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Abstract

Seismic networks provide data that are used as basis both for public safety deci-

sions and for scientific research. Their configuration affects the data completeness,

which in turn, critically affects several seismological scientific targets (e.g., earth-

quake prediction, seismic hazard...). In this context, a key aspect is how to map

earthquakes density in seismogenic areas from censored data or even in areas that

are not covered by the network. We propose to predict the spatial distribution of

earthquakes from the knowledge of presence locations and geological relationships,

taking into account any interactions between records. Namely, in a more general

setting, we aim to estimate the intensity function of a point process, conditional

to its censored realization, as in geostatistics for continuous processes. We define

a predictor as the best linear unbiased combination of the observed point pat-

tern. We show that the weight function associated to the predictor is the solution

of a Fredholm equation of second kind. Both the kernel and the source term of

the Fredholm equation are related to the first- and second-order characteristics of

the point process through the intensity and the pair correlation function. Results

are presented and illustrated on simulated non-stationary point processes and real

data for mapping Greek Hellenic seismicity in a region with unreliable and incom-

plete records.

keywords: Conditional intensity, Earthquakes, Fredholm equation, Non-

stationarity, Second-order characteristics, Spatial point processes.

1 Introduction

Mapping is a key issue in environmental science. A common and first example lies in ecology

when mapping species distribution. When the location of individuals is known, we estimate

the local density (usually by kernel smoothing), the so-called intensity in point process the-

ory. However, point locations are usually unreachable at the survey scale, so that sampling

methods are used; distance sampling or quadrat sampling approaches are possibly the most

common ones. When no covariate is available, a global density estimation is then performed.

1edith.gabriel@inrae.fr
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However, species distribution characteristics vary spatially as they are governed by envi-

ronmental data. Several approaches have been developed in that way for species data formed

by reported presence locations, also called occurrence-only records (pure records of locations

where a species occurred). Generally called Species Distribution Models (SDM), they aim to

explain species occurrences from environmental variables. If they are used to gain ecologi-

cal and evolutionary insights, they are also widely used for model-based interpolation across

landscapes or to predict distributions to new geographic regions (Elith and Leathwick, 2009).

SDMs are often based on multivariate statistical analysis methods, such as Generalized Lin-

ear/Additive Models (GLM/GAM). The most popular models are Maxent (Phillips et al.,

2006) and Maxlike (Royle et al., 2012). In these models point locations are aggregated to

grid cells and whether one or several individuals are observed in a cell, a one is recorded.

Then, their aim is to estimate occurrence probability (species’ probability of presence in a

grid cell) maps. See e.g. Merow and Silander (2014) for a comparison of the two models and

recommendations about their use.

Point process models offer a natural framework for species distribution modelling. Key

concerns about SDMs lie in the loss of significant information about the spatial distribu-

tion when aggregating point locations, and the dependence of the results on the spatial

resolution (Renner and Warton, 2013). Although point process models are connected to

Maxent (Aarts et al., 2012; Renner and Warton, 2013), they use a continuous landscape

rather than a discretized one, and the number of records is observed and comes from a ran-

dom process rather than fixed (number of cells/quadrats). Renner et al. (2015) showed that

using point process models presents many advantages, including some clarification about the

response variable and model assumptions which, in addition, can be checked. Furthermore,

because they operate at the individual level, point process models can incorporate interaction

between individuals and dependence to environmental covariates.

Another concern about all these approaches is that they are Poisson model-based: their

intrinsic definition does not account for relationship between individuals. These interac-

tions nevertheless exist. Competition among individuals often leads to empty areas around

each point, so-called exclusion by distance, mimicked by inhibition models. The American

Redstarts, for example, compete with conspecifics for habitat in their winter grounds: the

re-occupation of the empty areas supports the hypothesis that territoriality in this species

acts to exclude conspecifics from certain winter habitat (Marra et al., 1993). On the contrary,

individuals can be arranged by groups as with gregarious animals, such groups can also de-

scribe some local dispersion of the species around parents (as with plants). This arrangement

is achieved in cluster models. The Shorea congestiflora is a dominant species in a 25–ha forest

dynamics plot in a rain forest at Sinharaja (Sri Lanka), which apparently shows clustering at

several scales (Wiegand et al., 2007). These effects can be mixed, with individuals arranged

in groups, but at certain distance of each other inside each group. This can be the case for
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the spatial distribution of Northern Gannet (Chadœuf et al., 2011).

