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Abstract—Quantum Key Distribution (QKD) is a technology
that enables the exchange of private encryption keys between
two legitimate parties, using for this purpose different protocols
that involve components of quantum mechanics. Since the rate at
which secret keys can be exchanged depends on the attenuation
that the optical signals experience, it is convenient to replace
terrestrial fibers with optical satellite links to implement a
QKD network at a global scale. Then, satellite nodes can take
the role of trusted-relays, forwarding the secret keys from the
sources to the destinations. However, since the rate at which
secret keys can be generated in each quantum link is limited,
it is very important to select the intermediate satellite nodes
to inter-connect ground stations efficiently. This paper studies
the most convenient allocation of resources in a QKD network
that combines both GEO and LEO satellites, which provide
complementary services according to their position in the sky.
The aim of the centralized routing algorithm is to select the
most convenient trusted-relays to forward the secret keys between
pairs of ground stations, verifying the constraints that satellite-
to-ground and inter-satellite quantum channels have in practice.

Index Terms—Quantum Key Distribution; LEO/GEO satellite
networks; Centralized resource allocation; Multi-commodity flow.

I. INTRODUCTION

Quantum Key Distribution (QKD) networks enable the
distribution of secret keys between two legitimate parties by
encoding the information in one of two randomly chosen non-
orthogonal quantum states [1]. The security of QKD is not
based on the computational hardness of solving mathematical
problems, but rather on physical processes that are not vulner-
able to powerful computers [2]. QKD can be also classified
as an optical technology, which automates the delivery of
encryption keys between any two points that share an optical
link that could be either wired (fibers) or wireless (Free Space
Optics). Unfortunately, QKD networks based solely on optical
fibers face serious problems when trying to distribute secret
keys in wide coverage areas. This is because the power loss
that the physical communication channel introduces grows ex-
ponentially with distance, limiting the rate at which secret keys
can be successfully exchanged over long coverage ranges [3].

The intrinsic point-to-point nature of a QKD system is a
bottleneck for its applicability in global scale. Fortunately,
the coverage range of a QKD system can be extended by
using trusted-relays, which can be conveniently placed on
satellite payloads to make them difficult to eavesdrop [4].
Apart from providing better security, optical satellite links
experience less attenuation than optical fiber links, as most
of the propagation losses are concentrated in the low-layers of

the atmosphere [5]. Different satellite orbits can be used for
this purpose, such as Geostationary (GEO) and Low Earth
Orbit (LEO) satellites [2]. A GEO quantum satellite can
provide a slow but continuous secret key generation rate,
due to its fixed position on the sky at a very high altitude.
In contrast, LEO quantum satellites are much closer to the
Earth’s surface and, due to that, they can provide a faster but
intermittent secret key generation service [6].

Most of the research done so far in the literature considered
the use of LEO satellites for QKD, taking advantage of their
low channel loss [3]. However, since a quantum LEO satellite
is only visible to a particular Ground Station (GS) for a
limited time period, the secret key rate that is predicted is
only available during the flyover time, few times a day [7],
[8]. Trying to provide a continuous QKD service, there are
other authors that considered the use of a constellation of LEO
satellites with inter-satellite links, similar to the IRIDIUM
satellite system [9], or the addition of GEO satellites to enable
continuous service [5]. However, in most of these cases, the
most convenient allocation of resources was not studied in
detail for the whole (global) QKD network, or the routing
and key allocation for the satellite-to-ground and inter-satellite
links was done using heuristic algorithms that do not necessary
reflect the actual constraints of the satellite QKD network [6].

In this paper, we study the resource allocation problem of
a QKD network that combines both GEO and LEO satellite
constellations to enable an exchange of secret keys in a global
coverage. The BB84 protocol with decoy state is considered
in the quantum channels [10], and the relay of secret keys
between ground stations is performed with the aid of trusted-
relays in the satellites [8]. By abstracting the GS and quantum
satellites as nodes, the quantum channels as edges, and the
amount of available secure keys as weights, the satellite QKD
network was modeled as a time varyingGraph [11]. Then, the
optimal routing and resource allocation for the QKD network
is determined in a centralized way, solving an equivalent
Linear-Programming problem with constraints in the GEO-
to-GS, LEO-to-GS, and LEO-to-LEO quantum links.

