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Abstract—In this paper, a cooperative hybrid visible light
communications (VLC)/radio frequency (RF) network that em-
ploys non-orthogonal multiple access (NOMA) is investigated.
More specifically, the resource allocation and the operating mode
of the system is optimized to maximize a weighted energy
efficiency metric, taking into accounts the particularities of the
hybrid network. The resulting optimization problem is efficiently
tackled with the use of Dinkelbach’s algorithm and difference of
convex programming. Using this solution, a deep neural network
(DNN) is trained to find the operation mode and alleviate the
computational cost of the overall problem leading to a close
solution to the optimal. Finally, the effectiveness of the proposed
setup is presented via Monte Carlo simulation results.

I. INTRODUCTION

A major limitation of conventional radio frequency (RF)
communications has been the ever increasing crowding of the
RF spectrum, due to the growing number of connected devices
and amount of data they require. To address these concerns,
academia and industry have shifted their attention to emerging
technologies, such as optical wireless communications (OWC),
that utilize a different region of the electromagnetic spectrum,
meaning they would be able to serve a plethora of devices
with no interference to the RF network [1]. More specifically,
optical wireless access indoors has been mostly facilitated
via visible light communications (VLC) technology through
the use of light emitting diodes (LED) bulbs, which can
offer high data rate communications at a low cost through
the illumination infrastructure. VLC also offers high inherent
physical layer security and a high frequency reuse factor since
light is blocked by opaque structures such as walls. Due to
these advantages, VLC has been recognized as a potential can-
didate technology for the 5G Public-Private-Partnership (PPP)
project, while there are global efforts on VLC standardization
such as IEEE P802.11bb. On the other hand, line-of-sight
(LoS) can easily be blocked by the movement or rotation
of the receiver and also VLC is in general dependent on the
room illumination levels. The above reasons have led to the
proposed heterogeneous networking of RF and VLC networks,
in order to maintain coverage via RF while boasting higher
data rates through VLC. Hybrid VLC/RF networks have been
extensively studied during the recent years [2] as a way to
capitalize on the unused electromagnetic (EM) spectrum for
wireless access.

Apart from the growing interest in previously unexploited
regions of the EM spectrum, the efficient use of the available
bandwidth is of paramount importance. To this end, non-
orthogonal multiple access (NOMA) has attracted significant
attention from the research community due to its increased
spectral efficiency. NOMA with VLC has been examined in
[3]–[5] and it was also shown experimentally in [6], while
hybrid VLC/RF networks with NOMA were studied in [7]–
[10]. Cooperative hybrid VLC/RF networks with NOMA were
examined in terms of outage probability in [8]. In that paper, a
cross-band selection diversity combining scheme is proposed
to improve the system’s performance.

Moreover, the increasing number of access points (APs) is
concerning given the resulting energy consumption. However,
VLC APs which are usually already on for illumination
coverage, can offer wireless access with minimal additional
energy consumption. As such, VLC has been recognized as
a promising indoor wireless network to reduce the energy
requirements and improve energy efficiency. In this regard,
in [11], the authors examined the resource allocation in a
hybrid VLC/RF network to maximize the energy efficiency of
the system, while in [12], the authors minimized the energy
consumption of a hybrid VLC/RF network while satisfying
the users’ quality of service (QoS) requirements. Additionally,
in [13] the authors designed a hybrid VLC/RF network with
a power line communications (PLC) backhaul and maximize
the energy efficiency via optimizing the power allocation of
the VLC/RF network and the backhaul flow of the PLC
network. Moreover, in [14], hybrid VLC/RF networks with a
decode and forward relaying setup were investigated in terms
of physical layer security. More recently, in [9], [10], the
authors investigated the power allocation and user pairing in a
cooperative setup like the one [8], with the aim to maximize
the sum rate while satisfying QoS constraints of the users.

