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Abstract Seismic networks provide data that are used as basis both for public
safety decisions and for scientific research. Their configuration affects the data
completeness, which in turn, critically affects several seismological scientific targets
(e.g., earthquake prediction, seismic hazard...). In this context, a key aspect is
how to map earthquakes density in seismogenic areas from censored data or even
in areas that are not covered by the network. We propose to predict the spatial
distribution of earthquakes from the knowledge of presence locations and geological
relationships, taking into account any interaction between records. Namely, in a
more general setting, we aim to estimate the intensity function of a point process,
conditional to its censored realization, as in geostatistics for continuous processes.
We define a predictor as the best linear unbiased combination of the observed
point pattern. We show that the weight function associated to the predictor is
the solution of a Fredholm equation of second kind. Both the kernel and the
source term of the Fredholm equation are related to the first- and second-order
characteristics of the point process through the intensity and the pair correlation
function. Results are presented and illustrated on simulated non-stationary point
processes and real data for mapping Greek Hellenic seismicity in a region with
unreliable and incomplete records.

keywords: Conditional intensity, Earthquakes, Fredholm equation, Non-
stationarity, Second-order characteristics, Spatial point processes.

1 Introduction

Mapping is a key issue in environmental science. A common and first example lies in ecology when
mapping species distribution. When the location of individuals is known, we estimate the local
density (usually by kernel smoothing), the so-called intensity in point process theory. However,
point locations are usually unreachable at the survey scale, so that sampling methods are used;
distance sampling or quadrat sampling approaches are possibly the most common ones. When no
covariate is available, a mean density estimation is then performed.

However, species distribution characteristics vary spatially as they are governed by environmen-
tal data. Several approaches have been developed in that way for species data formed by reported
presence locations, also called occurrence-only records (pure records of locations where a species
occurred). Generally called Species Distribution Models (SDM), they aim to explain species occur-
rences from environmental variables. If they are used to gain ecological and evolutionary insights,
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they are also widely used for model-based interpolation across landscapes or to predict distribu-
tions to new geographic regions (Elith and Leathwick, 2009). SDMs are often based on multivariate
statistical analysis methods, such as Generalized Linear/Additive Models (GLM/GAM). The most
popular models are Maxent (Phillips et al., 2006) and Maxlike (Royle et al., 2012). In these models
point locations are aggregated to grid cells and whether one or several individuals are observed in
a cell, a one is recorded. Then, their aim is to estimate occurrence probability (species’ probability
of presence in a grid cell) maps. See e.g. Merow and Silander (2014) for a comparison of the two
models and recommendations about their use.

Point process models offer a natural framework for species distribution modelling. Key concerns
about SDMs lie in the loss of significant information about the spatial distribution when aggregating
point locations, and the dependence of the results on the spatial resolution (Renner and Warton,
2013). Although point process models are connected to Maxent (Aarts et al., 2012; Renner and
Warton, 2013), they use a continuous landscape rather than a discretized one, and the number of
records is observed and comes from a random process rather than fixed (number of cells/quadrats).
Renner et al. (2015) showed that using point process models presents many advantages, including
some clarification about the response variable and model assumptions which, in addition, can be
checked. Furthermore, because they operate at the individual level, point process models can
incorporate interaction between individuals and dependence to environmental covariates.

Another concern about all these approaches is that they are Poisson model-based: their intrin-
sic definition does not account for relationship between individuals. These interactions nevertheless
exist. Competition among individuals often leads to empty areas around each point, so-called ex-
clusion by distance, mimicked by inhibition models. The American Redstarts, for example, compete
with conspecifics for habitat in their winter grounds: the re-occupation of the empty areas supports
the hypothesis that territoriality in this species acts to exclude conspecifics from certain winter
habitat (Marra et al., 1993). On the contrary, individuals can be arranged by groups as with gre-
garious animals, such groups can also describe some local dispersion of the species around parents
(as with plants). This arrangement is achieved in cluster models. The Shorea congestiflora is a
dominant species in a 25–ha forest dynamics plot in a rain forest at Sinharaja (Sri Lanka), which
apparently shows clustering at several scales (Wiegand et al., 2007). These effects can be mixed,
with individuals arranged in groups, but at certain distance of each other inside each group. This
can be the case for the spatial distribution of Northern Gannet (Chadœuf et al., 2011).

Similar issues arise in environmental science. The case we consider in this paper concerns
seismic mapping in the Aegean Sea region. This is an area with high seismic density due to the
presence of numerous volcanoes and plate movements. Earthquakes have a heterogeneous spatial
distribution and we might be interested in understanding why certain regions are more favorable
than others. Modeling earthquakes will therefore require to take into account geological information
and interactions between events, clustering being often linked to aftershocks. Evaluating the seismic
hazard requires a reliable monitoring network and sufficient coverage, what is rarely the case, and a
lack of recording may not be due to the absence of an earthquake, but to an insufficient or unreliable
network. The question then arises of mapping seismic activity in areas where the observation is
unreliable or even when the area is not covered by the network, in order to access a relevant map
where the seismicity is particularly high.

From a statistical point of view, the method developed in Gabriel et al. (2017) aimed to pre-

2



dict the local variations in the intensity of a spatial point process accounting for the individual
relationships modeled by the pair correlation function (which is related to the probability to find
a second point of the process at a given distance from a known point of the process). The main
interest of this approach is that it estimates, using only first- and second-order characteristics of the
point process, the local intensity outside the observation window, hereafter called prediction. The
prediction of the local intensity is obtained conditionally to the records in the observation window.
However, this method did not allow to consider environmental covariates and thus did not take
into account potential spatial variations driven by these covariates at large scale, which may lead
to unrealistic predictions in ecology and environment.

