based labeling function called 5stars to be applied over
the min-max normalized difference 𝑥 of the target cube and the
benchmark:

_5stars (𝑥) =

*, if − 1 ≤ 𝑥 ≤ −0.6
**, if − 0.6 < 𝑥 ≤ −0.2
***, if − 0.2 < 𝑥 ≤ 0.2
****, if 0.2 < 𝑥 ≤ 0.6
*****, if 0.6 < 𝑥 ≤ 1

Then, the two cells are labeled as ’*’ and ’*****’, respectively.
Listing 3 shows the implementation of the 5stars function in
Python using Pandas DataFrames; the cut function of Pandas
bins values into discrete intervals. □

3.3.2 Labeling based on the overall value distribution. Explic-
itly providing rules and ranges for the labels has the benefit that
the decision on which label to give to a cell of the target cube
is local, i.e., it depends only on the value of the cell’s measure,
the benchmark’s measure, and the result of their comparison.
However, the labeling function can also be based on a holistic
assessment of the overall distribution of the values of the compar-
ison function. In this case, the labeling function first groups the
cells of the target cube based on the result of their comparison
with their respective benchmark cell, and then gives a label to
each group. The simplest possibility would be to split the com-
parison value into quartiles or, more generally, into 𝑘 groups,
and label each group as ’top-1’, ’top-2’, . . . , ’top-k’. This involves
simply the ranking of the values and the splitting of the ordered
set of cells into 𝑘 groups. Assuming a fixed set of 𝑘 labels, the
label is then determined by the position of a cell in the ranking.

Overall, labels can be assigned either by fixing the number of
labels to a constant number and constructing equi-depth or equi-
width histograms, or by allowing the system to come up with the
optimal number of clusters and assign cells accordingly. More
simplistic schemes (e.g., rounding the z-score of the comparison
values) can also be devised. Overall, the idea of these labeling
schemes is to avoid predefining ranges, and allowing labels to
adapt to the distribution of the comparison values.

4 SYNTAX & SEMANTICS OF THE ASSESS
OPERATOR

In this section, we formally define the syntax and semantics of
the assess operator. We begin by introducing in Section 4.1 a
user-friendly SQL-like syntax, to facilitate end users in posing

124

assessment queries with both expressive power and ease. Then,
we move on to define the semantics of the assess operator in
Section 4.3. To support this task, in Section 4.2 we preliminarily
define a set of logical operators.

4.1 Syntax
The general syntax for writing a statement based on the assess
operator includes three parts: one (consisting of the with, assess,
by, and for clauses) that specifies the target cube; one (consisting
of the against clause) that specifies the benchmark; one (consist-
ing of the using and labels clauses) that specifies the assessment
method. Importantly, as we will explain in Section 4.3, the bench-
mark specification drives the mapping of the assess syntax to the
logical operators defined in Section 4.2.

with 𝐶0 [for 𝑃] by 𝐺

assess|assess*𝑚 [against < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 >]

[using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 >] labels _

where 𝐶0 is a detailed cube (with schema C = (𝐻,𝑀)), 𝑚 is a
measure of 𝐶0, 𝑃 is a set of conjunctive selection predicates each
over one level of 𝐻 , 𝐺 is a group-by set of C, < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 > is
the benchmark specification, < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > specifies what will
be compared and how, and _ is a labeling function (optional parts
of the syntax are in brackets). While in assess only the cells of
the target cube that have a match in the benchmark are returned,
in the assess* variant all the cells of the target cube are returned,
possibly completed with null labels.

The target cube, 𝐶 , is defined by aggregating 𝐶0 on 𝐺 and
selecting the cells that meet the conjunctive predicates in 𝑃 .

As to the benchmark, its specification can take different forms:

• For constant benchmarks, the against clause has the form

against 𝑣

where 𝑣 is a value compatible with𝑚. The benchmark 𝐵

is characterized by 𝐺𝐵 = 𝐺𝐶 , 𝑃𝐵 = 𝑃𝐶 . 𝐵 has a measure
𝑚𝑐𝑜𝑛𝑠𝑡 which takes value 𝑣 in all cells. A particular case
is when the user wants to directly assess the measure
value without using any specific value. In this case the
against clause is omitted; as mentioned in Section 3.3, this
practically corresponds to adopting a dummy benchmark
where all cells are zeros.

• For external benchmarks, the against clause takes the form

against 𝐵.𝑚𝑏

where 𝐵 is a cube and𝑚𝑏 is one of its measures. Note that
𝐶 and 𝐵 are joinable only if they have the same group-by
set.

• In a sibling benchmark, the for clause must include a pred-
icate which slices the target cube on member 𝑢 of level
𝑙𝑠 ∈ 𝐺𝐶 . In this case,𝑚 is assessed against a benchmark
related to a different member of 𝑙𝑠 , say 𝑢𝑠𝑖𝑏 :

with < 𝑐𝑢𝑏𝑒 > for 𝑝1, . . . , 𝑝𝑘 , 𝑙𝑠 = 𝑢 by 𝐺

assess𝑚 against 𝑙𝑠 = 𝑢𝑠𝑖𝑏

using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > labels _

Here the benchmark is characterized by 𝐺𝐵 = 𝐺𝐶 and
𝑃𝐵 = 𝑃𝐶 \ {𝑝𝑠 } ∪ {(𝑙𝑠 = 𝑢𝑠𝑖𝑏)}. In practice, the slicing on
𝑢 is replaced by one on 𝑢𝑠𝑖𝑏 .

• In a past benchmark the syntax takes the form

with < 𝑐𝑢𝑏𝑒 > for 𝑝1, . . . , 𝑝𝑘 , 𝑙𝑡 = 𝑢 by 𝐺

assess𝑚 against past 𝑘

using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > labels _

where 𝑙𝑡 is a temporal level, 𝑙𝑡 ∈ 𝐺 , and 𝑘 is an integer.
Here the benchmark is isomorphic to 𝐶 , except that the
values of𝑚 are those predicted based on a time series of
length 𝑣 .

Finally, as to the assessment method, its specification is based
on the using and labels clauses.

• The using clause specifies a (nested) function that de-
scribes how the comparison is made, including possible
transformations to be made on measures (e.g., the compu-
tation of a derived measure). Here, a keyword benchmark
is used to distinguish, when necessary, the cells of the tar-
get cube from the corresponding ones in the benchmark.