Motivated by the former results, in this paper, we inves-
tigate a cooperative hybrid VLC/RF network to maximize a
weighted energy efficiency metric. The proposed metric takes
into account the particularities imposed by the illumination
function of the VLC APs. The cooperative network makes
use of NOMA to serve its users via the VLC AP, while an
RF link is present between the users for possible cooperation.
The operation mode of the network is chosen to optimize
energy efficiency and the resulting optimization problem is



tackled with the use of a Dinkelbach based algorithm and
difference of convex programming. Finally, in order to reduce
the computational complexity of the proposed solution, a deep
neural network (DNN) is trained to chose the operation mode
of the network given the users’ channel state information and
QoS constraints. After training, the DNN can offer close to
optimal performance at a fraction of the cost.

II. SYSTEM MODEL

We consider an indoor downlink system, consisting of one
VLC AP and two types of users, namely a near user, denoted
as U1, and a far user, denoted as U2. The users’ locations are
uniformly distributed in a cyclic disk with radius R0 and an
annular area bounded by radii R0 and Rv, respectively. Polar
coordinates (ri, θi) are utilized to describe the exact position
of user i from the center. Moreover, the VLC AP is placed on
the ceiling with a vertical distance L from the ground plane.
Both U1 and U2 are assumed to belong in the coverage area
of the VLC AP. The VLC AP utilized NOMA for downlink
transmission to U1 and U2 simultaneously, while U1 can also
act as a full-duplex (FD) decode-and-forward (DF) RF relay
to assist the far user U2.

A. VLC Transmission

VLC transmission employs intensity modulation-direct de-
tection (IM-DD) NOMA. The non-negative optical transmitted
superposed signal is defined as x =

√
P1x1+

√
P2x2, with P1

and P2 being the transmitted power allocated for user U1 and
U2, respectively. To maintain illumination levels as well as
to guarantee safety and hardware constraints, the maximum
transmitted optical power is limited to PVLC

max . Therefore, it
holds that

P1 + P2 ≤ PVLC
max . (1)
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Fig. 1. System Model.

Accordingly, the received message at user Ui can be ex-
pressed as

yi = ηhix+ ni, (2)

where η is the photo-detector responsivity in A/W, hi is the
VLC channel gain between the VLC AP and Ui, and ni is the

additive white Gaussian noise (AWGN) at Ui. Assuming LoS,
the VLC channel gain is given by [15], [16]

hi =
m+ 1

2πd2i
Ar cos

m(φi)T (ψi)g(ψi)cos(ψi), (3)

where Ar is the detector area of the photodiode at user Ui, φi
and ψi denote the irradiance and the incidence angles of Ui,
respectively, while m is the Lambertian emission order, which
is obtained as

m = −ln2/ln(cos(Φ1/2)), (4)

where Φ1/2 is the transmitter semi-angle at half-power. On
top of that, the distance di is expressed as di =

√
r2i + L2

regarding the polar coordinates of user Ui and the ceiling
height L. Moreover, T (ψi) and g(ψi) denote the gains of the
optical filter and the optical concentrator, respectively, with
the latter being expressed as

g(ψi) =

{
n2

sin2 ΨFOV
, 0 ≤ ψi ≤ ΨFOV

0, ψi > ΨFOV,
(5)

where ΨFOV denotes the field-of-view (FOV) of the transmit-
ter and n is the refractive index.

Without loss of generality, we assume that the optical
detector of each user is pointing upwards so that it holds
that φi ≈ ψi. Then, taking into account the polar coordinates
system, the channel gain from the VLC AP to the VLC user
is given by

hi =
C(m+ 1)L(m+1)

(r2i + L2)
m+3

2

, (6)

where C = ArT (ψi)g(ψi)
2πd2i

.
According to the power domain NOMA principle, the weak

user U2 decodes its own message with an achievable rate
R2,V by treating U1’s message as interference. At the strong
user’s detector, i.e., at U1, the message meant for U2 is first
decoded to be removed via successive interference cancellation
(SIC). The rate at which U1 can decode the message of U2 is
R2→1,V . Following this, U1 decodes its own message without
interference with an achievable rate equal to R1,V . Due to
the intensity modulation-direct detection (IM/DD) utilized by
the VLC system, the common Shannon formula cannot be
used to evaluate the capacity since there are a number of
additional constraints for the transmitted signal, including the
non-negativity limitation of the input signal that modulates
the optical intensity of the emitted light and the constraint
on the total optical transmit power transmitted. Instead, by
utilizing a lower bound of the corresponding capacity region,
the achievable rates for each user can be described as [17]