To fill this potential unwished situation, we propose to predict the spatial distribution of earth-
quakes from the knowledge of presence locations and geological relationships, taking into account
any interaction between records. Namely, in a more general setting, we aim to estimate the intensity
function of a point process, conditional to its censored realization, as in geostatistics for continuous
processes. We define a predictor as the best linear unbiased combination of the observed point pat-
tern, where the weight function associated to the predictor is the solution of a Fredholm equation
of second kind related to the first- and second-order moments of the point process. We describe
our approach in Section 2. We evaluate the goodness of our predictions through a simulation study
(Section 3) for several cluster models. In Section 4, our methodology is applied to predict and map
Hellenic seismicity in a region with unreliable and incomplete records.

2 Predicting the intensity conditionally to the observation

We consider in the following a spatial point process Φ in R2, i.e. a random pattern of points for
which both the number of points and their locations are random. Let us denote Φ(B) the number
of points of Φ in any Borelian set B, and ΦB their locations in B. We assume that the point process
Φ is simple (i.e. the probability of all points of Φ being distinct is one) and that it has a density
probability with respect to the unit rate Poisson process Y .

The intensity function, denoted by λ(x), is defined as the function such that
∫
B λ(x) dx =

E [Φ(B)], for B any Borelian set; this corresponds to the local probability to observe a point of Φ at
a fixed location (if dx is an infinitesimal volume around location x, then P [Φ( dx) = 1] / dx = λ(x)
as dx→ 0). The intensity function provides a trend in the spatial variation of points density, and
we suppose that the intensity is driven by spatial covariates Z, such that λ(x) = h(Zx), where
both h and Z are known. The interaction between points is described through the pair correlation
function g(x, y), which gives the extent to which the probability to find a point at a location y
changes by the presence of a point of the process at location x (if dy is an infinitesimal volume
around y, then P [Φ( dy) = 1 | x ∈ Φ] /dy = g(x, y)λ(y) as dy → 0). We assume that the process is
second-order intensity reweighted stationary (Baddeley et al., 2000). This assumption means that
its intensity varies in space, but the pair correlation function between two locations depends only
on their difference vector.

Here we consider W ⊂ R2, a window of interest, and we assume that Φ has only been observed
in some observation window Wobs ⊂ W . To predict the remaining point process Φ ∩ {W\Wobs},
Cœurjolly et al. (2017) express the conditional distribution of Φ∩{W\Wobs} given Φ∩Wobs = ΦWobs
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in terms of the conditional density

fW\Wobs

(
ΦW\Wobs

|ΦWobs

)
= f

(
ΦWobs

∪ ΦW\Wobs

)
/fWobs

(ΦWobs
) ,

w.r.t YW\Wobs
and where fWobs

is the marginal density of Φ ∩Wobs w.r.t YWobs
. Unfortunately, the

density of Φ restricted to Wobs is barely tractable (and hard to handle) except for just some few
processes, such as Poisson, Gibbs and determinantal processes; however, this is not the case for Cox
and cluster point processes that are often used to model environmental or ecological point patterns.

Our aim is not to predict Φ ∩ {W\Wobs} but rather to estimate its local intensity variations at
any location xo ∈ W\Wobs conditionally to h, Z and ΦWobs

. Following Gabriel et al. (2016, 2017),
we refer to it as the spatial local intensity of Φ , that we define by the following limit

λ(xo|Φ ∩Wobs = ΦWobs
) = lim

ν( dxo)→0

E [Φ ∩ dxo|Φ ∩Wobs = ΦWobs
]

ν( dxo)
.

Hereafter, we denote the conditioning Φ∩Wobs = ΦWobs
, by “|ΦWobs

”. We predict the local intensity
at points xo ∈W\Wobs using a linear predictor mimicking kriging, it can be written as

λ̂(xo|ΦWobs
) =

∫
Wobs

w(x;xo)
∑

y∈ΦWobs

δ(x− y) dx =
∑

x∈ΦWobs

w(x;xo), (1)

where δ denotes the Dirac delta function and w is a weight function solution of the Fredholm
equation of the second kind (see Apprendix A for details) :

w(x;xo) +

∫
Wobs

w(y;xo)k(x, y) dy = f(x;xo), (2)

with kernel

k(x, y) = λ(y)

(
g(x− y)− 1

ν(Wobs)

∫
Wobs

λ(x)g(x− y) dx

)
and source term

f(x;xo) = λ(xo)

(
1

ν(Wobs)
+ g(x− xo)−

1

ν(Wobs)

∫
Wobs

λ(x)g(x− xo) dx

)
.

The solution of this Fredholm equation is implicit but it can be numerically approximated using
the Galerkin approximation method (Kress, 2013). Briefly, let Th be a given mesh partitioning
Wobs, e.g obtained by triangulation, and consider {ϕi}i=1,...,N a basis of the approximation space
Vh, N = dimVh. We approximate the weight function as a combination of the basis elements :
w(x) ≈

∑N
i=1wiϕi(x). This approximation plugged into the Fredholm equation leads to a linear

problem for all ϕi:

N∑
j=1

wj

∫
Wobs

(
ϕi(x)ϕj(x) +

∫
Wobs

∫
Wobs

k(x, y)ϕj(y)ϕi(x) dy

)
=

∫
Wobs

f(x;xo)ϕi(x) dx.
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Introducing a matrix formulation of the previous equation reformulates as the so-called Galerkin
equation, Mw + Kw = F where M is the mass matrix, K =

(∫ ∫
k(x, y)ϕi(x)ϕj(y) dx dy

)
i,j

and

F =
(∫
f(x;xo)ϕi(x) dx

)
i
. That can be simplified by

(Id+KM)w = M−1F (3)

using some projection on the approximation space K = (Klm)l,m and K = MKM . We finally get the
weights from Equation (3). In all the illustrations that follow we use this approach to approximate
the weight functions and make the prediction.