The rest of the paper is organized as follows: Section II
presents the system model of the satellite QKD network,
including the formulas that estimate rate at which secret keys
can be generated the space-to-ground and inter-satellite link.
Section III introduces the graph representation of the QKD
network at a given time instant, and derives the algorithm that
optimizes the routing and flow of secret keys in a centralized



Fig. 1. Overview of the QKD network that combines GEO and LEO trusted-
repeaters. The Central Control Unit knows the rate at which secret keys
can be generated on the ground-to-space and inter-satellite quantum channels
(dashed blue lines), determines the most convenient routing on the classical
channels (solid blue lines) to optimize the flow of secret keys, and informs
these decisions to the QKD nodes using the control channels (red solid lines).

way. The parameters of the simulation setting, as well as the
performance analysis of the obtained results, are presented in
Section IV. Finally, conclusions and suggestions for future
work are given in Section V.

II. SYSTEM MODEL

The simplified model of the satellite QKD network that
combines both LEO and GEO trusted-repeaters is illustrated
in Fig. 1. It consists of a constellation of (few) GEO and
(many) LEO satellites that provide service to a large number
of GSs that are sparsely deployed on the globe. Similar to
terrestrial QKD networks based on optical fibers, the nodes
of the satellite QKD network have quantum communication
channels that are used to generate secret keys, and classical
communication channels that are used to transport the QKD
protocol signaling as well as to forward encrypted secret keys
between non-directly connected nodes.

Let us also assume that the service area of the whole QKD
network is divided into non-overlapping regions served by
a GS, whose associated users receive the secret keys using
terrestrial optical fiber networks. Without loss of generality,
we consider that each GS is equipped with three Free-Space
Optical (FSO) transceivers, which enable the connectivity with
the GEO satellite and (up to two) LEO satellites that may be
visible on the sky at each time window. Each LEO satellite
relies on two FSO links for inter-satellite connectivity and
two FSO link for space-to-ground QKD (i.e., LEO-to-GS).
Note that the GEO satellite is always visible to the same GSs,
whereas the visibility of a LEO satellite towards a given GS
varies with the time of the day. Finally, it is considered that
the centralized resource manager has access to the status of
the whole QKD network in each time window (i.e., secret key
pools in nodes and secret key rates per FSO link), and that
is able to determine the most convenient route to exchange
secret keys between each given pair of remote GSs.

A. Decoy state Quantum Key Distribution

In this paper, the QKD between space nodes (GEO/LEO)
and ground nodes (GS) is carried out in downlink, from space-
to-ground. The QKD transmitters in the satellites use weak

coherent laser pulses to implement the decoy-state Bennett-
Brassard 1984 (BB84) protocol [1], that is immune to photon-
number-splitting attacks from eavesdroppers.

Let us assume that we implement the BB84 protocol with
vacuum-plus-weak-decoy-state [10]. That is, we consider that
Alice can prepare and emit a weak coherent state

∣∣√µ ejθ
〉
.

Assuming that phase θ of each signal is randomized, then the
probability distribution for the number of photons of the signal
state follows a Poisson distribution with a parameter µ, which
represents the intensity of the signal states. In this situation,

Pn(µ) =
(
µn e−µ

)
/n!, (1)

is the probability that the pulse generated by Alice contains n
photons. So, it is assumed that any mixture of photon number
states with Poisson distribution can be prepared by Alice, with
an intensity that can changed for each individual pulse.

A lower bound for the rate at which secret keys can be
generated in this situation was presented in [10], i.e.,

Rbb84 ≥ q
{
−Qµ f(Eµ)H2(Eµ) +Q1

[
1−H2(e1)

]}
, (2)

where Qµ and Eµ are the gain and Quantum Bit Error
Rate (QBER) of the signal states, whereas Q1 and e1 are the
gain and the error rate of single-photon states, respectively.
Moreover, q = 1/2 is the efficiency of the BB84 protocol,
f(x) = 1.22 is the bi-directional error correction efficiency
for the Cascade protocol, and

H2(x) = −x log2(x)− (1− x) log2(1− x) (3)

is the binary Shannon entropy. For a coherent state, the gain
and QBER of the signal states is given by

Qµ =

∞∑
n=0

Yn Pn(µ), Eµ =

( ∞∑
n=0

Yn Pn(µ) en

)
/Qµ, (4)

where
Yn = Y0 + δn − Y0 δn ≈ Y0 + δn (5)

is the probability that Bob’s measurement is conclusive when
Alice emits an n-photon pulse, and

en = Y0/(2Yn), δn = 1− (1− δ)n (6)

are the error rate and attenuation of the n-photon signals.
The values of Qµ and Eµ can be estimated directly from (4).