Similar issues arise in environmental science. The case we consider in this paper concerns

seismic mapping in the Aegean Sea region. This is an area with high seismic density due

to the presence of numerous volcanoes and plate movements. Earthquakes have a heteroge-

neous spatial distribution and we might be interested in understanding why certain regions

are more favorable than others. Modeling earthquakes will therefore require to take into

account geological information and interactions between events, clustering being often linked

to aftershocks. Evaluating the seismic hazard requires a reliable monitoring network and

sufficient coverage, what is rarely the case, and a lack of recording may not be due to the

absence of an earthquake, but to an insufficient or unreliable network. The question then

arises of mapping seismic activity in areas where the observation is unreliable or even when

the area is not covered by the network, in order to access a relevant map where the seismicity

is particularly high.

From a statistical point of view, the method developed in Gabriel et al. (2017) aimed to

predict the local intensity of a spatial point process accounting for the individual relationships

modeled by the pair correlation function (which is related to the probability to find a second

point of the process at a given distance from a known point of the process). The main interest

of this approach is that it estimates, using only first- and second-order characteristics of the

point process, the local intensity outside the observation window, hereafter called prediction.

The prediction of the local intensity is obtained conditionally to the records in the observation

window. However, this method did not allow to consider environmental covariates and thus

did not take into account potential spatial variations driven by these covariates at large scale,

which may lead to unrealistic predictions in ecology and environment.

To fill this potential unwished situation, we propose to predict the spatial distribution

of earthquakes from the knowledge of presence locations and geological relationships, taking

into account any interactions between records. Namely, in a more general setting, we aim to

estimate the intensity function of a point process, conditional to its censored realization, as in

geostatistics for continuous processes. We define a predictor as the best linear unbiased com-

bination of the observed point pattern, where the weight function associated to the predictor

is the solution of a Fredholm equation of second kind related to the first- and second-order

moments of the point process. We describe our approach in Section 2. We evaluate the

goodness of our predictions through a simulation study (Section 3) for several cluster models.

In Section 4, our methodology is applied to predict and map Hellenic seismicity in a region

with unreliable and incomplete records.
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2 Predicting the intensity conditionally to the observation

We consider in the following a spatial point process Φ in R2, i.e. a random pattern of points

for which both the number of points and their locations are random. Let us denote Φ(B)

the number of points of Φ in any borelian set B, and ΦB their locations in B. The intensity

function, denoted by λ(x), is defined as the function such that
∫
B λ(x) dx = E [Φ(B)], for B

any borelian set; this corresponds to the local probability to observe a point of Φ at a fixed

location (if dx is an infinitesimal volume around location x, then P [Φ( dx) = 1] = λ(x) dx).

The intensity function provides a trend in the spatial variation of points density, and we

suppose that the intensity is driven by spatial covariates Z, such that λ(x) = h(Zx), where

both h and Z are known.

The interaction between points is described through the pair correlation function g(x, y),

which gives the extend at which the probability to find a point at a location y changes by

the presence of a point of the process at location x (if dy is an infinitesimal volume around

y, then P [Φ( dy) = 1 | x ∈ Φ] = g(x, y)λ(y) dy). We assume that the process is second-order

intensity reweighted stationary (Baddeley et al., 2000). This assumption means that its

intensity varies in space, but the pair correlation function between two locations depends

only on their difference vector. More generally, a point process can be described through

another kind of intensity, the so-called (Papangelou) conditional intensity. This conditional

intensity corresponds to the conditional probability of finding a point of the process inside

an infinitesimal neighborhood of the location x, given the complete point pattern at all other

locations. See Cœurjolly and Lavancier (2019) for a thorough presentation of the intensity

and the conditional intensity, including theoretical definition, estimation methods and formal

expression (when available) for the most popular point processes.