3 Simulation study

The objective of this section is twofold. First, we want to visualize how the prediction is affected
by both the distance from the prediction point xo to the observed window Wobs and the point
process structure, and we want to measure the variability between our estimator λ̂(xo|ΦWobs

) and
the conditional intensity λ(xo|ΦWobs

). Second, we want to analyze the sensitivity of the predictions
when both the intensity and the pair correlation function are unknown, as it is the case in practice.

3.1 Goodness of prediction

In order to see how the prediction estimator behaves with respect to the pattern structure we use
the inhomogeneous Matérn cluster model which allows the computation of its conditional intensity.
This model is obtained as follows. We first define a stationary Matérn cluster process ΦMat, i.e.
a process where each point of a Poisson parent process is replaced by a Poissonnian cluster of
offspring uniformly distributed in a disc of radius R around the parent point. We then focus on the
independent p(x)−thinned process, where p(x) is a deterministic function on R2 with 0 ≤ p(x) ≤ 1.
Every point x belonging to ΦMat is deleted with probability 1 − p(x), and again its deletion is
independent of locations and possible deletions of any other points (Chiu et al., 2013).

Let Φ be the process of the thinned offspring and Φp the parent process (Poisson process with
intensity κ). The process Φ is second-order intensity reweighted stationary with intensity λ(x) =
κµp(x), with µ the expected number of offspring per parent. The pair correlation function is the
one of ΦMat:

g(r) = 1 +
2

κ(πR)2

(
arccos

( r

2R

)
− r

2R

√
1− r2

4R2

)
, if 0 < r < 2R, and g(r) = 1 otherwise.

According to Gabriel and Chadœuf (2021), the local intensity of the thinned Matérn cluster process
Φ is

λ(xo|ΦWobs
) =

µp(xo)

πR2

∫
b(xo,R)∩(Wobs∪∂W )

λp(y|ΦWobs
) dy + κµp(xo)ν (b(xo, R)\(Wobs ∪ ∂W )) , (4)

where ∂W stands for the outside border of thickness R of the observation window, b(xo, R) the disc
of center xo and radius R, and λp(y|ΦWobs

) is the conditional intensity of parents in Wobs ∪ ∂W
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given the realization of offspring in Wobs. This intensity is approximated by

λ̂p(y|ΦWobs
) =

1

µp(y)πR2

∑
x∈ΦWobs

Ib(x,R)(y) + κ exp

(
− µ

πR2

∫
b(y,R)∩Wobs

p(z) dz

)
,

where the first term is the empirical intensity of parents given the observed offspring, and the second
term is the intensity of parents with unobserved offspring. See Gabriel and Chadœuf (2021) for
the approximation of the conditional distribution of parent points given the offspring points and its
validation.

The inhomogeneous Matérn Cluster process (IMCP) Φ depends on four parameters: the thinning
probability p(x), the intensity of parents κ, the mean number of points per parent µ, and the radius
of dispersion of the offspring around the parent points R. In our simulation study we fix κ = 50
and µ = 40, and we consider:

� R ∈ {0.05, 0.09, 0.13}.

� two thinning probabilities: p1(x) = p1(x1, x2) = α1I{x1≤v} + α2I{x1>v}, setting α1 = 0.8,
α2 = 0.2 and v = 0.5, and p2(x) = p2(x1, x2) = 1− x1.

� the unit square as study region W . The observation window is Wobs = W\Wpred, where
Wpred = [0.35, 0.65]2 when using p1(x) and Wpred = [0.05, 0.95]× [0.36, 0.64] when using p2(x).

The size and shape of the prediction windows Wpred have been designed to emphasize any effect of
the thinning probability on the predictions. We perform n = 1000 simulations of Φ for all combina-
tions of pairs (p(x), R). Each scenario is denoted IMCP(p(x), R). Realizations of IMCP(p1(x), R)
(resp. IMCP(p2(x), R)) are given in the first column of Figure 1 (resp. Figure 2) for the different
values of R, illustrating inhomogeneous patterns with increasing range of clustering from top to
bottom. For each simulation, we compute the local intensity from both the predictor (1) and the
approximation (4) in Wpred. We consider the same mesh for the Galerkin approximation method
for all configurations, for which Wobs is subdivided in 15,194 triangles. The local intensity and
the prediction are respectively plotted in the second and third columns of Figures 1 and 2. For a
visualization purpose, we plotted the local intensity in Wpred (central square/rectangle), as well as a
Gaussian kernel smoothing of the intensity in Wobs. Zoom of the local intensity and the predictions
in Wpred are given in Figures 11 and 12 (see Appendix B).

We can see that the method reproduces the structures of the point process. In particular, it
reproduces clusters, as soon as there are points close enough to the boundary of Wpred, and the
prediction tends to the intensity of the process, λ(x) = κµp(x), when it is made at distances larger
than R from the boundary of Wobs. This is particularly clear for small values of R (first rows in
Figures 1 and 2). Results from these realizations show, however, some weak differences between the
local intensity and our prediction that we now quantify.