• The labels clause specifies a labeling function, either based
on explicit ranges or on the overall value distribution, to
be applied to the result of the computation specified by
the using clause. A range-based labeling function can be
either predeclared by the user and given a name (e.g., 5star
in Example 3.3) or declared inline within the statement
by listing its set of ranges with the corresponding label;
the user is in charge of ensuring that the set of ranges is
complete and non-overlapping. A set of library labeling
function based on the value distribution (e.g., quartiles) is
also made available to users.

In all cases above, the result returned to the user includes, for
each cell, (i) its coordinate, (ii) the value of𝑚 for that coordinate,
(iii) the value of the benchmark measure, (iv) the value result-
ing from the comparison, and (v) the corresponding label. The
benchmark measure is𝑚𝑐𝑜𝑛𝑠𝑡 for constant benchmarks,𝑚 for
sibling and past benchmarks, and𝑚𝑏 for external benchmarks.

Example 4.1. The first example gives an absolute assessment
of the total monthly sales in terms of quartiles:

with SALES by month

assess storeSales labels quartiles

Similarly, sales can be assessed against a goal value, say 1000, via
a 5 star scale in the [0..1] range by first normalizing the difference
and then using the range-based labeling function specified in
Example 3.3:

with SALES by month

assess storeSales against 1000

using minMaxNorm(difference(storeSales,1000))

labels 5star

The following statement uses a sibling benchmark; for each prod-
uct of type fresh fruit, the total quantity sold in Italy is assessed
against the one in France. For each product, assessment is based
on the ratio between (i) the difference in quantities sold in Italy
and France, and (ii) the total sales of fresh fruit in Italy; this ratio

125

is computed using library function 𝑝𝑒𝑟𝑐𝑂 𝑓𝑇𝑜𝑡𝑎𝑙 .

with SALES

for type = ’Fresh Fruit’, country =’Italy’
by product, country

assess quantity against country = ’France’
using percOfTotal(difference(quantity, benchmark.quantity))

labels {[-inf, -0.2): bad, [-0.2,0.2]: ok, (0.2, inf]: good},

Finally, in the next statement we use a past benchmark; specifi-
cally, we assess the sales of a specific store in July 1997 against
the past four months:

with SALES

for month = ’1997-07’, store = ’SmartMart’
by month, store

assess storeSales against past 4

using ratio(storeSales, benchmark.storeSales)

labels {[0, 0.9): worse, [0.9, 1.1]: fine, (1.1,inf): better}

□

4.2 Logical operators
This section introduces the logical aspects behind the different
steps of the evaluation of an assess statement, formulated as
logical operators. Note that our aim is not to propose a logical
language for manipulating cubes (such languages exist, see e.g.
[2]) but to describe specific cube manipulations required to logi-
cally optimize assess statements. In particular, we do not detail
the classical (roll-up, etc.) cube manipulations.

We recall from Section 2 that a cube is defined as a partial
function that maps coordinates into tuples of measures. For a
cube 𝐶 and a coordinate 𝛾 such that 𝐶 (𝛾) = 𝑡 , we denote with
𝑐 = ⟨𝛾, 𝑡⟩ the cell defined by 𝐶 (𝛾) and we abusively note 𝑐 ∈ 𝐶 .
We define operators that respect the closure property, in the sense
that they operate on cubes and specify cubes.

Get. The first basic operator consists of obtaining the result of
a cube query. Given a cube 𝐶 over a schema C = (𝐻,𝑀), a set of
selection predicates 𝑃 and a group-by set𝐺 of C, the get operator
corresponds to the cube query 𝑞 = (𝐶,𝐺, 𝑃,𝑀), is denoted by
[𝑞], and defines the derived cube being the result of 𝑞. Note that
[(𝐶,𝐺0, ∅, 𝑀)] is simply noted [𝐶] in what follows. Besides, the
derived cube returned by get can be renamed using the notation
[(𝐶,𝐺, 𝑃,𝑀)] → 𝑛𝑎𝑚𝑒 .

Join ⊠. The join operation is essential for putting together the
target cube (𝐶1) and the benchmark (𝐶2). In OLAP terms this is a
drill-across operation, or join applied to cubes.

Let 𝐶1 and 𝐶2 be two joinable cubes over schemas C1 and
C2. As already stated, we assume for simplicity that the two
cubes share the same hierarchies, so that C1 = (𝐻,𝑀1) and
C2 = (𝐻,𝑀2).

𝐶1 ⊠𝐶2 = {⟨𝛾, (𝑡, 𝑡 ′)⟩|⟨𝛾, 𝑡⟩ ∈ 𝐶1, ⟨𝛾, 𝑡 ′⟩ ∈ 𝐶2}
The schema of the resulting cube is (𝐻, (𝑀1, 𝑀2)).

We also define a version of join where we allow partial joining
in the sense that join is made on a subset of the levels of 𝐻 .
Formally:

𝐶1 ⊠𝑙1,...,𝑙𝑚 𝐶2 = {⟨𝛾, (𝑡, 𝑡1, . . . , 𝑡𝑝)⟩|

⟨𝛾, 𝑡⟩ ∈ 𝐶1, ⟨𝛾 𝑗 , 𝑡 𝑗 ⟩ ∈ 𝐶2, 𝛾 |𝑙1,...,𝑙𝑚 = 𝛾
𝑗

|𝑙1,...,𝑙𝑚
, 𝑗 ∈ [1, . . . , 𝑝]}

Italy

Apple ‹quan%ty	 = 100›

Pear ‹quan%ty	 = 90›

Lemon ‹quan%ty	 = 30›

France

Apple ‹quan%ty	 = 150›

Pear ‹quan%ty	 = 110›

Lemon ‹quan%ty	 = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50,
percOfTotal	 = −0.23›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20,
percOfTotal	 = −0.09›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10,
percOfTotal	 = 0.05›

Italy France

Apple ‹quan%ty	 = 100› ‹quan%ty	 = 150›

Pear ‹quan%ty	 = 90› ‹quan%ty	 = 110›

Lemon ‹quan%ty	 = 30› ‹quan%ty	 = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50,
percOfTotal	 = −0.23, label = bad›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20,
percOfTotal	 = −0.09, label = ok›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10,
percOfTotal	 = 0.05, label = ok›

C B

D

E

F

G

C'

Italy

Apple ‹quan%ty	 = 100, qtyFrance	 = 150›

Pear ‹quan%ty	 = 90, qtyFrance	 = 110›

Lemon ‹quan%ty	 = 30, qtyFrance	 = 20›

D'

Figure 1: Derived cubes resulting from the application of
logical operators for the sibling intention in Example 4.5

Note that, differently from the (natural) join defined above, this
partial join is not commutative.

Finally, the assess* syntactical variant (that also returns the
non-matching cells of the target cube) uses a left-outer join
𝐶1 ∗ ⊠ 𝐶2 where non-matching cells are completed with null
values.