However, the value of Q1 cannot be determined in closed form
and needs to be bounded based on other gains. According
to [12], the gain and error rate of the single-photon states when
using the vacuum-plus-weak-decoy-states method verify

QL
1 = µ e−µ Y L

1 ≤ Q1, eU
1 =

Eν Qν e
ν − e0Y0

Y L
1 ν

, (7)

where

Y L
1 =

µ

µν − ν2

(
Qν e

ν−Qµ eµ
ν2

µ2
− µ

2 − ν2

µ2
Y0

)
≤ Y1. (8)

The background yield Y0 can be computed as the gain of
the vacuum decoy state, whereas the background error rate
e0 = 1/2 due to dark counts happen randomly, so half of the
times photons click on the correct detector in this situation.



B. Satellite based QKD network based on trusted-repeaters
Quantum satellites can be used as trusted-repeaters to gener-

ate secret keys between distant nodes that do not share a QKD
link in common. For example, let us assume that source node S
wants to generate a secret key with destination node D. To
achieve this goal, S starts the process by generating a random
key Ks,d of suitable length, and forward it to an intermediate
node I1 performing a bit-wise Exclusive OR (XOR) opera-
tion (⊕) with a secret key of same length Ks,i1 that shares
with I1. This new string (Ks,i1 ⊕ Ks,d) can be sent through
a classical communication channel from S to I1, who can
decode the original key with another XOR operation (i.e.,
Ks,d = (Ks,i1 ⊕ Ks,d) ⊕ Ks,I1 ). Then, the XOR operation
is performed with the secret key shared between node I1 and
I2 (KI1,I2 ), the resulting string of bits is transmitted over a
classical communication channel, and the original key Ks,d is
recovered in the intermediate node I2. Note that this procedure
is repeated until the secret key Ks,d reaches D, consuming the
same amount of secret keys in each of the links that are used.

The XOR operation that is performed to forward the random
keys from the source GS to the destination GS consumes the
secret keys that are available in each link. For this purpose,
each LEO-to-GS, GEO-to-GS, and LEO-to-LEO link must
generate secret keys continuously, and store them in quantum
key pools associated to the different links of the QKD network.
Due to the rate at which secret keys can be generated is
limited, the centralized control system should optimize the
route selection and key assignment, such that the limited
resources of the QKD network are efficiently used.

Without loss of generality, we assume that the centralized
controller has continuous access to the status of the whole
QKD network, and that is able to perform the resource alloca-
tion to optimize the target objective, such as the maximization
of key flows and the minimization of secret key consumption.
C. Attenuation of space-to-ground and inter-satellite links

The total attenuation that an FSO link experiences is defined
as the ratio between the mean transmit and receive power,
measured at the entrance and exit of the transmit and receive
telescopes, respectively. When the optical receiver is placed
in the far field of the transmitter (i.e., when L ≥ D2

T/λ), the
attenuation due to diffraction in the FSO link is given by [13]

δdiff =
L2
(
θ2

T + θ2
atm

)
D2

R

1

TT

(
1− LP

)
TR

, (9)

where L is the link distance, λ is the wavelength, DT (DR)
is the diameter of the transmit (receive) telescope, TT (TR)
is the transmit (receive) telescope transmission factor, and LP

is the pointing loss due to misalignment between transmitter
and receiver. The divergence angle resulting from the transmit
telescope can be approximated by θT = λ/DT, and the
additional divergence caused by the atmospheric turbulence
is given by θatm = λ/r0, where r0 is the Fried parameter.

The attenuation due to diffraction is originated by the natu-
ral beam-broadering that light experiences when propagating,
which makes that a certain faction of the transmitted power
cannot be collected at the receiver when the received beam

diameter is larger than the aperture of the receive telescope.
Apart from the geometric loss in (9), there are other losses to
be considered when estimating the rate at which secret keys
can be generated in a quantum channel. Therefore, the total
attenuation that an optical wireless link experiences becomes

δ = δdiff × δatm × δrec, δatm = δabs × δscat × δturb, (10)

where δrec is the loss due to inefficiencies in the photon detec-
tion process and δatm is the attenuation in the atmosphere orig-
inated in the absorption (δabs) and scattering (δscat) imposed
by the constituent gases and particles of the atmosphere, as
well as the atmospheric turbulence (δturb) caused by random
fluctuations in the refractive index of the light-beam path.