Here we consider W ⊂ R2, a window of interest, and we assume that Φ has only been

observed in some observation window Wobs ⊂ W . The conditional distribution of ΦW\Wobs

given ΦWobs
can be expressed in terms of the conditional density (cf Cœurjolly et al. (2017)).

Unfortunately, the density of Φ restricted to Wobs is barely tractable (and hard to handle)

except for just some few processes, such as Poisson, Gibbs and determinantal processes;

however, this is not the case for Cox and cluster point processes that are often used to model

environmental or ecological point patterns.

Our aim is thus to estimate local intensity variations of the point process at any location

xo ∈ W\Wobs conditionally to h, Z and ΦWobs
, that is the Papangelou conditional intensity

of Φ knowing (ΦWobs,h,Z). Following Gabriel et al. (2016, 2017), we refer to it as the spatial

local intensity of Φ for sake of convenience. Given that we want to predict the local intensity

at points x0 ∈W\Wobs using a linear predictor, it can be written as

λ̂(xo|ΦWobs
) =

∫
Wobs

w(x;xo)
∑

y∈ΦWobs

δ(x− y) dx =
∑

x∈ΦWobs

w(x;xo), (1)
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where δ denotes the Dirac delta function.

Mimicking kriging, we want on one hand an unbiased predictor such that E[λ̂(xo|ΦWobs
)−

λ(xo|ΦWobs
)] = 0, which leads to∫

Wobs

λ(x)w(x;xo) dx− E [λ(xo|ΦWobs
)] = 0,

and therefore ∫
Wobs

λ(x)w(x;xo) dx = λ(xo). (2)

On the other hand, the predictor must minimize the prediction error variance, which is

equivalent to minimizing the following expression

Var[λ̂(xo|ΦWobs
)− λ(xoΦWobs

)] =

∫
Wobs

λ(x)w2(x;xo) dx

+

∫
Wobs

∫
Wobs

λ(x)λ(y)w(x;xo)w(y;xo)(g(x− y)− 1) dx dy

− 2λ(xo)

∫
Wobs

λ(x)w(x;xo)(g(xo − x)− 1) dx.

Using variational calculation and the Riesz representation Theorem similarly to (Gabriel

et al., 2017), one gets the following Fredholm equation of the second kind

λ(x)w(x;xo) + λ(x)

∫
Wobs

λ(y)w(y;xo)(g(x− y)− 1) dy

− λ(x)∫
Wobs

λ(z) dz

[
λ(xo) +

∫
Wobs

∫
Wobs

λ(z)λ(y)w(y;xo)(g(z − y)− 1) dz dy

]
= λ(xo)λ(x)(g(xo − x)− 1)− λ(xo)λ(x)∫

Wobs
λ(z) dz

∫
Wobs

λ(z)(g(xo − z)− 1) dz.

(3)

Its solution is implicitbut it can be numerically approximated using the Galerkin approxima-

tion method (Kress, 2013). This projection method convert the Fredholm equation into a dis-

crete problem where a Finite Element Space is used for the approximation space, see Gabriel

et al. (2017).
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3 Simulation study

The objective of this section is twofold: first, we want to visualize how the prediction is

affected by both the distance from the prediction point xo to the observed window Wobs and

the point process structure, and second, we want to measure the variability between our

estimator λ̂(xo|ΦWobs
) and the conditional intensity λ(xo|ΦWobs

).