Example 4.2. Figure 1 shows the results, 𝐶 and 𝐵, of the fol-
lowing get operations:

𝐶 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’Italy’},
⟨quantity⟩)]

𝐵 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’France’},
⟨quantity⟩)] → benchmark

(cube 𝐵 is given alias benchmark) and the result of their partial
join, 𝐷 = 𝐶 ⊠product 𝐵. □

Cell-Transform ⊟. This operator specifies a cell-at-a-time oper-
ation that takes a cube and a function, and outputs a cube where
a new measure is added, containing the value of the function
applied over the measure(s). Let C = (𝐻,𝑀) be the schema of
cube 𝐶 with group-by set 𝐺 , and𝑀 be a subtuple of𝑀 . Let 𝑓 be
a function defined on a tuple of parameters compatible with𝑀 ;
then the cell-transformation operation operated by 𝑓 returns a
cube defined by:

⊟
𝑓→𝑛𝑎𝑚𝑒,𝑀

(𝐶) = {⟨𝛾, (𝑡, ⟨𝑓 (𝑀)⟩)⟩ | ⟨𝛾, 𝑡⟩ ∈ 𝐶}

The schema of the resulting cube is (𝐻, (𝑀, ⟨𝑛𝑎𝑚𝑒⟩)), where
𝑛𝑎𝑚𝑒 is the derived measure returned by 𝑓 .

126

Italy

Apple ‹quan%ty	 = 100›

Pear ‹quan%ty	 = 90›

Lemon ‹quan%ty	 = 30›

France

Apple ‹quan%ty	 = 150›

Pear ‹quan%ty	 = 110›

Lemon ‹quan%ty	 = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50,
percOfTotal	 = −0.23›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20,
percOfTotal	 = −0.09›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10,
percOfTotal	 = 0.05›

Italy France

Apple ‹quan%ty	 = 100› ‹quan%ty	 = 150›

Pear ‹quan%ty	 = 90› ‹quan%ty	 = 110›

Lemon ‹quan%ty	 = 30› ‹quan%ty	 = 20›

Italy

Apple ‹quan%ty	 = 100, benchmark.quan%ty = 150, diff	 = −50,
percOfTotal	 = −0.23, label = bad›

Pear ‹quan%ty	 = 90, benchmark.quan%ty = 110, diff	 = −20,
percOfTotal	 = −0.09, label = ok›

Lemon ‹quan%ty	 = 30, benchmark.quan%ty = 20, diff	 = 10,
percOfTotal	 = 0.05, label = ok›

C B

D

E

F

G

C'

Italy

Apple ‹quan%ty	 = 100, qtyFrance	 = 150›

Pear ‹quan%ty	 = 90, qtyFrance	 = 110›

Lemon ‹quan%ty	 = 30, qtyFrance	 = 20›

D'

Figure 2: Example of application of the pivot operator

H-Transform ⊡. This operator considers holistic (H) transfor-
mations, in the sense that computing a new measure value for
each cell of cube 𝐶 requires to know all the cells of 𝐶 .

Let again𝑀 be a subtuple of𝑀 as above. In this case, function
𝑓 operates on a tuple of parameters compatible with𝑀 and on a
set of tuples. The H-transformation of 𝐶 operated by 𝑓 returns a
cube defined by:

⊡
𝑓→𝑛𝑎𝑚𝑒,𝑀

(𝐶) = {⟨𝛾, (𝑡, ⟨𝑓 (𝑀,𝐶)⟩)⟩ | ⟨𝛾, 𝑡⟩ ∈ 𝐶}

The schema of the resulting cube is (𝐻, (𝑀, ⟨𝑛𝑎𝑚𝑒⟩)), where
𝑛𝑎𝑚𝑒 is the extra measure returned by 𝑓 .

Example 4.3. The following cell-transformation extends cube
𝐷 with a derived measure storing their difference:

𝐸 = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,benchmark.quantity⟩ (𝐷)
Then, cube 𝐹 is obtained from 𝐸 by applying an H-transformation
as follows:

𝐹 = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸)
where holistic function 𝑝𝑒𝑟𝑐𝑂 𝑓𝑇𝑜𝑡𝑎𝑙 operates on a tuple of two
parameters 𝑎 and 𝑏 and computes, for each cell, the ratio between
𝑎 and the sum of 𝑏 over all cells. □

Pivot ⊞. This operator takes a cube including a set of 𝑘 slices
of some level 𝑙 (a cube slice is the set of cells corresponding to one
single member of a level), among which only one slice for a given
member 𝑢𝑘 ∈ 𝐷𝑜𝑚(𝑙) is returned. Each coordinate 𝛾 of this slice
in the returned cube is associated with its initial tuple of measures
𝑡 , concatenated with all the 𝑝 measures𝑀 = ⟨𝑚1, . . . ,𝑚𝑝 ⟩ of all
its 𝑘 − 1 neighbor coordinates 𝛾 ′ in the initial set of 𝑘 slices. The
new measures are renamed 𝑛𝑎𝑚𝑒1, . . . , 𝑛𝑎𝑚𝑒𝑝 . Formally, given
cube 𝐶 with schema C = (𝐻,𝑀), let 𝑢1, . . . , 𝑢𝑘 ∈ 𝐷𝑜𝑚(𝑙) be
the members of 𝑙 on which the slices are defined. Let 𝑢𝑘 be the
reference slice for pivoting. Then

⊞⟨𝑚1→𝑛𝑎𝑚𝑒1,...,𝑚𝑝→𝑛𝑎𝑚𝑒𝑝 ⟩,𝑙,𝑢𝑘 (𝐶) =

{⟨𝛾, (𝑡, ⟨𝑣11, . . . , 𝑣
1
𝑘−1, . . . , 𝑣

𝑝

1 , . . . , 𝑣
𝑝

𝑘−1⟩)⟩|
⟨𝛾, 𝑡⟩ ∈ 𝐶,𝛾 |𝑙 = 𝑢𝑘 , ⟨𝛾 ′, 𝑡 ′⟩ ∈ 𝐶,𝛾 ′|𝑙 = 𝑢𝑖 ,

𝛾 |𝐺\𝑙 = 𝛾 ′|𝐺\𝑙
, 𝑡 ′|

𝑚𝑗
= 𝑣

𝑗
𝑖
, 𝑖 ∈ [1, 𝑘 − 1], 𝑗 ∈ [1, 𝑝]}

where the 𝑡 ’s are tuples of measure values. The schema of the re-
sulting cube is (𝐻, (𝑀,𝑛𝑎𝑚𝑒1, . . . , 𝑛𝑎𝑚𝑒𝑝)) where in turn𝑛𝑎𝑚𝑒 =

⟨𝑚1, . . . ,𝑚𝑘−1⟩.