We measure the precision and the variability of our prediction through the relative bias (RB)
and the relative root mean square error (RRMSE) as follows

RB(xo; λ̂, λ) =

n∑
i=1

(
λ̂i(xo|ΦWobs

)− λi(xo|ΦWobs
)
)

n∑
i=1

λi(xo|ΦWobs
)

,
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Figure 1: First column: inhomogeneous Matérn cluster point patterns, ΦWobs
, obtained from p1(x). Second

column: approximation of the local intensity in Wpred (central square) and kernel smoothing of the pattern in
Wobs. Third column: predicted local intensity in Wpred (central square) and kernel smoothing of the pattern
in Wobs.

RRMSE(xo; λ̂, λ) =

√
1
n

n∑
i=1

(
λ̂i(xo|ΦWobs

)− λi(xo|ΦWobs
)
)2

1
n

n∑
i=1

λi(xo|ΦWobs
)

,

where λ̂i and λi stand for the prediction and the local intensity of the i-th simulation. We compute
RB(xo) and RRMSE(xo) at all xo ∈ Wpred. This allows us to get an insight of their distribution
as illustrated in Figure 3a and 3c for all patterns IMCP(p(x), R). We also look over the values
of RB(xo) and RRMSE(xo) according to the distance d(xo,Wpred) between the point xo where the
prediction is made and the boundary of the prediction window Wpred, as plotted in Figure 3b and 3d
for all patterns IMCP(p(x), R).

In all cases, the relative bias is concentrated around 0 and is much less than 5% (in absolute
value) which reveals an excellent precision of the predictor. The distributions of RRMSE(xo) show a
decreasing variability as the interaction radius R increases. Indeed, as shown in Figures 1 and 2, the
inter-point distances of the point patterns are greater for larger values of R and the local intensity
is thus more diffuse for large values of R, and more picky for very small values. The weight function
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Figure 2: First column: inhomogeneous Matérn cluster point patterns, ΦWobs
, obtained from p2(x). Second

column: approximation of the local intensity in Wpred (central rectangle) and kernel smoothing of the pattern
in Wobs. Third column: predicted local intensity in Wpred (central rectangle) and kernel smoothing of the
pattern in Wobs.

is closely related to the pair correlation function. It shows a radial wavy behavior around xo with
positive decreasing values at distances less that R, and it has negative values between R and 2R, . . . ,
and then is null (see Figure 4). As the predictor is the sum of the weights at x ∈ ΦWobs

, it reflects
this behavior and clusters are thus well identified. The approximation of the local intensity (4) is
smoother as it is only expressed in terms of first-order moments. Hence, we get more variability
in the border ∂W , and even higher for picky intensities as for R = 0.05. That is also shown
in Figures 3b and 3d which illustrate the relative bias and relative RMSE computed at different
distances from ∂W . They are both higher at very short distances.

3.2 Sensitivity to the estimation of the first- and second-order moments

In the previous section the intensity and the pair correlation functions of the inhomogeneous Matérn
process were assumed to be known. We now aim to measure the effect of their estimation on the
predictions. We focus on the process IMCP(p1(x), 0.09) and we consider four situations for the
prediction:
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(c)
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(d)

Figure 3: Relative bias (top) and relative RMSE (bottom) computed from 1000 simulations with p1(x) and
p2(x) within Wpred. Distances are measured outwards the boundary of Wobs, inwards Wpred.

Figure 4: Weight function w(x;xo) (here transformed as sign(w(x;xo)) log(|w(x;xo)|)) associated to the
point xo (black dot in Wpred) for the process IMCP(p1(x), 0.05). For each realization of the point process,
ΦWobs

(e.g. the dark blue dots), the local intensity at xo is the sum over x ∈ ΦWobs
of the weights w(x;xo).

� using the theoretical intensity and pair correlation functions (as defined in the previous sec-
tion). The resulting predictions are used as the basis for further comparisons.

� using a parametric model for the intensity function: fλ(x) = β1I{x1≤0.5} + β2I{x1>0.5} and for
the pair correlation function:
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– either the Matérn model: gmat(r) = 1 + 2
α1(πα2)2

(
arccos

(
r

2α2

)
− r

2α2

√
1− r2

4α2
2

)
, if 0 <

r < 2α2, and g(r) = 1 otherwise. This allows us to analyze the effect of fitting on the
true model.

– or the exponential model: gexp(r) = 1 + 1
α3

exp (−α4
√
r). This model allows us to check

the effect of a misspecification of the pair correlation function.

– or non-parametric estimation, gemp, obtained by kernel smoothing, as implemented in
the pcfinhom function in spatstat with fλ(x) as intensity function. This situation is
often the most natural one and also the one with the less hypotheses. Because empir-
ical estimates do not always satisfy theoretical conditions of a pair correlation function
(positive definiteness, consistence), we made an a posteriori selection of the admissible
fitted pair correlation functions (see Appendix C).

All results are presented for 250 admissible simulations. We consider a maximum likelihood esti-
mator of the intensity of a Poisson point process to estimate parameters β1 and β2, i.e.

β̂1 = Φ (Wobs ∩ [0, 0.5]× [0, 1]) /ν (Wobs ∩ [0, 0.5]× [0, 1]) and
β̂2 = Φ (Wobs ∩ [0.5, 1]× [0, 1]) /ν (Wobs ∩ [0.5, 1]× [0, 1]).

Parameters αi, i = 1, . . . , 4 are estimated by non-linear least squares. Fitted pair correlation
functions are plotted in Figure 5. Summaries of fitted parameters are postponed to Appendix C
(Table 2).

Figure 5: Fitted pair correlation functions: empirical (purple), exponential model (blue), Matérn model
(green). The black curve is the theoretical pair correlation function.