In order to see how the prediction estimator behaves with respect to the pattern struc-

ture we use the inhomogeneous Matérn cluster model which allows the computation of its

conditional intensity. This model is obtained as follows. We first define a stationary Matérn

cluster process ΦMat, i.e. a process where each point of a Poisson parent process is replaced

by a poissonnian cluster of offspring uniformly distributed in a disc of radius R around the

parent point. We then focus on the independent p(x)−thinned process, where p(x) is a deter-

ministic function on R2 with 0 ≤ p(x) ≤ 1. Every point x belonging to ΦMat is deleted with

probability 1− p(x), and again its deletion is independent of locations and possible deletions

of any other points (Chiu et al., 2013).

Let Φ be the process of the thinned offspring and Φp the parent process (Poisson process

with intensity κ). The process Φ is second-order intensity reweighted stationary with intensity

λ(x) = κµp(x), with µ the expected number of offspring per parent. The pair correlation

function is the one of ΦMat:

g(r) = 1 +
2

κ(πR)2

(
arccos

( r

2R

)
− r

2R

√
1− r2

4R2

)
, if 0 < r < 2R, and g(r) = 1 otherwise.

According to Gabriel and Chadœuf (2021), the local intensity of the thinned Matérn cluster

process Φ is

λ(xo|ΦWobs
) =

µp(xo)

πR2

∫
b(xo,R)∩(Wobs∪∂W )

λp(y|ΦWobs
) dy + κµp(xo)ν (b(xo, R)\(Wobs ∪ ∂W )) ,

(4)

where ∂W stands for the outside border of thickness R of the observation window, b(xo, R)

the disc of center xo and radius R, and λp(y|ΦWobs
) is the conditional intensity of parents in

Wobs ∪ ∂W given the realization of offspring in Wobs. This intensity is approximated by

λ̂p(y|ΦWobs
) =

1

µp(y)πR2

∑
x∈ΦWobs

Ib(x,R)(y) + κ exp

(
− µ

πR2

∫
b(y,R)∩Wobs

p(z) dz

)
,

where the first term is the empirical intensity of parents given the observed offspring, and

the second term is the intensity of parents with unobserved offspring. See Gabriel and

Chadœuf (2021) for the approximation of the conditional distribution of parent points given

the offspring points and its validation.
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The inhomogeneous Matérn Cluster process (IMCP) Φ depends on four parameters: the

thinning probability p(x), the intensity of parents κ, the mean number of points per parent

µ, and the radius of dispersion of the offspring around the parent points R. In our simulation

study we fix κ = 50 and µ = 40, and we consider:

- two thinning probabilities: p1(x) = p1(x1, x2) = α1I{x1≤v}+α2I{x1>v}, setting α1 = 0.8,

α2 = 0.2 and v = 0.5, and p2(x) = p2(x1, x2) = 1− x1.

- the unit square as study region W . The observation window is Wobs = W\Wpred, where

Wpred = [0.35, 0.65]2 when using p1(x) and Wpred = [0.05, 0.95]×[0.36, 0.64] when using p2(x).

- R ∈ {0.05, 0.09, 0.13}.
We perform n = 1000 simulations of Φ for all combinations of pairs (p(x), R). Each

scenario is denoted IMCP(p(x), R). Realizations of IMCP(p1(x), R) (resp. IMCP(p2(x), R))

are given in the first column of Figure 1 (resp. Figure 2) for the different values of R,

illustrating inhomogeneous patterns with increasing range of clustering from top to bottom.

Figure 1: First column: inhomogeneous Matérn cluster point patterns, ΦWobs
, obtained from p1(x).

Second column: approximation of the local intensity in Wpred (central square) and kernel smoothing
of the pattern in Wobs. Third column: predicted local intensity in Wpred (central square) and kernel
smoothing of the pattern in Wobs.
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For each simulation, we compute the local intensity from both the predictor (1) and the

approximation (4) in Wpred. We consider the same mesh for the Galerkin approximation

method for all configurations, for which Wobs is subdivided in 15,194 triangles. The local

intensity and the prediction are respectively plotted in the second and third columns of

Figures 1 and 2. For a visualization purpose, we plotted the local intensity in Wpred (central

square/rectangle), as well as a Gaussian kernel smoothing of the intensity in Wobs.