Example 4.4. Figure 2 shows the result𝐶 ′ of the following get
operator:

𝐶 ′ =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country ∈ {’Italy’, ’France’}},
⟨quantity⟩)]

Cube 𝐶 ′ includes two slices for country. By applying the follow-
ing pivot operator:

𝐷 ′ = ⊞⟨quantity⟩→qtyFrance,country,’Italy’ (𝐶 ′)

a cube𝐷 ′ is obtained that includes only the reference slice (’Italy’),
with an extra measure qtyFrance. □

4.3 Semantics
Assume the expression of the assess operator as defined in Section
4.1:

with 𝐶0 [for 𝑃] by 𝐺

assess𝑚 [against < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 >]

[using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 >] labels _

In terms of the logical operators introduced in Section 4.2, let

(1) ⊡Δ, · (·) be the composition of the comparison/transforma-
tion functions denoted by the using clause.

(2) ⊡_, · (·) be the transformation that applies the labeling func-
tion denoted by the labels clause.

Without loss of generalization, we assume that the functions that
are used for the comparison and the labeling are holistic. Clearly,
the application of cell-based functions is also possible (and most
welcome for efficiency and optimization purposes).

The semantics of an assess statement is defined as

⊡_→𝑚_,𝑚Δ (⊡Δ→𝑚Δ,𝑀
(𝐶))

where the definition of cube𝐶 depends on the type of benchmark
used, which in turn is determined by the form taken by the
against clause as explained in Section 4.1:

• Constant benchmark: 𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)].
• External benchmark 𝐵: 𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)] ⊠ [𝐵]
• Sibling benchmark:

𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)] ⊠𝐺\𝑙𝑠 [(𝐶0,𝐺, 𝑃𝐵, 𝑀)] → benchmark

where 𝑃𝐵 = 𝑃 \ {(𝑙𝑠 = 𝑢)} ∪ {(𝑙𝑠 = 𝑢𝑠𝑖𝑏)}.
• Past benchmark:

𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)]
⊠𝐺\𝑙𝑡 (⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→𝑀′,𝑀 (⊞𝑀→𝑀′,𝑙𝑡 ,𝑢 (

[(𝐶0,𝐺, 𝑃𝐵, 𝑀)] → benchmark)))

where 𝑃𝐵 = 𝑃 \ {(𝑙𝑡 = 𝑢)}∪ {(𝑙𝑡 ∈ {𝑢1, . . . , 𝑢𝑘 }), members
𝑢1, . . . , 𝑢𝑘 are predecessors of𝑢 for level 𝑙𝑡 , and 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
is a time series prediction function.

Note that, in the assess* variant, the inner join is replaced by
a left-outer join. In all cases, the resulting cube has schema
(𝐻, ⟨𝑚,𝑚𝐵,𝑚Δ,𝑚_⟩) The benchmark measure𝑚𝐵 is𝑚𝑐𝑜𝑛𝑠𝑡 for
constant benchmarks,𝑚 for sibling and past benchmarks, and
𝑚𝑏 for external benchmarks.

Example 4.5. Consider again some of the statements of Exam-
ple 4.1. The first one relies on a constant benchmark:

with SALES by month

assess storeSales labels quartiles,

and corresponds to the logical expression:

⊡𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑠, ⟨storeSales⟩ ([(SALES, ⟨month⟩, ∅, ⟨storeSales⟩)])

127

The one based on a sibling benchmark,

with SALES

for type = ’Fresh Fruit’, country =’Italy’
by product, country

assess quantity against country = ’France’
using percOfTotal(difference(quantity, benchmark.quantity))

labels {[-inf, -0.2): bad, [-0.2,0.2]: ok, (0.2, inf]: good},

corresponds to the following plan (see Figure 1):
(1) get the target cube:

𝐶 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’Italy’},
⟨quantity⟩)]

(2) get the benchmark:

𝐵 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’France’},
⟨quantity⟩)] → benchmark

(3) (partially) join 𝐶 and 𝐵:

𝐷 = 𝐶 ⊠product 𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,benchmark.quantity⟩ (𝐷)
(5) transform 𝐸:

𝐹 = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸)
(6) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑛𝑔𝑒 ({ [−inf,−0.2) :bad,

[−0.2,0.2]:ok,(0.2,inf]:good}), ⟨percOfTotal⟩ (𝐹)
The last one uses a past benchmark:

with SALES

for month = ’1997-07’, store = ’SmartMart’
by month, store

assess storeSales against past 4

using ratio(storeSales, benchmark.storeSales)

labels {[0, 0.9): worse, [0.9, 1.1]: fine, (1.1,inf): better}

and corresponds to the following plan:
(1) get the target cube:

𝐶 =[(SALES, ⟨month, store⟩,
{month = ’1997-07’, store = ’SmartMart’},
⟨storeSales⟩)]

(2) get the data for the benchmark:

𝐵 =[(SALES, ⟨month, store⟩,
{month ∈ [’1997-03’; ’1997-06’], store = ’SmartMart’},
⟨storeSales⟩)] → benchmark

(3) pivot 𝐵:

𝐷 = ⊞⟨storeSales⟩→past,month,’1997-06’𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→⟨storeSales⟩,past𝐷

(5) (partially) join 𝐶 and 𝐸:

𝐹 = 𝐶 ⊠store 𝐸

(6) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑡𝑖𝑜→r, ⟨storeSales,benchmark.storeSales⟩𝐹

(7) transform 𝐺 :

⊟𝑟𝑎𝑛𝑔𝑒 ({ [0,0.9) :worse, [0.9,1.1]:fine,(1.1,inf) :better}), ⟨r⟩𝐺

5 OPTIMIZING ASSESS STATEMENTS
This section illustrates how the logical operators introduced
above allow to optimize the evaluation strategies of assess in
a rule-based fashion. We start by giving basic algebraic prop-
erties of the operators, and then present optimization schemes
exploiting these properties.

5.1 Basic properties
Commutativity of transform (𝑃1). An important feature of the

transform operators is that they preserve the set of coordinates of
the cube they are applied to, monotonically adding newmeasures
to it. In other words, the operators commute when one does not
need the result of the other. Formally,

⊟𝑓→𝑛𝑓 ,𝑀
′ (⊟𝑔→𝑛𝑔,𝑀 (𝐶)) = ⊟𝑔→𝑛𝑔,𝑀 (⊟𝑓→𝑛𝑓 ,𝑀

′ (𝐶))

if 𝑛𝑔 ∉ 𝑀 ′ and 𝑛𝑓 ∉ 𝑀 . The same property holds for ⊡, and for
combinations of ⊡ and ⊟.