R2→1,V = Bv log2

(
1 +

(ηh1P2)
2

((ηh1P1)2 + 9σ2)(1 + εμ)2

)
− εφ,

(7)

R1,V = Bv log2

(
1 +

(ηh1P1)
2

9σ2(1 + εμ)2

)
− εφ, (8)



R2,V = Bv log2

(
1 +

(ηh2P2)
2

((ηh2P1)2 + 9σ2)(1 + εμ)2

)
− εφ,

(9)
where Bv is the bandwidth of the VLC network, σ2 is the
noise variance and εφ = 0.016, εμ = 0.0015.

B. RF Transmission

During RF transmission, the baseband equivalent received
signal at the terminal of user U2 is expressed as follows

yR =
√
PRFxthRF + nR, (10)

where nR is the AWGN noise at the RF receiver with variance
σ2
R, hRF ∼ Rician(Kr, d

−ζ
RF) is the Rician RF channel. Without

loss of generality, Rician fading is assumed since a strong LoS
component is almost certainly present between the two indoor
users as they are described in this scenario. Moreover PRF

denotes the available power for retransmission at U1 and ζ
is the path-loss exponent. Given the topology of the scenario
and by utilizing the polar coordinates of U1 and U2, dRF,
which is the Euclidean distance between the two users, can be
calculated by

dRF =
√
r21 + r22 − 2r1r2 cos (θ2 − θ1) (11)

Taking into account the path-loss formula LdB
RF = Ld0 +

10ζ log10(
dR
d0

), LRF = 10
LdB
RF
10 , where Ld0 = 68dB and

d0 = 1 m, the achievable data rate from U1 to U2 via the
RF link, according to Shannon capacity, is given by:

R2,R = BR log2

(
1 +

LRF|hRF|2PRF

σ2
R

)
, (12)

where BR denotes the bandwidth of the RF system.

III. ENERGY EFFICIENCY OPTIMIZATION

In this section, the resource allocation of the hybrid VLC/RF
network is investigated in order to maximize an energy ef-
ficient metric, while the users of the network fulfill their
QoS requirements. Energy efficiency is defined as the ratio
of achievable data rate per consumed power. In order to better
capture the particularities of the heterogeneity of this type of
network, such as the dependency of VLC transmission power
to the illumination levels, a weighted energy efficiency metric
is examined. More specifically, a weight α with 0 ≤ α ≤ 1 is
used to tune the users’ throughput, while a weight β, 0 ≤ β ≤
1, adjusting the focus of the metric on the consumed power of
each network. As such, the weighted energy efficiency metric
that is studied in this paper is expressed as

EE =
αR1 + (1 − α)R2

βPVLC + (1− β)PRF
, (13)

where PVLC = P1 +P2 and R2 is the achievable data rate of
the second user, depending on the mode q of the cooperative
network, i.e.,

R2 = qR2,V + (1− q)R2,R, q ∈ {0, 1}, (14)

where q = 1 is the pure VLC mode, while q = 0 is the
cooperative RF mode.

Considering the achievable data rates of each user, their
QoS constraints, and the required power for consumption, the
following optimization problem to maximize energy efficiency
is defined

max
q,P1,P2,PRF

αR1+(1−α)R2

βPVLC+(1−β)PRF

s.t. C1 : R1,V ≥ Rthr
1 ,

C2 : R2 ≥ Rthr
2 ,

C3 : R2→1,V ≥ Rthr
2 ,

C4 :
∑

i∈VLC P
VLC
i ≤ PVLC

max ,
C5 : PRF

2 ≤ PRF
max,

(15)

where C1 and C2 are the QoS requirements of the users U1 and
U2, respectively. U2 can achieve their requirement with either
the VLC network or through the cooperative strategy. Since
NOMA is utilized in this scenario, U1 is required to be able
to decode U2’s message for two reasons; first, it is required
for U1 to perform SIC and decode their own message, and
second in order to be able to transmit via RF the message to
user U2. Therefore, constraint C3 ensures that the rate at which
U1 decodes U2’s message fulfills their QoS constraint. Finally,
as mentioned in the previous section, the power consumption
levels of the AP and U1 are bounded by illumination and
hardware constraints leading to C4 and C5.