Figure 2: First column: inhomogeneous Matérn cluster point patterns, ΦWobs
, obtained from p2(x).

Second column: approximation of the local intensity in Wpred (central rectangle) and kernel smoothing
of the pattern in Wobs. Third column: predicted local intensity in Wpred (central rectangle) and kernel
smoothing of the pattern in Wobs.

We can see that the method reproduces the structures of the point process. In particular,

it reproduces clusters, as soon as there are points close enough to the boundary of Wpred,

and the prediction tends to the intensity of the process, λ(x) = κµp(x), when it is made at

distances larger than R from the boundary of Wobs. This is particularly clear for small values

of R (first rows in Figures 1 and 2). Results from these realizations show, however, some

weak differences between the local intensity and our prediction that we now quantify.
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We measure the precision and the variability of our prediction through the relative bias

(RB) and the relative root mean square error (RRMSE), for xo ∈Wpred, as follows

RB(xo) =

n∑
i=1

(
λ̂i(xo|ΦWobs

)− λi(xo|ΦWobs
)
)

n∑
i=1

λi(xo|ΦWobs
)

,

and

RRMSE(xo) =

√
1
n

n∑
i=1

(
λ̂i(xo|ΦWobs

)− λi(xo|ΦWobs
)
)2

1
n

n∑
i=1

λi(xo|ΦWobs
)

,

where λ̂i and λi stand for the prediction and the local intensity of the i-th simulation.

Figure 3a and 3c illustrate the distribution of RB(xo) and RRMSE(xo) for all patterns

IMCP(p(x), R).
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Figure 3: Relative bias (top) and relative RMSE (bottom) computed from 1000 simulations with
p1(x) and p2(x) within Wpred. Distances are measured outwards the boundary of Wobs, inwards Wpred.
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In all cases, the relative bias is concentrated around 0 and is much less than 5% (in

absolute value) what reveals an excellent precision of the predictor. The distributions of

RRMSE(xo) show a decreasing variability as the interaction radius R increases. Indeed, as

shown in Figures 1 and 2, the inter-point distances of the point patterns are greater for larger

values of R and the local intensity is thus more diffuse for large values of R, and more picky

for very small values. The weight function is closely related to the pair correlation function.

It shows a radial wavy behavior around xo with positive decreasing values at distances less

that R, and it has negative values between R and 2R, . . . , and then is null (see Figure 4).

As the predictor is the sum of the weight at x ∈ ΦWobs
, it reflects this behavior and clusters

Figure 4: Weight function w(x;xo) (here transformed as sign(w(x;xo)) log(|w(x;xo)|)) associated to
the point xo (black dot in Wpred) for the process IMCP(p1(x), 0.05). For each realization of the point
process, ΦWobs

(e.g. the dark blue dots), the local intensity at xo is the sum over x ∈ ΦWobs
of the

weights w(x;xo).

are thus well marked. The approximation of the local intensity (4) is smoother as it is only

expressed in terms of first-order moments. Hence, we get more variability in the border ∂W ,

and even higher for picky intensities as for R = 0.05. That is also shown in Figures 3b and 3d

which illustrate the relative bias and relative RMSE computed at different distances from

∂W . They are both higher at very short distances.

4 Predicting the density of earthquakes

In this section we focus on the Greek-Hellenic area, a region of high seismic hazard due to both

tectonic and volcanic seismogenic sources. This seismicity is a result of some motion-induced

deformations: northward motion of the African lithosphere, westward motion of the Anatolia

plate and collision between African and Eurasian plates (Papazachos and Comninakis, 1971;

Le Pichôn and Angelier, 1979; McKenzie, 1972; Anderson and Jackson, 1987). A total of
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1173 earthquakes of magnitude greater or equal than 4 occurred in the study area W (black

square in Figure 5) between 2004 and 2015. Their locations are plotted in Figure 5.