Pushing join through transformation (𝑃2). A join can be pushed
before a cell-transformation, if the transformation is applied
to the measures of only one of the joined cubes, by applying
the transformation directly over that cube and removing the
pivot operation needed to guarantee the two cubes are joinable.
Formally,

(𝐶,𝐺, 𝑃,𝑀) ⊠𝐺\{𝑙 } (⊟𝑓→𝑛𝑓 ,𝑀2 ⊞𝑀1→𝑀2,𝑙,𝑢 (𝐶,𝐺, 𝑃 ′, 𝑀1))
= ⊟𝑓→𝑛𝑓 ,𝑀1 ((𝐶,𝐺, 𝑃,𝑀) ⊠𝐺\{𝑙 } (𝐶,𝐺, 𝑃 ′, 𝑀1))

where 𝑃 ′ = 𝑃 \ {(𝑙𝑠 = 𝑢)} ∪ {(𝑙𝑠 ∈ {𝑢1, . . . , 𝑙𝑛}).

Replacing join with pivot (𝑃3). Joining different slices of the
same cube can be done either by getting each slice individually
and partially joining them, or by getting the slices together and
pivoting all but one of them. Formally,

[(𝐶,𝐺, 𝑃,𝑀)]⊠𝐺\{𝑙 } [(𝐶,𝐺, 𝑃 ′, 𝑀)] = ⊞𝑀→𝑀′,𝑙,𝑢 [(𝐶,𝐺, 𝑃𝑎𝑙𝑙 , 𝑀)]

where 𝑀 ′ is a tuple of measure names not in 𝑀 , 𝑃 ′ = 𝑃 \ {(𝑙 =
𝑢)} ∪ {(𝑙 ∈ {𝑢1, . . . , 𝑢𝑛}) and 𝑃𝑎𝑙𝑙 = 𝑃 \ {(𝑙 = 𝑢)} ∪ {(𝑙 ∈
{𝑢,𝑢1, . . . , 𝑢𝑛})}.

5.2 Optimization strategies
In a classical interactive cube analysis, a user expresses high-
level manipulations through front-end applications over DBMSs.
We assume the same context, where cubes are accessed through
cube queries (our logical get operation), over an already properly
optimized DBMS. In this setting, we work under the following
hypotheses: (i) the get, join, and pivot logical operations can be
executed via SQL queries; (ii) the results of these SQL queries fit
in main memory; (iii) all transformations are seen as black-box
functions, thus they are not pushed to SQL. The optimization
opportunities of assess statements are then related to which
logical operators are pushed to SQL.

Following the above assumptions, for an assess statement
we consider three possible plans, based on different execution
strategies, as described in the following subsections.

128

s e l e c t t 1 . country , t 1 . product ,
2 t 1 . quan t i t y , t 2 . q u an t i t y as b c _ qu an t i t y

from
4 (s e l e c t country , product , sum (qu an t i t y) as q u an t i t y

from s a l e s s
6 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
8 where type = ' Fre sh F r u i t ' and count ry = ' I t a l y '

group by country , p roduc t) t1 ,
10 (s e l e c t country , product , sum (qu an t i t y) as q u an t i t y

from s a l e s s
12 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
14 where type = ' Fre sh F r u i t ' and count ry = ' France '

group by country , p roduc t) t 2
16 where t 1 . p roduc t = t 2 . p roduc t

Listing 4: Getting the pivoted cube of the sibling intention
following JOP

5.2.1 Naive Plan. A Naive Plan (NP) faithfully reproduces the
sequences of operations shown in Section 4.3; only the get oper-
ations are pushed to SQL and all other operations are executed
in memory. NP is feasible for all benchmark types.

Example 5.1. Consider the sibling statement of Example 4.5.
Its NP consists in translating individually each get operation
into an SQL call, to retrieve the target and benchmark cubes.
Specifically, the first get operation is translated in the SQL query
of Listing 1; the second get operation consists of the same SQL
code where the selection is made on ’France’ instead of ’Italy’.
All other subsequent operations of that statement, i.e., the partial
join and the transformations, are done in memory.

5.2.2 Join-Optimized Plan. In a Join-Optimized Plan (JOP),
also the join is pushed to SQL to take advantage of the DBMS
optimizer. This requires that the plan starts with the subexpres-
sion 𝐶 ⊠ 𝐵, where 𝐶 and 𝐵 are two get operations, so that all
three operations can be pushed to SQL. JOP is not feasible for
constant benchmarks, since there is no join to be done; for the
other benchmark types, it may require property 𝑃2 to be applied
to NP to postpone cell-transformations after the join.

Example 5.2. Consider the sibling statement of Example 4.5,
and the subexpression of step (3): 𝐷 = 𝐶 ⊠product 𝐵. This subex-
pression is translated to the SQL query of Listing 4, with one
inner subquery for each get operation 𝐶 and 𝐵, and an outer
query for joining them. □

Example 5.3. As mentioned above, property 𝑃2 can be used
to put an assess statement in a form that allows pushing the
join to SQL. Consider for instance the five first steps of the past
statement of Example 4.5. Applying property 𝑃2 turns these steps
into the plan:

(1) get the target cube:

𝐶 =[(SALES, ⟨month, store⟩,
{month = ’1997-07’, store = ’SmartMart’},
⟨storeSales⟩)]

(2) get the data for the benchmark:

𝐵 =[(SALES, ⟨month, store⟩,
{month ∈ [’1997-03’; ’1997-06’], store = ’SmartMart’},
⟨storeSales⟩)] → benchmark

(3) (partially) join 𝐶 and 𝐵:

𝐷 = 𝐶 ⊠store 𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→⟨storeSales⟩,benchmark.storeSales𝐷

The subexpression 𝐷 = 𝐶 ⊠store 𝐵 can be then pushed to SQL. □

5.2.3 Pivot-Optimized Plan. The goal of a Pivot-Optimized
Plan (POP) is to let the DBMS compute pivot operations. To this
end, whenever the plan starts with the subexpression𝐶⊠𝐵, where
𝐶 and 𝐵 are get operations on the same cube, the join operation
is replaced with the pivot operation using property 𝑃3, resulting
in a pivot operation for aligning the target and benchmark slices.
Both operations (get and pivot) are then pushed to SQL. POP is
feasible only for sibling and past intentions, which get multiple
slices from a single cube.