The optimization problem in (15) is a mixed integer nonlin-
ear optimization problem. In order to solve this problem we
perform a full search on the integer value q, since it can only
take values of either zero or one. Following that, problem (15)
reduces to a nonlinear problem. However, it is noted that the
problem is non-convex, mainly due to the fractional objective
function and constraints C1, C2, and C3, which contain the
logarithms with squared power terms. In order to efficiently
solve this problem in polynomial time, we need to transform
it into an equivalent convex than can be efficiently solved by
efficient fractional programming techniques, including convex
optimization tools. To do so, first, we introduce two auxiliary
variables r1 and r2, such that

Rthr
1 ≤ r1 ≤ R1,V and Rthr

1 ≤ r2 ≤ R2, (16)

which change the constraints and introduce C6 and C7. As
such, the problem (15) is formulated as:

max
q,r1,r2,P1,P2,PRF

αr1+(1−α)r2
βPVLC+(1−β)PRF

s.t. C1 : R2→1,V ≥ Rthr
2 ,

C2 :
∑
i∈VLC P

VLC
i ≤ PVLC

max

C3 : PRF
2 ≤ PRF

max,
C4 : r1 ≤ R1,V ,
C5 : r2 ≤ R2,
C6 : r1 ≥ Rthr

1 ,
C7 : r2 ≥ Rthr

2 .

(17)

The objective function’s form makes problem (17) a frac-
tional programming problem. To solve this, Dinkelbach’s al-
gorithm is applied [18]. Dinkelbach’s algorithm is an iterative
process that solves an equivalent parametric problem given
as the difference between the numerator and the denominator



multiplied by a parameter. As such, we set F = αr1+(1−α)r2
and G = βPVLC + (1 − β)PRF. To maximize an objective
function with Dinkelbach’s algorithm, F should be concave
and G should be convex. In this case, both functions are affine,
so Dinkelbach’s algorithm can be utilized. The fractional
problem max{U(z) = F (z)/G(z)} can then be related to

H(u) = max{F (z)− uG(z)}, u ∈ R, (18)

with z = [r1, r2, P1, P2, PRF]. Following that, our aim is to
find an optimal solution zi of H(ui) in each iteration i of the
algorithm.
Ĥ is continuous, convex and strictly decreasing in R. It is

assumed that z̃+ is optimal, if and only if it is optimal for
H(u+), where u+ is the only zero of H . The Dinkelbach’s
Algorithm applied is explained in Algorithm 1.

Algorithm 1: Dinkelbach’s Algorithm
Initialization: Set the initial point u0 < u+, for

example u0 = U(z0) > 0 for some z0. Also set
iteration index i = 0 and the convergence accuracy ε;

while H(ui) > ε (for some ε given) do
Calculate an optimal solution zi of H(ui) s.t.
(17).C1 − (17).C7 ; Let ui+1 = U(zi);
i← i+ 1;

end
Result: optimal u+,z+

In Algorithm 1, constraints (17).C1 − (17).C7 still hold.
However the problem remains non-convex and in order to be
able to find a tractable solution in polynomial time, it is of
essence to transform the problem to an equivalent convex one.
We start by employing the geometric programming transfor-
mation, i.e.,

r1 = er̃1 , r2 = er̃2 ,

P1 = ep1 , P2 = ep2 , PRF = epRF , (19)

leading to z̃ = [r̃1, r̃2, p̃1, p̃2, p̃RF] and ep1 + ep2 = epVLC .
After the transformation, the problem is expressed as follows

max
q,z̃

αer̃1 + (1 − α)er̃2 − u (βepVLC + (1 − β)epRF)

s.t. C1 : log
(
e2p1 + 9σ2

(ηh1)2

)
− 2p2

+ log

(
(1 + εμ)

2(2
Rthr

2 +εφ
Bv − 1)

)
≤ 0

C2 : ep1 + ep2 ≤ PVLC
max

C3 : pRF ≤ log(PRF
max)

C4 :log

(
2

er̃1+εφ
Bv − 1

)
− 2p1 − log

(
(ηh1)

2

9σ2(1+εμ)2

)
≤0

C
(q=1)
5 : log

(
2

er̃2+εφ
Bv − 1

)
+ log

(
e2p1 + 9σ2

(ηh2)2

)
−2p2 + log((1 + εμ)

2) ≤ 0

C
(q=0)
5 : log

(
2

er̃2
BR − 1

)
− pRF − log

(
LRFhRF

σR

)
≤0

C6 : r̃1 ≥ log(Rthr
1 )

C7 : r̃2 ≥ log(Rthr
2 ).