Figure 5: Earthquakes of magnitude greater or equal than 4, faults, plate boundaries and main
volcanoes in the Hellenic region. Prediction window is shown in the light yellow area.

Data have been recorded by the Hellenic Unified Seismological Network (HUSN). Seismic

networks provide data that are used as the basis both for public safety decisions and for

scientific research. They are essential tools for observing earthquakes and assessing seismic

hazards that can be described and characterized to assess their degree of coverage (Siino et al.,

2020). Indeed, their configuration affects the data completeness, which in turn, critically

affects several seismological scientific targets (e.g., earthquake prediction, seismic hazard, etc.

(Vamvakaris et al., 2013)). From different indicators (magnitude of completeness, Radius of

Equivalent Sphere that estimates an average error of location), D’Alessando et al. (2011)

identified some seismogenic areas that probably are not adequately covered by the HUSN.

Based on their results we delineate a zone (in light yellow in Figure 5) with unreliable or

missing records. We removed the 48 points located in this yellow zone to predict the local

intensity of earthquakes.

Modelling earthquakes needs to account for geological information and interactions be-

tween earthquakes, usually in terms of clustering. The most popular models of seismological

events are the so-called self-exciting, such as Hawkes and ETAS models (Adamopoulos, 1976;

Ogata, 1988). Our approach, however, is model-free, it accounts for environmental hetero-

geneity and interaction between events. Following Siino et al. (2017), we assume that the

intensity of earthquakes log-linearly depends on several spatial geological covariates: Dpb, the

distance to the plate boundary (orange dashed curves in Figure 5); Df , the distance to the

nearest fault (blue lines in Figure 5); and Dv, the distance to the nearest main volcano (red
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triangles in Figure 5). Thus, the intensity takes the form

λ(x) = λ(x1, x2) = exp
(
β0 + β1x1 + β2x2 + β3x

2
1 + β4x1x2 + β5x

2
2 + β6I{Df (x)≤φ1}Df (x)

+β7I{φ1<Df (x)≤φ2}Df (x) + β8I{φ2<Df (x)≤φ3}Df (x) + β9I{φ3<Df (x)≤φ4}Df (x)

+β10I{Df (x)>φ4}Df (x) + β11Dv(x) + β12Dpb(x)
)
, (5)

with φ1 = 6.73, φ2 = 43.48, φ3 = 54.783 and φ4 = 112. The estimated values of model

parameters are given in Table 1, and the estimated intensity is depicted in Figure 6 (left

panel, log-scaled). This figure shows that the region to be predicted (bordering in black) is

across zones of strong and weak intensities. We then calculated the empirical pair correlation

Table 1: Estimated parameters of the intensity model λ(x).

Parameter β0 β1 β2 β3 β4 β5 β6

Estimate -178.483 0.611 9.673 0.034 -0.061 -0.114 -0.034

Parameter β7 β8 β9 β10 β11 β12

Estimate -0.0268 -0.0175 -0.0179 -0.0214 0.0040 -0.0093

function (see Figure 6 (right panel)) and fitted an exponential model of the form g(r) =

exp(−α2
√
r)/α1, with α̂1 = 8.9502 and α̂2 = 0.0266 (as it is shown in Figure 6 (right panel),

for the theoretical fitted model). The high values of the pair correlation function at short

distances are indicative of a cluster process with a small range, less than 50 km. Then we

have g(r) = 1 (horizontal dark grey line), indicating there is no particular spatial structure or

interaction. Note that g(0) > 7.5 corresponds to a high probability of observing an earthquake

within a small disc centered at an observed earthquake.

Figure 6: Log-intensity λ̂(x) (left panel) and pair correlation function (right panel): empirical (green
dashed line), fitted (black solid line).