III. CENTRALIZED OPTIMIZATION OF THE HYBRID
SATELLITE QKD NETWORK

This section introduces the graph representation of the QKD
network topology, and derives the algorithm that optimizes the
routing and flow of secret keys in a centralized way.
A. Dynamic Graph representation

All transceivers in our QKD network are represented by
nodes in a weighted temporal graph. The weight of the edges
between two nodes represent the secret key transfer rate
between them. In our satellite QKD network, we distinguish
between three types of nodes connected by FSO links, namely:
• GS nodes, which are stationary with respect to the Earth

and can communicate with few GEO/LEO satellites at
the same time. A GS aims at exchanging secret keys with
other GSs, with whom it does not have a direct quantum
communication channel. In graph technical terms, GS
acts as either a source/destination node or as trusted-relay.

• GEO satellite, which is stationary in an orbit that is rel-
atively far from Earth’s surface (i.e., at about 36000 km).
Due to that, the rate at which secret keys can be generated
in GEO-to-GS links is relatively slow but constant. In the
graph, a GEO node can only act as a relaying node.

• LEO satellites, which are not stationary with respect to
the Earth as they usually move from pole-to-pole, in sun-
synchronous orbits. As a result, the rate at which secret
keys can be generated varies in LEO-to-GS links, but
may remain constant between LEOs in the same orbit.
The secret key rate is maximal when the distance between
nodes is minimal. A LEO can only act as a relaying node.

A very simple example of this graph representation is given
in Fig. 2. The time-dependent connections are represented
using dotted lines. Note that the amount of keys in the quantum
key pool is, strictly speaking, time-dependent as the keys
on link i are constantly generated by rate Ri and consumed
by the trusted-nodes. The generation rate Ri depends on the
distance Di between the nodes at both extremes of the link.
B. Multi-commodity flow problem

Consider a graph similar to the one shown in Fig. 2, with
Ngs ground stations, all connected by a network of LEO
and GEO satellites. If we simply want to find the maximum
amount of secret keys that GS A can exchang with GS Z, we
can formulate this optimization problem as a max-flow problem
and continue to solve it using straightforward path-finding



Fig. 2. Graph representation of a simplified QKD network topology that
combines two GEO satellites, three LEO satellites, and two ground stations.

techniques. When multiple GS want to exchange secret keys
with multiple other GSs, one may be tempted to formulate the
optimization problem as a multi-source, multi-sink max-flow
problem. Although this formulation may be straightforward,
it fails to consider that the keys sent out by a given source
GS are aimed towards a specific destination GS, not just any
arbitrary GS open to accept secret keys (i.e., the keys from the
different GS should be considered as unique commodities).

This fact leads us to the multi-commodity flow problem
formulation. Let us consider a flow network G = (V,E),
where each edge (v, w) ∈ E has a maximum capacity
u(v, w) ≥ 0. In our system, the capacity is the amount of
secret keys in the key pool associated to the link (v, w). In
our graph, k of the N GSs wish to exchange secret keys with
other k GSs. So, we consider k commodities K1,K2, . . . ,Kk

with Ki = (si, tt, di) ∀i, where si and ti are the standard
source, sink and demand of commodity Ki, respectively. We
define fi(v, w) as the flow of commodity Ki on edge (v, w),
which is the amount of secret keys of sort Ki that are sent
over the link (v, w). This flow has a few natural restrictions:

A) Link capacity. It is not possible to send more secret keys
than the maximum amount dictated by the link capacity.
That is,

∑
i∈K fi(v, w) ≤ u(v, w), ∀(v, w) ∈ E.

B) Positive flow. It is not possible to send a negative amount
of secret keys, i.e., fi(v, w) ≥ 0, ∀(v, w) ∈ E, i ∈ [k].