(20)

Constraints C2, C3, C6, and C7 are easily shown to be convex.
More specifically, the first term of C1 and the second term of
C

(q=1)
5 are convex as log-sum-exp terms. The remaining of

terms that are needed to be convex are in the form of f(t) =
log

(
C02

et/C1 − 1
)

. The second derivative of f(t) with re-

spect to t can be written as d2f
dt2 = 2qC0q(C02

q−1−q log(2))
(C02q−1)2 ,

where q = exp(t)/C1 and C0, C1 > 0. Considering ξ =
C02

q− q log(2)−1 is an increasing function with respect to q
and when q → 0, ξ → 0, it is shown that d

2f
dt2 ≥ 0. Following

that, it is proven that f(t) is convex with respect to t.
We define the objective function of (20) as Ξ(z̃, u) = αer̃1+

(1−α)er̃2 − u (βepVLC + (1 − β)epRF) = Φ(z̃)− uΘ(z̃). We
observe that Ξ is convex with respect to u, but it is a difference
of convex (DC) function with respect to z̃. Therefore, to
calculate the optimal solution of (20) to plug into Algorithm
1, we have to apply a DC Algorithm (DCA) [19]. DCA is an
iterative algorithm based on local optimality conditions and
duality. It is noted that we choose to minimize the −Ξ(z̃, ui)
problem which is equivalent to maximize the Ξ(z̃, ui) one. The
idea of DCA is that at each iteration, the second component in
the primal DC problem is replaced by its affine minorization
in order to generate the convex problem

min
z̃

Ξ̂(z̃, u)

s.t. (20).C1 − (20).C7,
(21)

where Ξ̂(z̃, u) = uΘ(z̃)− (Φ(z̃k) +∇Φ(z̃k)T (z̃ − z̃k)).
The DCA scheme is described in Algorithm 2.

Algorithm 2: DCA

Initialization: Choose an initial point z̃0, z̃−1 ∈ R
N

and Let k = 0;
Set iteration index i = 0 and the convergence accuracy
ε;

while Ξ̂(z̃k, ui)− Ξ̂(z̃k−1, ui) > ε do
Compute ∇Φ(z̃k);
Calculate an optimal solution z̃k+1 for convex
problem (21);
k ← k + 1;

end
Result: optimal z̃+

The resulting convex optimization problem can be effi-
ciently solved with convex optimization methods in polyno-
mial time, such as the interior-point method [20]. Following
that, optimal z̃ is transformed to z through (19) and it is
plugged into Algorithm 1, in order to find the optimal u. At the
end of this iterative process the optimal resource allocation is
obtained. The operation mode q is selected from the solution
that maximizes the total energy efficiency.

IV. MULTI-LAYER PERCEPTRON FOR MODE
CLASSIFICATION

In order to reduce the complexity of obtaining the opti-
mum as was described in the previous section, we design
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Fig. 2. Network graph of the proposed MLP

a deep neural network (DNN) to perform classification in
order to determine the operation mode of the network [21].
More specifically, our DNN model is a multi-layer perceptron
(MLP), which is a feedforward network making it much easier
to train. To train the MLP, training sets are generated via the
optimal algorithm described in section III.