Example 5.4. Consider the sibling statement of Example 4.5.
Using property 𝑃3 allows to rewrite the plan to (see also Figures
1 and 2):

(1) get the (target+benchmark) cube:

𝐶 ′ =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country ∈ {’Italy’, ’France’},
⟨quantity⟩)]

(2) pivot 𝐶 ′:

𝐸 = ⊞⟨quantity→qtyFrance⟩,country,’Italy’ (𝐶 ′)

(3) transform 𝐷 ′:

𝐸 ′ = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,qtyFrance⟩ (𝐷 ′)

(4) transform 𝐸 ′:

𝐹 ′ = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸 ′)

(5) transform 𝐹 ′:

𝐺 ′ = ⊟𝑟𝑎𝑛𝑔𝑒 ({ [−inf,−0.2) :bad, [−0.2,0.2]:ok,(0.2,inf]:good}),

⟨percOfTotal⟩ (𝐹 ′)

Listing 5 shows the resulting SQL query. Likewise, the past state-
ment, in the form given in Example 5.3, can be rewritten with 𝑃3
as:

(1) get (target+benchmark) cube:

𝐷 =[(SALES, ⟨month, store⟩,
{month ∈ [1997-03; 1997-07], store = ’SmartMart’},
⟨storeSales⟩)]

(2) pivot 𝐷 :

𝐸 = ⊞⟨storeSales⟩→past,month,’1997-07’ (𝐷)

(3) transform 𝐸:

𝐹 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→benchmark.storeSales, ⟨past⟩ (𝐸)

(4) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑡𝑖𝑜→r, ⟨storeSales,benchmark.storeSales⟩ (𝐹)

(5) transform 𝐺 :

⊟𝑟𝑎𝑛𝑔𝑒 ({ [0,0.9) :worse, [0.9,1.1]:fine,(1.1,inf) :better}), ⟨r⟩ (𝐺)

Under this form, the first two steps of the plan can be transformed
into SQL calls. □

129

s e l e c t ' I t a l y ' as country , product ,
2 quan t i t y , b c _ qu an t i t y

from
4 (s e l e c t country , product , sum (qu an t i t y) as q u an t i t y

from s a l e s s
6 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
8 where type = ' Fre sh F r u i t '

and count ry in (' I t a l y ' , ' France ')
10 group by country , p roduc t)

p i v o t (
12 sum (qu an t i t y) f o r count ry

in (' I t a l y ' as quan t i t y , ' France ' as b c _qu an t i t y)
14)

where qu an t i t y i s not n u l l and b c _qu an t i t y i s not n u l l

Listing 5: Getting the pivoted cube of the sibling intention
following POP

Table 1: Formulation effort for different intentions

Constant External Sibling Past
SQL: 481 989 1169 1954

Python: 7006 6193 6309 7049
Total: 7487 7182 7478 9003
assess: 143 260 270 254

6 EXPERIMENTS
To test our approach, we implemented the assess operator relying
on the simple multidimensional engine described in [6], which
uses multidimensional metadata to rewrite OLAP queries on a
star schema stored in Oracle 11g DBMS. Post-processing of the
results (e.g., to apply transformations) is then done via off-the-
shelf Python Scikit-learn over Pandas DataFrames. All tests were
run on an Intel(R) Core(TM)i7-6700 CPU@3.40GHz CPU with
8GB RAM.

The prototype was tested against the Star Schema Benchmark
(SSB) cube, described by four hierarchies; please refer to [14]
for the logical schema of the SSB dataset. As commonly done
in OLAP settings, primary and foreign keys were indexed using
B-Trees, and materialized views were created to improve perfor-
mances. The experiments are focused on four assess statements
of different types, henceforth referred to as Constant, External,
Sibling, and Past, respectively.

6.1 Formulation effort
The first goal of our experiments is to evaluate the saving in user’s
effort when writing an assess statement over the one necessary
to obtain the same result using plain SQL and Python. To this
end we adopt the simple metric proposed in [11], where the
ASCII character length is used as as a proxy for the effort it takes
to craft a query. The results are shown in Table 1. For SQL and
Python we considered the code generated by our prototype when
following the less complex plan. Nevertheless, as expected, the
total formulation effort using SQL+Python is, for each intention
type, more than one order of magnitude larger than using assess
statements.

6.2 Efficiency and scalability
Our second experimental goal is to evaluate the efficiency of
our approach in executing (i) different types of intentions, (ii)
with different execution plans, and (iii) on cubes with different
cardinalities. To achieve (iii) we generated three detailed SSB

Table 2: Target cube cardinalities for each intention type
applied to each detailed cube

𝑆𝑆𝐵1 𝑆𝑆𝐵10 𝑆𝑆𝐵100
Constant 1.2 · 105 1.2 · 106 1.2 · 107
External 2.4 · 104 2.5 · 105 2.5 · 106
Sibling 2.4 · 104 2.5 · 105 2.5 · 106

Past 1.5 · 103 1.6 · 104 1.6 · 105

Table 3: Minimum execution times (in seconds) for differ-
ent intentions (in parentheses, the corresponding execu-
tion times for NP)

𝑆𝑆𝐵1 𝑆𝑆𝐵10 𝑆𝑆𝐵100
Constant 0.60 (0.60) 6.77 (6.77) 45.14 (45.14)
External 0.27 (0.31) 2.38 (2.60) 32.86 (35.60)
Sibling 0.32 (0.42) 3.69 (4.97) 49.61 (99.93)

Past 1.20 (3.21) 11.72 (30.93) 118.25 (321.11)

cubes, namely 𝑆𝑆𝐵1, 𝑆𝑆𝐵10, and 𝑆𝑆𝐵100, with different scale fac-
tors resulting in the following cardinalities:

|𝑆𝑆𝐵1 | =6 · 106

|𝑆𝑆𝐵10 | =6 · 107

|𝑆𝑆𝐵100 | =6 · 108

Note that the cardinality of each cube is equal to the number
of tuples in the corresponding fact table. Since the by and for
clauses of each assess statement are not changed, scaling up the
cardinality of the detailed cube implies that also the cardinality
of the target cube scales up as shown in Table 2. To reduce the
impact of caching, each assess statement was executed five times
on each detailed cube, and the execution times were averaged.