C) Flow conservation. At each relaying node, the same
amount that flow in should flow out. However, for source
and sink nodes, the flow should be (up to a minus sign)
equal to the demand. That is, ∀v ∈ V, i ∈ [k],

∑
w∈Nv

fi(v, w)−
∑
w∈Nv

fi(w, v)=


0 if si 6=v 6= ti
di if v = si

−di if v = ti

(11)

should be verified, where Nv are the neighbours of v.
A flow graph with such restrictions allows for several

possible optimizations. One option is to maximize the total
demand, i.e. a formulation in which the di’s are not fixed
and the goal is to maximise

∑
i∈[k] di. Similarly, one could

try to maximise mini∈[k](di). A third reasonable optimization
option is that, for a given a set of demands {di}i∈[k], minimize
the total flow on the QKD network, i.e. to consume the least
amount keys in the pools. Additionally, each flow can receive a
weight that represent the relative cost of using each FSO link.

Algorithm 1 Greedy Rounding
Require: A Graph G = (V,E), with edge capacities, founds flows

f per edge and commodity and demands d per commodity
1: Round down flows in f and adjust demands d accordingly
2: Subtract all the flows from their respective edge capacities
3: while available commodities exist do
4: Pick k̂ with lowest demand from the available commodities
5: Using Dijkstra, find the path which consumes the least amount

of secret keys to send one additional from source to sink
6: if a route exists then
7: Add one to the demand and respective flows in found path;

subtract one from the capacity of the edges on the path
8: else
9: Remove k̂ from the available commodities

10: end if
11: end while
12: return All rounded down flows and demands.

All optimizations have a different purpose and interpretation,
and in this paper we focus on the later two options: on one
hand, the max-min demand optimization, which ensures that
all GS pairs generate at least a given amount of secret keys,
such that the path of one request does not hinder another
requests. On the other hand, the min flow optimization, which
ensures that the least amount of keys is consumed to fulfill
all requests. Note that the later approach is useful when the
QKD network needs to be prepared to handle future requests
of key generations.

In case we only allow integer values for fi, these op-
timization problems become NP-complex [14]. Though it
makes sense to have only integer-valued flows in the QKD
network (as keys cannot be split into parts), a relaxation that
allows fi to take fractional values can be applied to solve
the optimization problem using Linear Programming (LP)
schemes. Then, in favor of the reduced algorithmic complexity,
fractional-valued solutions can be first found and then rounded
down to an integer value. This is justified by the fact that the
demand di in QKD is typically of the order of hundreds or
thousands so, by rounding down, the relative loss is negligible.

The round down processing guarantees as well that the
resulting flow-paths are feasible. However, it may also result
in an unused link capacity. Therefore, after the first part of
the algorithm is over, we obtain a new graph with reduced
capacity. Then, we greedily choose the commodity Ki with
the lowest filled demand di, and find a path from source si to
sink ti such that exactly one key can be sent over this path.
If a path is found, the demand di is increased by one, and the
found path is added to the solution. If no path is found, the
algorithm ends. This procedure is summarized in Algorithm 1.

To find the optimal fractional flows, we use a LP algorithm,
which aims at finding a vector x, such that cTx is minimised
while verifying Ax ≤ b, where c and b are two appropriate
vectors and A is a matrix. The inequality is to be understood
element-wise. By proper manipulation, the LP formulation can
also allow equality restrictions. Standard LP problems can be
solved using python packages, such as scipy [15]1.

1Scipy’s linprog optimization allows for upper bound constraints in the form
Aubx = bub, a matrix equality Aeqx = beq, and strict bounds L ≤ x ≤ U
which significantly simplifies the notation.



Algorithm 2 Routing: Maximise minimum demand (MMD)
Require: A Graph G = (V,E) with capacities per edge

1: for all GS pairs (a, b) ∈ {a, b : a, b ∈ VGS , a 6= b} do
2: Create a commodity Ki = (a, b, di), where di is variable
3: end for
4: Translate graph restrictions to LP matrix notation, i.e., find A and

b such that Ax ≤ b, where x = (t, d1, . . . dk, f
1
1 , f̂

1
1 , . . . , f̂

k
n),

with t a dummy variable and cost c = (−1, 0, . . . , 0)
5: Find x by LP
6: Round down flows and demands in x using Algorithm 1
7: return All values in x except t.

Algorithm 3 Routing: Minimize resource usage (MR)
Require: A Graph G = (V,E) with capacities per edge. A set of

key exchange requests r with given amounts
1: for all exchange request r = (si, ti, di) do
2: Create a corresponding commodity Ki = (si, ti, di)
3: end for
4: Translate graph restrictions to LP matrix notation, i.e., find matrix

A and vector b such that Ax ≤ b, where x = (f1
1 , f̂

1
1 , . . . , f̂

k
n)

and a relative cost c =by default (1, 1, . . . , 1)
5: Find x by LP
6: if no solution is found then
7: End algorithm
8: end if
9: Round down flows and demands in x using Algorithm 1

10: return All values in x.