To compare the predictions we compute RB(xo; λ̂, λ) and RRMSE(xo; λ̂, λ), where λ̂ denotes
the prediction using either the theoretical moments or the fitted ones and λ denotes the local
intensity (4). As in the previous section, the relative bias and relative RSME are computed at all
xo ∈ Wpred so that we can plot their distribution, see Figure 6a and 6b. These figures show that
the relative bias is about one tenth of the relative RMSE. The relative bias tends to be positive,
slightly larger when the predictions are made from (fλ, gexp). The relative RMSE are in the same
order of magnitude, slightly smaller for (fλ, gexp).

To emphasize the effect of using estimated moments rather than the theoretical ones, we also
compute RB(xo; λ̂, λ̂theo) and RRMSE(xo; λ̂, λ̂theo), where λ̂ (resp. λ̂theo) denotes the prediction
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(a) (b)

(c) (d)

Figure 6: Relative bias (left) and relative RMSE (right) computed from the local intensity (top) or from
the prediction with the theoretical moments (bottom).

using the fitted intensity and pair correlation functions (resp. the theoretical ones). Figure 6c
and 6d illustrate the boxplot of their values over all xo ∈ Wpred. The ratio between the relative
bias and relative RMSe remains the same. The relative bias is close to zero for both the predictions
made using (fλ, gemp) and (fλ, gmat) and slightly larger and positive for (fλ, gexp). The relative
RMSE is smaller for (fλ, gemp).

In the former case, the relative bias and relative RMSE are computed from the local intensity
which is a slightly smoothed version of the true conditional intensity, whereas in the later case they
are computed from the prediction obtained with the theoretical intensity and pair correlation func-
tions leading to less smoothed predictions. As the exponential model also smoothes the predictions,
its relative RMSE in the former case is low, but increases in the later case and become similar to
the one of from the Matérn model of the pair correlation function. Both predictions from (fλ, gemp)
and (fλ, gmat) have similar behavior than the one from the theoretical moments. Figure 7 compare
the predictions from the different cases on a single simulation and illustrate all these comments.
Whilst the results from the non-parametric estimation of the pair correlation function are promis-
ing, they do not systematically rely on an admissible pair correlation function (leading to numerical
instabilities in the predictions).
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Figure 7: Local intensity (left) and predictions obtained from the theoretical moments or their non-
parametric (empirical) or parametric (Matern, Exponential) estimation.

4 Predicting the density of earthquakes

In this section we focus on the Greek-Hellenic area, a region of high seismic hazard due to both
tectonic and volcanic seismogenic sources. This seismicity is a result of some motion-induced de-
formations: northward motion of the African lithosphere, westward motion of the Anatolia plate
and collision between African and Eurasian plates (Papazachos and Comninakis, 1971; Le Pichôn
and Angelier, 1979; McKenzie, 1972; Anderson and Jackson, 1987). A total of 1173 earthquakes of
magnitude greater or equal than 4 occurred in the study area W (black square in Figure 8) between
2004 and 2015. Their locations are plotted in Figure 8. Data have been recorded by the Hellenic

Figure 8: Earthquakes of magnitude greater or equal than 4, faults, plate boundaries and main volcanoes
in the Hellenic region. Prediction window is shown in the light yellow area.

Unified Seismological Network (HUSN). Seismic networks provide data that are used as the basis
both for public safety decisions and for scientific research. They are essential tools for observing
earthquakes and assessing seismic hazards that can be described and characterized to assess their
degree of coverage (Siino et al., 2020). Indeed, their configuration affects the data completeness,
which in turn, critically affects several seismological scientific targets (e.g., earthquake prediction,
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seismic hazard, etc. (Vamvakaris et al., 2013)). From different indicators (magnitude of complete-
ness, Radius of Equivalent Sphere that estimates an average error of location), D’Alessando et al.
(2011) identified some seismogenic areas that probably are not adequately covered by the HUSN.
Based on their results we delineate a zone (in light yellow in Figure 8) with unreliable or missing
records. We removed the 48 points located in this yellow zone to predict the local intensity of
earthquakes.

Modelling earthquakes needs to account for geological information and interactions between
earthquakes, usually in terms of clustering. The most popular models of seismological events are
the so-called self-exciting, such as Hawkes and ETAS models (Adamopoulos, 1976; Ogata, 1988).
Our approach, however, is model-free, it accounts for environmental heterogeneity and interaction
between events. Following Siino et al. (2017), we assume that the intensity of earthquakes log-
linearly depends on several spatial geological covariates: Dpb, the distance to the plate boundary
(orange dashed curves in Figure 8); Df , the distance to the nearest fault (blue lines in Figure 8);
and Dv, the distance to the nearest main volcano (red triangles in Figure 8). Thus, the intensity
takes the form

λ(x) = λ(x1, x2) = exp
(
β0 + β1x1 + β2x2 + β3x

2
1 + β4x1x2 + β5x

2
2 + β6I{Df (x)≤φ1}Df (x)

+β7I{φ1<Df (x)≤φ2}Df (x) + β8I{φ2<Df (x)≤φ3}Df (x) + β9I{φ3<Df (x)≤φ4}Df (x)

+β10I{Df (x)>φ4}Df (x) + β11Dv(x) + β12Dpb(x)
)
, (5)

with φ1 = 6.73, φ2 = 43.48, φ3 = 54.783 and φ4 = 112. The estimated values of model parameters
are obtained by the method of maximum likelihood from all points Wobs and are given in Table 1,
and the estimated intensity is depicted in Figure 9 (left panel, log-scaled). This figure shows that
the region to be predicted (bordering in black) is across zones of strong and weak intensities. We

Table 1: Estimated parameters of the intensity model λ(x).