Figure 3 shows, on a logarithmic scale, the times in seconds for
executing the Constant, External, Sibling, and Past intentions us-
ing the NP, JOP, and POP plans, for increasing cube cardinalities.
As to Constant, assessing a target cube of 1.2 · 107 tuples (derived
by querying 𝑆𝑆𝐵100) takes about 45 seconds, mostly employed
to get the data from the DBMS. Note that, since this assessment
does not require the retrieval of a benchmark cube, only NP is
feasible. As to External, the only possible plans are NP and JOP
(POP is not feasible here), with JOP providing the best perfor-
mance. As to Sibling and Past, POP performs the best, taking
50 seconds and 118 seconds, respectively. Being based on the
pivot operator, POP gets in both cases the target cube and the
benchmark at once by retrieving the slices required together. In
other words, POP avoids the join between the target cube and the
benchmark, a time-consuming operation for NP and JOP. Overall,
NP has the worst performance, since (i) it requires to separately
get both cubes and join them into main memory, and (ii) it may
load into main memory unnecessary data (i.e., the tuples that
will not match in the join). Overall, we can conclude that (i) JOP,
when applicable, outperforms NP, and (ii) POP, when applicable,
outperforms JOP and NP. This is summarized in Table 3 which,
for each benchmark type, compares the best performance with
the one of the naive execution strategy. Remarkably, this table
also clearly shows that our approach scales linearly for all the
intentions.

Our last experimental goal is to understand which are the
most expensive execution steps, i.e., those for which there is
room for further optimizations. The overall execution time for

130

SSB1 SSB10 SSB100

100

101

Ti
m

e
(s

)
Constant

SSB1 SSB10 SSB100

100

101

Ti
m

e
(s

)

External

SSB1 SSB10 SSB100

100

101

102

Ti
m

e
(s

)

Sibling

SSB1 SSB10 SSB100

100

101

102

Ti
m

e
(s

)

Past

NP
JOP
POP

Figure 3: Execution times for increasing cardinalities of the target cube 𝐶

SSB1 SSB10 SSB100
10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

NP

SSB1 SSB10 SSB100
10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

JOP

SSB1 SSB10 SSB100
10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

POP

Get C Get B Get C + B Trans. Join Comp. Label

Figure 4: Breakdown of the execution time of the Past intention for increasing cardinalities of the target cube 𝐶

an intention can be broken down into the time necessary to (1)
get the target cube, (2) get the benchmark, (3) transform the
two cubes (e.g., to apply regression in past benchmarks), (4) join
them, (5) compute the comparison/transformation, and (6) label
the result. This breakdown is shown in Figure 4 for each plan and
with increasing cube cardinalities. We focus on the Past intention,
that is the most complex one since forecasting measure values
requires to compute a regression. First of all, we observe that
the execution times for comparison and labeling are in the order
of milliseconds. Thus, not surprisingly, they are negligible with
respect to the time necessary to get and join the cubes. For all
three plans, transformation is the most time-consuming step,
since linear regression has to be applied to huge numbers of
tuples. As to the time for accessing data, note that:

• NP brings both the target 𝐶 and benchmark 𝐵 cubes into
main memory to join them; the cost for this main-memory
join is lower than the ones for getting the two cubes, but
still not negligible. The cost for the pivot operation is
counted as transformation.

• JOP pushes the join to SQL; thus, in this case the cost for
the join is counted together with the one for getting𝐶 +𝐵.
The cost for the pivot operation is counted as transforma-
tion.

• POP replaces the join with a pivot operation and pushes
it to SQL, thus, the cost of pivot here is part of the cost for
getting 𝐶 + 𝐵.

7 RELATEDWORK
7.1 OLAP models and operators
OLAP comes with a large number of proposals on its foundations
and operators, all of which slowly converged towards the core
ideas of cubes, dimensions, dimension hierarchies, and levels as
well as operators like roll-up, drill-down, slice, drill-across during
the late ’90s. To avoid overcrowding the discussion, we refer the
interested reader to an excellent survey [16].

Over the years, several operators have been proposed to com-
plement the fundamental ones. The DIFF operator [17] returns
the set of tuples that most successfully describe the difference of
values between two cells of a cube that are given as input. The
same author also describes a method that profiles the exploration
of a user and uses the Maximum Entropy principle to recommend
which unvisited parts of the cube can be the most surprising in
a subsequent query [18]. Finally, the RELAX operator allows to
verify whether a pattern observed at a certain level of detail is
present at a coarser level of detail too [19].

In a different line of research, prediction cubes are proposed
with the characteristic property that each of the cells comes with
a model that is trained to produce a predictive model with data
that correspond to that cell [5]. Then, a comparison between
model and actual value is also possible, assessing the model’s
accuracy. Also, the Shrink operator [9, 15] has been proposed to
reduce the result size of a query with minimal loss of information
value via the calculated fusion of data slices.

Alternative operators have also been proposed in the Cinecubes
method [7, 8]. The goal of this effort is to facilitate automated
reporting, given an original OLAP query as input. To achieve this
purpose two operators (expressed as acts) are proposed, namely,
(a) put-in-context, i.e., compare the result of the original query
to query results over similar, sibling values; and (b) give-details,
where drill-downs of the original query’s groupers are performed.

Compared to the previous proposals, our work on the explicit
introduction of an assess operator differs in the fundamental
problem it addresses. The works of Sarawagi are mostly of ex-
planatory rather than assessment nature. Similarly, prediction
cubes are trying to assess the impact of a set of predictor at-
tributes on a class label in the context of a data cube, via an
introduced model for their relationship —again, the emphasis is
on trying to explain what we see rather than trying to provide
assessments and labels on the comparison of the assessment.
The Shrink operator is intended to compress without losing too

131

much information. The Cinecubes approach introduces an auto-
matically invoked model of assessment in its put-in-context act;
this is indeed a first form of assessment, although not tunable or
explicitly invoked by the user.

7.2 The Intentional Analytics Model
The IAM for OLAP was introduced in [20]. Later this proposal
was significantly extended [21]. The main idea behind the inten-
tional model for OLAP is that OLAP models need to be extended
with (a) new operators, (b) altering of the definition of a query
result, (c) introducing highlights to annotate the answers. To
address the first requirement, the traditional roll-ups and drill-
downs operators were complemented with operators that pertain
to the intention of the user towards the data —i.e., what is the
reason why the user poses the query. The original, large set of
operators (including operators like verify and analyze) was later
solidified and formalized into five operators, namely, describe,
assess, explain, predict, and suggest [21]. The result of a query
is also redefined as a combination of data and KDD models that
are applied over the data. Also, the resulting data and models
are evaluated with respect to their interestingness to produce
highlights, i.e., subsets of the data that provide the most of novel
information to the user. The foundations of the model can be
linked to Bloom’s taxonomy and Anderson and Krathwohl’s re-
finement to it [13, 22], which organize cognitive tasks as: (a)
remembering, (b) understanding, (c) applying a procedure, (d)
analyzing (component interrelationships), (e) evaluating (with
respect to criteria and standards), and (f) creating.