The restrictions A, B and C, as given above, allow for a
LP formulation. By choosing the parameter x as the demands
and the flows of all commodities, each edges in two directions
filling the matrix A with 0, 1 and −1 at the correct places,
and b with either 0 or the edge capacities, one can write the
(in)equalities from the restriction in matrix form. Note that x
will be of size at least #commodities×(2×#edges+1) if we
keep di variable, and #commodities× 2×#edges if we fix
di,∀i ∈ [k]. The algorithm for max-min demand optimization
and the minimum resource usage given a set of requests are
summarized as Algorithms 2 and 3, respectively2.

IV. SIMULATION RESULTS

This section presents the parameters of the simulation
setting and the performance analysis of the obtained results.

A. Parameters of the simulation scenario

The satellite constellation used in the simulations is shown
in Fig. 3, where on each edge, the secret key generation rate
is specified in bits-per-second (bps). In this setup, we assume
that a GS may act as trusted-repeaters if convenient. Note that
if only one FSO link is enabled per GS, the option to make
it act as trusted-repeater becomes unfeasible. Without loss of
generality, we assume that QKD network in Fig. 3 has been
up for exactly one minute, starting from empty quantum key
pools. This gives a setup with reasonable ratios between the
sizes of the quantum key pools of the links. We investigate the
case where the goal is to maximise the minimum of the met
demands (i.e., maxmini di), as well as the situation in which
a set amount of requests is given.

2In the algorithms, we note that if f(v, w) = fkj , then f(w, v) = f̂kj .

Fig. 3. Schematic representation of the GSs and the satellite constellations
setup for a given time window. Each edge specifies the key generation rate.

TABLE I
FSO LINK PARAMETERS FOR SPACE-TO-GROUND (LEO-TO-GS AND

GEO-TO-GS) AND INTER-SATELLITE (LEO-TO-LEO) LINKS.

Parameter (Notation) LEO-to-GS GEO-to-GS LEO-to-LEO
Wavelength (λ) 850 nm 650 nm 1550 nm

Transmitter aperture (DT) 30 cm
Receiver aperture (DR) 100 cm 100 cm 30 cm

Pointing loss (LP) 7 dB 1 dB 3 dB
Telescope factors (TT /TR) 0.8 / 0.8
Detector efficiency (δrec) 65% 65% 65%
Atmospheric loss (δatm) 1 dB 1 dB 0 dB

Link range (Lmin;Lmax) (800 km; (36000 km;
4000 km

1200 km) 42000 km)

In satellite-based quantum communications, the uplink and
downlink optical wireless channels are very different. Since
the atmospheric turbulence occurs only in the last part of
the downlink propagation path, near the terrestrial GS, the
width of the light beam that enters the atmosphere is usually
larger than the scale of the turbulent eddies. Due to that, the
power loss due to the beam-wandering effect is minimal, and
the attenuation losses are dominated by the diffraction effects
considered in (9). Scintillation can occur at some extend, but
the averaging effect of large ground telescopes makes the
effect of turbulence negligible [16]. The FSO link budget
parameters for the different space-to-ground and inter-satellite
links are summarized in Table I. On the other hand, Table II,
gives the parameters of the BB84 protocol with weak decoy
states that was used, and makes an estimation of the secret
key rates generated on the different QKD network links.
B. Performance analysis

In very simple cases, only the isolated exchange of secret
keys between two GSs is required. Consider e.g. the exchange
of secret keys between GS A and GS B. Table III compares
the multi-commodity flow method with other methods, such
as Dijkstra that simply chooses the shortest available path.
The first row of Table III demonstrates that the max-min
multi-commodity flow method already outperforms a standard
shortest-path finding algorithm, as it allows for the large
amount of keys to be split up and send over multiple links.
The algorithm becomes even more interesting when actually
handling multiple key exchanges at once. Whereas in case of
the Dijkstra algorithm, the order of the requests is relevant, the
Max-Min algorithm treats all requests equally, ensuring that
all GS pairs can exchange a reasonable amount of keys.

With five GSs as in Fig. 3, there are
(

5
2

)
= 10 unique source

sink combinations up to direction. Algorithm 2 finds out that
it is possible to send at most 600 secret keys bits per GS pair



TABLE II
PARAMETERS FOR THE BB84 PROTOCOL WITH WEAK-DECOY-STATES.