The training data are denoted as (x, y), where the input
x refers to the channel vector h = [h1, h2, hRF] and the
QoS requirements of the users Rthr = Rthr

1 = Rthr
2 . So

x = [h,Rthr]. The output y of the MLP is continuous in [0, 1]
an as such it cannot directly set the value of q. Therefore, for
any fractional value 0.5 ≤ y ≤ 1, we set q = 1, otherwise
if 0 ≤ y < 0.5, the value q = 0 is chosen. Apart from
the input and output layers, the MLP consists of a 3 hidden
layers. Each hidden layer consists of a total of 20 nodes.
The activation function for the three hidden layers is ReLU,
while for the output layer the sigmoid function was used. In
order to increase the accuracy of the MLP, a pre-processing of
the data took place through a min-max scaler pre-processor,
which translates the input values to a range of [0,1] given their
minimum and maximum values in the set.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, Monte Carlo simulation results are presented
for the proposed system for 104 iterations. The simulation
parameters can be found in Table I. More specifically, in Figs
3 and 4, the effect of the weighting factors α and β on the
energy efficiency versus the threshold rates of the users can
be observed. Without loss of generality, the two users are
presented with identical QoS constraints in these results.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Bv 40 MHz σ2 4× 10−22

BR 10 MHz σ2R 4.002× 10−21BR

R0 1.5 m T (ψi) 1
Rv 3 m ΨC π/3
L 2.15 m Φ1/2 π/3
n 1.5 Ar 1 cm2

ζ 2 PVLC
max 9 W

η 0.5 A/W PRF
max 200 mW

Kr 2.41

In this regard, in Fig. 3, β = 0.5 meaning that both networks
are equally accountable for the energy consumption of the
network, while the different values of α highlight whether pri-
ority is given to one user over the other in terms of achievable
data rate. The optimal system configuration in terms of energy
efficiency is then seen to be the cooperative hybrid mode over
the pure VLC mode when the rate requirements of the users
are low. However, when users require higher throughput, the
RF link requires a very high amount of energy to comply,
while VLC can achieve the constraints at a lower energy cost.
Interestingly, for lower rates, as the rate threshold increases,
energy efficiency is also increasing, which means that a little
amount of additional power can provide a higher increase in
data rate, which can be justified through (8), (9).

Fig. 3. Energy efficiency for different values of Rthr and α with β = 0.5.

Moreover, in Fig. 4, α = 0.5 is set, so that neither U1

nor U2 has a higher priority than the other and the effect
of different values of β are examined. When β is low, the
power consumption of the VLC AP does not contribute a lot
to the energy efficiency calculation. This is an interesting and
practical case, since VLC APs can most of the time provide
illumination coverage and are already on, so β can be lower
than 0.5 or even zero. On the other hand, when illumination
is not required, β can be higher than 0.5 to highlight the
increased cost of the VLC AP in this scenario. It can be
observed from Fig. 4, that when β takes lower values, the
optimal selection is the VLC for a lower required threshold
rate. When the weight β is increased, despite its lower energy
efficiency is general, the cooperative hybrid VLC/RF mode is
selected, instead, for up to 6 bits/Hz threshold rate.

Finally, the results of the implemented MLP are shown in
Fig. 5. The dataset contained 104 cases, 7000 of which were
used for training, 1500 for validation, and 1500 for testing.
Stochastic Gradient Descent (SGD) was utilized to optimize
the MLP, while the binary cross-entropy was used as a loss
function. The proposed MLP has an accuracy of 95%. The
average energy efficiency achieved through the use of the
MLP is very tight to the optimal bound. As such, the DNN
implementation can indeed help alleviate the computational



Fig. 4. Energy efficiency for different values of Rthr and β with α = 0.5.

cost burden of the full optimization method described in
section III.

Fig. 5. Energy efficiency achieved through MLP selection and optimal
selection for α = β = 0.5.

VI. CONCLUSIONS

In this paper, we have presented a VLC network with
NOMA that can operate in a cooperative hybrid VLC/RF mode
to increase the energy efficiency of the system. A weighted
energy efficiency metric was proposed to capture the partic-
ularities of the network and the optimal operation mode and
power allocation was found via Dinkelbach’s algorithm, DC
programming and convex optimization methods. In order to
reduce the computational complexity of the proposed solution
a DNN was trained on optimal samples recorded from the
optimal solution and reached an close to optimal performance.
Future work of this project encompasses the training of the
DNN to completely replace the optimization method after
training and provide a close to optimal solution.
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