Although the IAM acts as an all-encompassing framework for
defining new operators, results, and highlights for OLAP, the
goal of the previous works was not go down into the details
of each operator, but rather to dictate templates on what kind
of algebraic operators we can introduce. The particularities of
the describe operator (supporting the understanding process in
Bloom’s framework) were further explored [4]. The current paper
extends the originally proposed assess operator (in turn, inspired
by the put-in-context operator) in significantly deeper ways,
as it comes with several alternatives that were not obviously
expressed in the original work [21], as well as with the syntax of
an SQL-like language and optimization techniques.

8 CONCLUSIONS
In this paper we have introduced the assess operator to auto-
matically evaluate and characterize the result of a cube query in
terms of labels given to the single cells based on their compar-
ison with a benchmark. We have provided several alternatives
for specifying benchmarks, comparison, and labeling schemes.
Finally, we have discussed alternative plans for the execution of
assess statements showing that their performance is perfectly in
line with the right time requirement of analysis sessions.

Our future work on the assess operator will develop in differ-
ent directions:

• Consider cube schemas including descriptive properties
of levels (e.g., the population of a country). Introducing
properties will enable users to express more complex state-
ments, e.g., to compare per capita sales of different coun-
tries.

• Devise strategies for effectively completing partial assess
statements, for instance, ones where the against, using or

benchmark clauses are not specified by the user. Interest-
ingly, this could require different possibilities to be tested
and ranked based on their expected interest for the user.

• Enhance the expressiveness of the assess operator by con-
sidering more complex labeling functions (e.g., functions
based on ranges that depend not only on comparison val-
ues of cells, but also on their coordinates) and additional
types of benchmarks (for instance to let the sales of milk
be assessed against those of drinks, i.e., against an ancestor
of milk in the roll-up order).

• Investigate the relevant properties of our logical operators
and develop a cost-based optimization strategy.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of

Databases. Addison-Wesley.
[2] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. 1997. Modeling Multidi-

mensional Databases. In Proceedings of ICDE. Birmingham, UK, 232–243.
[3] Leilani Battle, Michael Stonebraker, and Remco Chang. 2013. Dynamic re-

duction of query result sets for interactive visualizaton. In Proceedings of
International Conference on Big Data. Santa Clara, CA, USA, 1–8.

[4] Antoine Chédin, Matteo Francia, Patrick Marcel, Verónika Peralta, and Stefano
Rizzi. 2020. The Tell-Tale Cube. In Proceedings of ADBIS. Lyon, France, 204–
218.

[5] Bee-Chung Chen, Lei Chen, Yi Lin, and Raghu Ramakrishnan. 2005. Prediction
Cubes. In Proceedings of VLDB. Trondheim, Norway, 982–993.

[6] Matteo Francia, Enrico Gallinucci, and Matteo Golfarelli. 2020. Towards
Conversational OLAP. In Proceedings of DOLAP. Copenhagen, Denmark, 6–
15.

[7] Dimitrios Gkesoulis and Panos Vassiliadis. 2013. CineCubes: cubes as movie
stars with little effort. In Proceedings of DOLAP. San Francisco, CA, USA, 3–10.

[8] Dimitrios Gkesoulis, Panos Vassiliadis, and Petros Manousis. 2015. CineCubes:
Aiding data workers gain insights from OLAP queries. Inf. Syst. 53 (2015),
60–86.

[9] Matteo Golfarelli, Simone Graziani, and Stefano Rizzi. 2014. Shrink: An OLAP
operation for balancing precision and size of pivot tables. Data Knowl. Eng.
93 (2014), 19–41.

[10] Matteo Golfarelli, Federica Mandreoli, Wilma Penzo, Stefano Rizzi, and Elisa
Turricchia. 2012. OLAP query reformulation in peer-to-peer data warehousing.
Inf. Syst. 37, 5 (2012), 393–411.

[11] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska.
2016. SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment. In
Proceedings of SIGMOD. San Francisco, CA, USA, 281–293.

[12] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012.
Enterprise Data Analysis and Visualization: An Interview Study. IEEE Trans.
Vis. Comput. Graph. 18, 12 (2012), 2917–2926.

[13] David R. Krathwohl. 2002. A Revision of Bloom’s Taxonomy: An Overview.
Theory Into Practice 41, 4 (2002), 212–218.

[14] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak.
2009. The Star Schema Benchmark and Augmented Fact Table Indexing. In
Proceedings of TPCTC. Lyon, France, 237–252.

[15] Stefano Rizzi, Matteo Golfarelli, and Simone Graziani. 2015. An OLAM Oper-
ator for Multi-Dimensional Shrink. Int. J. of Data Warehousing and Mining 11,
3 (2015), 68–97.

[16] Oscar Romero and Alberto Abelló. 2007. On the Need of a Reference Algebra
for OLAP. In Proceedings of DaWaK. Regensburg, Germany, 99–110.

[17] Sunita Sarawagi. 1999. Explaining Differences inMultidimensional Aggregates.
In Proceedings of VLDB. Edinburgh, Scotland, 42–53.

[18] Sunita Sarawagi. 2000. User-Adaptive Exploration of Multidimensional Data.
In Proceedings of VLDB. Cairo, Egypt, 307–316.

[19] Gayatri Sathe and Sunita Sarawagi. 2001. Intelligent Rollups in Multidimen-
sional OLAP Data. In Proceedings of VLDB. Roma, Italy, 531–540.

[20] Panos Vassiliadis and Patrick Marcel. 2018. The Road to Highlights is Paved
with Good Intentions: Envisioning a Paradigm Shift in OLAP Modeling. In
Proceedings of DOLAP. Vienna, Austria.

[21] Panos Vassiliadis, Patrick Marcel, and Stefano Rizzi. 2019. Beyond Roll-Up’s
and Drill-Down’s: An Intentional Analytics Model to Reinvent OLAP. Infor-
mation Systems 85 (2019), 68–91.

[22] Leslie Owen Wilson. 2016. Anderson and Krathwohl - Bloom’s Taxonomy Re-
vised. thesecondprinciple.com/teaching-essentials/beyond-bloom-cognitive-
taxonomy-revised/.

[23] Kanit Wongsuphasawat, Yang Liu, and Jeffrey Heer. 2019. Goals, Process,
and Challenges of Exploratory Data Analysis: An Interview Study. CoRR
abs/1911.00568 (2019).

132

	Assess Queries for Interactive Analysis of Data CubesMatteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Panos Vassiliadis