Parameter β0 β1 β2 β3 β4 β5 β6

Estimate -178.483 0.611 9.673 0.034 -0.061 -0.114 -0.034

Parameter β7 β8 β9 β10 β11 β12

Estimate -0.0268 -0.0175 -0.0179 -0.0214 0.0040 -0.0093

then calculated the empirical pair correlation function using kernel methods and the parametric
estimate of the intensity (see Figure 9 (right panel)). We then fitted an exponential model of the
form g(r) = exp(−α2

√
r)/α1, with α̂1 = 8.9502 and α̂2 = 0.0266 (as it is shown in Figure 9 (right

panel), for the theoretical fitted model). Model parameters are estimated as in section 3.2. The
high values of the pair correlation function at short distances are indicative of a cluster process
with a small range, less than 50 km. Then we have g(r) = 1 (horizontal dark grey line), indicating
there is no particular spatial structure or interaction. Note that g(0) > 7.5 corresponds to a high
probability of observing an earthquake within a small disc centered at an observed earthquake.

The prediction of the local intensity is obtained by using a mesh of 22,686 triangles for the
Galerkin approximation method. The left panel of Figure 10 shows the predicted local intensity
λ̂(xo|ΦWobs

) in Wpred = W\Wobs and a Gaussian-kernel smoothing of observed earthquake locations
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Figure 9: Log-intensity λ̂(x) (left panel) and pair correlation function (right panel): empirical (green dashed
line), fitted (black solid line).

in Wobs, with bandwidth 22 km. Both intensities are at a log-scale. The blue area in the center of
Wobs indicates a kernel smoothing value near zero because of the absence of points in this region (see
Figure 8). Compared with Figure 9, this plot also emphasizes the differences between the intensity
fitted from covariates in Equation (5) and the empirical intensity obtained by kernel smoothing.
This leads to conclude that we can expect some influence from point locations on the local intensity.
This effect is observed in the middle panel of Figure 10. It focuses on the prediction window in
which both the predicted local intensity and the fitted intensity of the point pattern λ̂(xo) are
plotted at a log-scale. The right panel plots their ratio to highlight their differences. The different
range values between λ̂(xo|ΦWobs

) and λ̂(xo) indicate that if we did not take into account the effect
of earthquakes locations in Wobs, we would get regular variations of the local intensity in Wpred.
The knowledge of these points add local hot spots close to the border between Wobs and Wpred.
Hence, the prediction window shows a high and spatially varying local intensity, whose variations
reflect the scales of the structures of the underlying process, through both the intensity and the
pair correlation function.

λ̂(xo|Φwobs
) λ̂(xo|Φwobs

) λ̂(xo) λ̂(xo|Φwobs
)/λ̂(xo)

Figure 10: Prediction of the local intensity λ̂(xo|ΦWobs
) in Wpred, and a Gaussian kernel smoothing in Wobs

(left panel). Prediction of the local intensity and fitted intensity λ̂(xo) given in Equation (5) in Wpred (middle
panel) and their ratio (right panel). All plots are at a log-scale.

Note that from a practical point of view, the approximation of the weight functions has been
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implemented in FreeFem++ (Hecht, 2012) a high level integrated development environment for nu-
merically solving partial differential equations. All other computations are implemented in R (R
Core Team, 2021). We used the R package spatstat (Baddeley and Turner, 2005) for fitting the
intensity λ(x) and for computing the empirical pair correlation function. Because interfacing R and
FreeFem++ is not straightforward and not feasible on any operating system, codes are only available
upon request to the first author.

5 Discussion

We have proposed a predictor of the local intensity of point processes conditionally to some cen-
sored observations, and accounting for the individual relationships and considering environmental
covariates. In this general context we can distinguish two situations: in a first case, censoring is a
continuous function defined over the study region W , so that observed and unobserved points share
the same space; in a second case, observations are taken in some windows and we want to predict
outside the observation window. In this paper we presented the latter case and considered that
the spatial variation driving the point density is related to an intensity governed by environmental
covariates.

When observed and unobserved points share the same space, the study region is the observa-
tion window and the observation is not exhaustive. In the example of earthquakes, we know the
network reliability. In some sense it can be viewed as a probability of detection, say π(x), which
is independent of the underlying process of earthquakes. This process is the union of the observed
process, Φπ, and the unobserved process, Φ1−π. Then the local intensity is the sum of the intensity
of the observed process and the intensity of the unobserved process given the observation, what can
be predicted as previously. But now, weights also depend on the observation probability.

The interaction with other processes provides another form of spatial variation. We can easily
imagine that the presence or the absence of a species depend on the presence/absence of other
species. The extension of our approach to multi-type processes is an on-going work. In that case,
we consider several processes, say Φ(k), k = 1, . . . ,K, observed respectively in some windows W1,
..., WK . To predict the intensity of the first process given the realization of the others, we can
define the predictor as follows

λ̂1(xo|Φ(1)
W1
, . . . ,Φ

(K)
WK

) =

K∑
k=1

∑
x∈Φ

(k)
Wk

wk(x;xo).