Parameter LEO-to-GS GEO-to-GS LEO-to-LEO
Wavelength (λ) 850 nm 650 nm 1550 nm

Link distance (L) 1000 km 39000 km 4000 km
QKD scheme BB84 weak decoy states (µ = 0.3; ν = 0.1)

Dark counts (Y0) 1.7× 10−6 1.7× 10−6 1.7× 10−6

Gain signal states (Qµ) 1.96× 10−3 1.27× 10−5 2.26× 10−5

QBER signal states (Eµ) 0.04% 6.68% 3.76%
Gain vacuum states (Qν ) 3.28× 10−4 5.38× 10−6 8.66× 10−6

QBER vacuum states (Eν ) 0.26% 15.81% 9.81%
Secret key rate (Rbb84) ∼ 1000 bps ∼ 10 bps ∼ 40 bps

TABLE III
COMPARISON OF ELEMENTARY RESULTS FROM DIFFERENT METHODS.

MULTIPLE REQUESTS INTERPRETED AS SEQUENTIAL IN DIJKSTRA.

Path
Method Max-min demand (sequential) Dijkstra

A 7→ B 27,000 24,000
A 7→ E 3,600 600
C 7→ D 3,600 600

C 7→ A, B 7→ A 13,500 & 13,500 24,000 & 2,400
B 7→ A, C 7→ A 13,500 & 13,500 24,000 & 2,400

before the QKD network becomes in outage. Note that this
does not mean that no more additional secret key could be sent.
Actually, when running Algorithm 3 with requests of size 600,
it is possible to see that most of the links of the QKD network
still have quantum keys in its pools. The only links in outage
are those connecting the group {A,B,C} to {D,E}. This
is because any exchange of secret keys between a GS from
{A,B,C} to a GS in {D,E} must go through an inter-satellite
link, which has a much lower secret key generation rate than a
LEO-to-GS links due to the difficulty of placing large payloads
on the space. This effect is well illustrated by the performance
of the Max-Min multi-commodity flow algorithm, in Table IV,
which shows the minimal demands filled by Algorithm 2 on
few sample combinations. This table summarizes the amount
of secret keys that would be consumed by sharing the given
amount of keys on each pair of GSs, according to Algorithm 3,
and the corresponding consumption rate, which is the amount
of used keys per successfully sent out key. Indeed for the
combinations involving GS A, GS B, and GS C,the algorithm
finds that a minimum demand of 13, 500 bits is feasible.

V. CONCLUSIONS

This paper studied the resource allocation problem of a
QKD network that combines both GEO and LEO quantum
satellites, acting as trusted-repeaters, which use the BB84
protocol with decoy state to generate secret keys that are
consumed when GS pairs exchange encryption keys securely.
Starting from the graph representation of the QKD network in
a given time window, an equivalent LP problem was presented,
and two different algorithms were derived to maximize the
minimum amount of keys exchanged in each GS pair, and the
minimum amount of secret keys consumed in the space-to-
ground and inter-satellite links to fulfill a given demand.

The results suggest that the max-min multi-commodity flow
algorithm exhausts the link between two subsets of the nodes
of the graph, with plenty of resources on links within the
subsets. This could be taken into account by using the max-

TABLE IV
RESULTS FOR THE REQUESTS HANDLED BY GS COMBINATIONS.

Combi- Min. filled demand Total consumed Consumption rate
-nations by MMD keys by MR (#used keys/#sent key)

A, B 27,000 56,400 2.09
A, D 3,600 19,200 5.3

A, B, C 13,500 106,800 2.64
A, B, D 1,800 20,400 3.78

A, B, D, E 900 18,000 3.33
All GSs 600 18,000 3.00

min flow algorithm recursively on the subsets until no more
subsets can be created to fully exhaust the network.

The assumption to allow a GS to act as a trusted-repeaters
could be considered questionable. A straightforward solution
would be to allow each GS only one link. A more complex
solution, which would allow multiple connections, would be
to take out the GS nodes from the flow graph, give each
commodity multiple sinks and sources, which would then be
the satellites which have a link with the GS. The restrictions
of the demands would be based on the size of the QKPs of
the links. Similar to section III-B, a linear system of the flows
and demands can be created, to be solved using LP.
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