The prediction of the local intensity is obtained by using a mesh of 22,686 triangles for

the Galerkin approximation method. The left panel of Figure 7 shows the predicted local
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intensity λ̂(xo|ΦWobs
) in Wpred = W\Wobs and a Gaussian-kernel smoothing of observed

earthquake locations in Wobs, with bandwidth 22 km. Both intensities are at a log-scale.

The blue area in the center of Wobs indicates a kernel smoothing value near zero because

of the absence of points in this region (see Figure 5). Compared with Figure 6, this plot

also emphasizes the differences between the intensity fitted from covariates in Equation (5)

and the empirical intensity obtained by kernel smoothing. This leads to conclude that we

can expect some influence from point locations on the local intensity. This effect is observed

in the middle panel of Figure 7. It focuses on the prediction window in which both the

predicted local intensity and the fitted intensity of the point pattern λ̂(xo) are plotted at a

log-scale. The right panel plots their ratio to highlight their differences. The different range

values between λ̂(xo|ΦWobs
) and λ̂(xo) indicate that if we did not take into account the effect

of earthquakes locations in Wobs, we would get regular variations of the local intensity in

Wpred. The knowledge of these points add local hot spots close at the border between Wobs

and Wpred. Hence, the prediction window shows a high and spatially varying local intensity,

whose variations reflect the scales of the structures of the underlying process, through both

the intensity and the pair correlation function.

Figure 7: Prediction of the local intensity λ̂(xo|ΦWobs
) in Wpred, and a Gaussian kernel smoothing

in Wobs (left panel). Prediction of the local intensity and fitted intensity λ̂(xo) given in Equation (5)
in Wpred (middle panel) and their ratio (right panel). All plots are at a log-scale.

Note that from a practical point of view, the approximation of the weight functions has

been implemented in FreeFem++ (Hecht, 2012) a high level integrated development envi-

ronment for numerically solving partial differential equations. All other computations are

implemented in R (R Core Team, 2021). We used the R package spatstat (Baddeley and

Turner, 2005) for fitting the intensity λ(x) and for computing the empirical pair correlation

function. Because interfacing R and FreeFem++ is not straightforward and not feasible on

any operating system, codes are only available upon request to the first author.
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5 Discussion

We have proposed a predictor of the local intensity of point processes conditionally to some

censored observations, and accounting for the individual relationships and considering envi-

ronmental covariates. In this general context we can distinguish two situations: in a first

case, censoring is a continuous function defined over the study region W , so that observed

and unobserved points share the same space; in a second case, observations are taken in some

windows and we want to predict outside the observation window. In this paper we presented

the latter case and considered that the spatial variation driving the point density is related

to an intensity governed by environmental covariates.

When observed and unobserved points share the same space, the study region is the

observation window and the observation is not exhaustive. In the example of earthquakes,

we know the network reliability. In some sense it can be viewed as a probability of detection,

say π(x), which is independent of the underlying process of earthquakes. This process is the

union of the observed process, Φπ, and the unobserved process, Φ1−π. Then the local intensity

is the sum of the intensity of the observed process and the intensity of the unobserved process

given the observation, what can be predicted as previously. But now, weights also depend on

the observation probability.

The interaction with other processes provides another form of spatial variation. We can

easily imagine that the presence or the absence of a species depend on the presence/absence

of other species. The extension of our approach to multi-type processes is an on-going work.

In that case, we consider several processes, say Φ(k), k = 1, . . . ,K, observed respectively in

some windows W1, ..., WK . To predict the intensity of the first process given the realization

of the others, we can define the predictor as follows

λ̂1(xo|Φ(1)
W1
, . . . ,Φ

(K)
WK

) =

K∑
k=1

∑
x∈Φ

(k)
Wk

wk(x;xo).

The unbiasedness constraint on the predictor modifies the constraint on the weight function,

K∑
k=1

∫
Wk

λk(x)wk(x;xo) dx = λ1(xo),

and minimizing the error prediction variance under this constraint leads to a new Fredholm

equation which now depends on the pair correlation function of each process and on the

cross-pair correlation functions.