The unbiasedness constraint on the predictor modifies the constraint on the weight function,

K∑
k=1

∫
Wk

λk(x)wk(x;xo) dx = λ1(xo),

and minimizing the error prediction variance under this constraint leads to a new Fredholm equation
which now depends on the pair correlation function of each process and on the cross-pair correlation
functions.
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A question remains: how to control the approximation accuracy when solving the Fredholm
equation? There are two ways to increase the accuracy of the computed solution of the Fred-
holm equation: either refine the mesh, i.e. lower the size of the triangles, or use another ap-
proximation basis than the usual one (P1={piece-wise Linear functions}). Both options signifi-
cantly increase the dimension of the resulting dense linear problem and from the point of view
of computing efficiency we can wonder which is the most suitable approximation. Note that for
a given mesh, we get a more precise representation of the regularity of the solution if we use a
finite element basis involving more regular functions e.g. P2={piece-wise Quadratic functions} or
P3={piece-wise Cubic functions}. . . However, changing the basis of approximation won’t reduce the
approximation errors made with respect to the true solution of the Fredholm equation, errors that
are intrinsically linked to the typical size of a triangle of the mesh. Up to our knowledge, no rule
has been published that relates the size of the mesh to the characteristics of the equation. A too
crude size can even lead to negative estimated local intensities. We propose to verify empirically the
approximation quality by simulating point realizations using an easy to manipulate point process
with the same first- and second-order characteristics, as the log-Gaussian Cox point process, and
check discrepancy between reestimated local intensities and the estimated one.
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A Proof of Equation (2)

As in Gabriel et al. (2017), the local intensity at locations xo ∈W\Wobs given Φ ∩Wobs = ΦWobs
is

defined by the limit

λ(xo|Φ ∩Wobs = ΦWobs
) = lim

ν( dxo)→0

E[Φ( dxo)|Φ ∩Wobs = ΦWobs
]

ν( dxo)
,

where dxo is an elementary surface around xo. The spatial predictor of the local intensity is given
by

λ̂(xo|Φ ∩Wobs = ΦWobs
) =

∑
x∈ΦWobs

w(x;xo).

The proof of Equation (2) is similar to that in the stationary setting. For sake of convenience, in
what follows, w(x) stands for w(x;xo) and conditioning over Φ ∩Wobs = ΦWobs

is written |ΦWobs
.
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The constraint over the spatial weights in order to obtain an unbiased prediction can be expressed
as

E
[
λ̂(xo|ΦWobs

)− λ(xo|ΦWobs
)
]

= 0,

then under non-stationary assumption it becomes∫
Wobs

λ(x)w(x) dx− E [λ(xo|ΦWobs
)] = 0,

and therefore ∫
Wobs

λ(x)w(x) dx = λ(xo).

On the other hand, the predictor must minimize the error prediction variance,

Var
[
λ̂(xo|ΦWobs

)− λ(xo|ΦWobs
)
]

= Var
[
λ̂(xo|ΦWobs

)
]

+ Var [λ(xo|ΦWobs
)]

− 2Cov
[
λ̂(xo|ΦWobs

), λ(xo|ΦWobs
)
]
,

with

Var
[
λ̂(xo|ΦWobs

)
]

=

∫
Wobs

λ(x)w2(x) dx+

∫
Wobs×Wobs

λ(x)λ(y)w(x)w(y)(g(x− y)− 1) dx dy

and

Cov
[
λ̂(xoΦWobs

), λ(xo|ΦWobs
)
]

= Cov

 ∑
x∈ΦWobs

w(x), lim
ν( dxo)→0

E[Φ( dxo)|ΦWobs
]

ν( dxo)


= E

 lim
ν( dxo)→0

E[Φ( dxo)|ΦWobs
]

ν( dxo)

∑
x∈ΦWobs

w(x)

− λ(xo)

∫
Wobs

λ(x)w(x) dx

= lim
ν( dxo)→0

∫
Wobs×Wobs

E[Φ( dxo)|ΦWobs
]

ν( dxo)
λ(x)λ(y)w(x)g(x− y) dx dy − λ(xo)

∫
Wobs

λ(x)w(x) dx

= λ(xo)

∫
Wobs

λ(x)w(x)(g(xo − x)− 1) dx.

This is equivalent to minimise the following expression∫
Wobs

λ(x)w2(x) dx+

∫
Wobs×Wobs

λ(x)λ(y)w(x)w(y)(g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x)w(x)(g(xo − x)− 1) dx.
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We consider the Lagrange multipliers under the constraint for the spatial weight function and we
define

T (w(x)) =

∫
Wobs

λ(x)w2(x) dx+

∫
Wobs×Wobs

λ(x)λ(y)w(x)w(y)(g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x)w(x)(g(xo − x)− 1) dx+ µ

 ∫
Wobs

λ(x)w(x) dx− λ(xo)

 .

For α(x) = w(x) + ε(x), we have

T (α(x)) =

∫
Wobs

λ(x)(w(x) + ε(x))2 dx

+

∫
Wobs×Wobs

λ(x)λ(y) (w(x) + ε(x)) (w(y) + ε(y)) (g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x) (w(x) + ε(x)) (g(xo − x)− 1) dx

+ µ

 ∫
Wobs

λ(x) (w(x) + ε(x)) dx− λ(xo)

 ,

then

T (α(x)) =

∫
Wobs

λ(x)w2(x) dx+ 2

∫
Wobs

λ(x)w(x)ε(x) dx

+

∫
Wobs×Wobs

λ(x)λ(y)w(x)w(y)(g(x− y)− 1) dx dy

+

∫
Wobs×Wobs

λ(x)λ(y)w(x)ε(y)(g(x− y)− 1) dx dy

+

∫
Wobs×Wobs

λ(x)λ(y)w(y)ε(x)(g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x)w(x)(g(xo − x)− 1) dx− 2λ(xo)

∫
Wobs

λ(x)ε(x)(g(xo − x)− 1) dx

+ µ

 ∫
Wobs

λ(x)w(x) dx+

∫
Wobs

λ(x)ε(x) dx− λ(xo)