A question remains: how to control the approximation accuracy when solving the Fred-

holm equation? There are two ways to increase the accuracy of the computed solution of

the Fredholm equation: either refine the mesh, i.e. lower the size of the triangles, or use
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another approximation basis than the usual one (P1={piece-wise Linear functions}). Both

options significantly increase the dimension of the resulting dense linear problem and from

the point of view of computing efficiency we can wonder which is the most suitable ap-

proximation. Note that for a given mesh, we get a more precise representation of the

regularity of the solution if we use a finite element basis involving more regular functions

e.g. P2={piece-wise Quadratic functions} or P3={piece-wise Cubic functions}. . . However,

changing the basis of approximation won’t reduce the approximation errors made with re-

spect to the true solution of the Fredholm equation, errors that are intrinsically linked to the

typical size of a triangle of the mesh. Up to our knowledge, no rule has been published that

relates the size of the mesh to the characteristics of the equation. A too crude size can even

lead to negative estimated local intensities. We propose to verify empirically the approxima-

tion quality by simulating point realizations using an easy to manipulate point process with

the same first- and second-order characteristics, as the log-Gaussian Cox point process, and

check discrepancy between reestimated local intensities and the estimated one.
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Le Pichôn X, Angelier J (1979) The hellenic arc and trench system: a key to the neotectonic

evolution of the eastern mediterranean area. Tectonophysics 60:1–42

Marra PP, Sherry TW, Holmes RT (1993) Territorial Exclusion by a Long-Distance Mi-

grant Warbler in Jamaica: A Removal Experiment with American Redstarts (Setophaga

Ruticilla). The Auk 110(3):565–572, DOI 10.2307/4088420

McKenzie D (1972) Active Tectonics of the Mediterranean Region. Geophysical Journal In-

ternational 30(2):109–185

Merow C, Silander JA (2014) A comparison of maxlike and maxent for modelling species

distributions. Methods in Ecology and Evolution 5(3):215–225

16

arXiv.2110.13738


Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point

processes. Journal of the American Statistical Association 83(401):9–27

Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the aegean arc.

Journal of Geophysical Research (1896-1977) 76(35):8517–8533

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geo-

graphic distributions. Ecological Modelling 190(3):231–259

R Core Team (2021) R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/

Renner IW, Warton DI (2013) Equivalence of MAXENT and poisson point process models

for species distribution modeling in ecology. Biometrics 69(1):274–281

Renner IW, Elith J, Baddeley A, Fithian W, Hastie T, Phillips SJ, Popovic G, Warton DI

(2015) Point process models for presence-only analysis. Methods in Ecology and Evolution

6(4):366–379

Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occur-

rence probability from presence-only data for modelling species distributions. Methods in

Ecology and Evolution 3(3):545–554

Siino M, Adelfio G, Mateu M J andc Chiodi, D’Alessando A (2017) Spatial pattern analysis

using hybrid models: an application to the hellenic seismicity. Stochastic Environmental

Research and Risk Assessment 31:1633–1648

Siino M, Scudero S, Greco L, D’Alessando A (2020) Spatial analysis for an evaluation of mon-

itoring networks: examples from the italian seismic and accelerometric networks. Journal

of Seimology 24:1045–1061

Vamvakaris D, Papazachos C, Papaioannou C, Scordilis E, Karakaisis G (2013) A detailed

seismic zonation model for shallow earthquakes in the broader aegean area. Natural Hazards

and Earth System Sciences Discussions 1:55–84

Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007) Analyzing the spatial structure

of a sri lankan tree species with multiple scales of clustering. Ecology 88(12):3088–3102,

DOI 10.1890/06-1350.1

17

https://www.R-project.org/

	Introduction
	Predicting the intensity conditionally to the observation
	Simulation study
	Predicting the density of earthquakes
	Discussion