+ 2O(ε(x)).
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Finally, we can rewrite the previous expression as

T (α(x)) ≈ T (w(x)) + 2

∫
Wobs

λ(x)w(x)ε(x) dx+ 2

∫
Wobs×Wobs

λ(x)λ(y)w(y)ε(x)(g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x)ε(x)(g(xo − x)− 1) dx+ µ

∫
Wobs

λ(x)ε(x) dx+ 2O(ε(x)),

and therefore

T (α(x)) ≈ T (w(x)) + 2

∫
Wobs

ε(x)

[
λ(x)w(x) +

∫
Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dy

− λ(xo)λ(x)(g(xo − x)− 1) +
µ

2
λ(x)

]
dx,

Using variational calculation and the Riesz representation theorem, it follows that

T (α(x))− T (w(x)) = O(ε(x)),

that leads to

2

∫
Wobs

ε(x)

[
λ(x)w(x) +

∫
Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dy

− λ(xo)λ(x)(g(xo − x)− 1) +
µ

2
λ(x)

]
dx = 0,

and therefore

λ(x)w(x) +

∫
Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dy (6)

− λ(xo)λ(x)(g(xo − x)− 1) +
µ

2
λ(x) = 0.

Considering the integral of previous equation over the spatial window Wobs and respect to x, it
follows that∫

Wobs

λ(x)w(x) dx+

∫
Wobs×Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dx dy

− λ(xo)

∫
Wobs

λ(x)(g(xo − x)− 1) dx+
µ

2

∫
Wobs

λ(x) dx = 0,
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and then we obtain

λ(xo) +

∫
Wobs×Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dx dy

− λ(xo)

∫
Wobs

λ(x)(g(xo − x)− 1) dx+
µ

2

∫
Wobs

λ(x) dx = 0,

from which we get

µ

2
=

1∫
Wobs

λ(x) dx

[
λ(xo)

∫
Wobs

λ(x)(g(xo − x)− 1) dx

−
∫

Wobs×Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dx dy − λ(xo)

]
.

Finally, plugging µ/2 into Equation (6), it follows that

λ(x)w(x) +

∫
Wobs

λ(x)λ(y)w(y)(g(x− y)− 1) dy

− λ(xo)λ(x)(g(xo − x)− 1) +
λ(x)∫

Wobs

λ(z) dz

[
λ(xo)

∫
Wobs

λ(z)(g(xo − z)− 1) dz

−
∫

Wobs×Wobs

λ(z)λ(y)w(y)(g(z − y)− 1) dz dy − λ(xo)

]
= 0,

and after grouping we arrive to the Fredhom equation of second kind

λ(x)w(x) + λ(x)

∫
Wobs

λ(y)w(y)(g(x− y)− 1) dy

− λ(x)∫
Wobs

λ(z) dz

λ(xo) +

∫
Wobs×Wobs

λ(z)λ(y)w(y)(g(z − y)− 1) dz dy


= λ(xo)λ(x)(g(xo − x)− 1)− λ(xo)λ(x)∫

Wobs

λ(z) dz

∫
Wobs

λ(z)(g(xo − z)− 1) dz

B Zoom of predictions

Figures 11 and 12 correspond to the middle and right panels of Figures 1 and 2 zoomed on the
prediction window.
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λ(xo|Φwobs
) λ̂(xo|Φwobs

)

Figure 11: Conditional intensity (left panels) and prediction of the local intensity (right panels) obtained
from IMCP(p1(x), R) with R = 0.05 (first row), R = 0.09 (second row) and R = 0.013 (third row).

C First- and second-order moments estimation

In section 3 we analyze the effect of plugging estimates of the intensity and the pair correlation
functions in the predictor. We considered a parametric model for the intensity function, fλ(x), two
parametric (Matérn and Exponential) and one non parametric (referred to as empirical and denoted
gemp(r)) models for the pair correlation function. Table 2 summarizes the fitted parameters of the
different models.

The non parametric estimate of the pair correlation function is obtained by kernel smoothing,
as implemented in the pcfinhom function in spatstat with fλ(x) as intensity function. However
this function may lead to odd estimates that often do not satisfy theoretical conditions of a pair
correlation function (positive definiteness, consistence). Odd estimates are plotted in Figure 13 and
show that they do not tend to 1 as r increases. Regarding the expression of the weights (Equation 2),
this highly impact the predictions: we get very hight values for the related simulations. For instance
from the estimates plotted in Figure 13 we get predictions between −10130 and 13295. Hence for
the simulation study, we made an a posteriori selection of the admissible fitted pair correlation
functions as follows :

� median {|gemp(r)− 1|;r > 2R} < 0.05, i.e. the median distance between gemp(r) and 1 for all
r > 2R must be less than 0.05,

� the predictions must be positive and not exceed 6000.
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Figure 12: Conditional intensity (left panels) and prediction of the local intensity (right panels) obtained
from IMCP(p2(x), R) with R = 0.05 (first row), R = 0.09 (second row) and R = 0.013 (third row).

Table 2: Estimated parameters of the intensity model fλ and of the Matérn and exponential models for the
pair correlation function. Mean values are in bold, standard deviation in italic.

fλ(x) gmat(r) gexp(r)

β1 β2 α1 α2 α3 α4

408 (59 ) 1648 (245 ) 53.7 (15.3 ) 0.078 (0.014 ) 0.377 (0.073 ) 8.69 (1.74 )

Figure 13: Examples (orange and red curves) of odd non parametric estimates of the pair correlation
function. The theoretical model is in black. The vertical dashed line corresponds to the distance 2R.
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