N

N
N

HAL

open science

A Chain Composite Item Recommender for Lifelong
Pathways

Patrick Marcel, Alexandre Chanson, Thomas Devogele, Nicolas Labroche,
Nicolas Ringuet, Vincent t’Kindt

» To cite this version:

Patrick Marcel, Alexandre Chanson, Thomas Devogele, Nicolas Labroche, Nicolas Ringuet, et al.. A
Chain Composite Item Recommender for Lifelong Pathways. 23rd International Conference Big Data
Analytics and Knowledge Discovery, 12925, Springer International Publishing, pp.55-66, 2021, Lecture
Notes in Computer Science, 10.1007/978-3-030-86534-4_5 . hal-03452597

HAL Id: hal-03452597
https://hal.science/hal-03452597
Submitted on 10 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03452597
https://hal.archives-ouvertes.fr

®

Check for
updates

A Chain Composite Item Recommender
for Lifelong Pathways

Alexandre Chanson'®, Thomas Devogele!, Nicolas Labroche!®,

Patrick Marcel!®) @, Nicolas Ringuet'2, and Vincent T’Kindt!

! University of Tours, Tours, France
{alexandre .chanson,thomas.devogele,nicolas.labroche,patrick.marcel,
vincent.tkindt}@univ-tours.fr, nicolas.r@neolink.link
2 Neolink, Blois, France

Abstract. This work addresses the problem of recommending lifelong
pathways, i.e., sequences of actions pertaining to health, social or pro-
fessional aspects, for fulfilling a personal lifelong project. This problem
raises some specific challenges, since the recommendation process is con-
strained by the user profile, the time they can devote to the actions in
the pathway, the obligation to smooth the learning curve of the user. We
model lifelong pathways as particular chain composite items and formal-
ize the recommendation problem as a form of orienteering problem. We
adapt classical evaluation criteria for measuring the quality of the recom-
mended pathways. We experiment with both artificial and real datasets,
showing our approach is a promising building block of an interactive
lifelong pathways recommender system.

Keywords: Chain composite item recommendation - Orienteering
problem

1 Introduction

We consider in this work the problem of building a recommendation system to
support social actors and beneficiary users in the interactive co-construction of
a personal lifelong project, for example the assistance of job seekers, or elderly
home support. Such a system would help different social actors to interact for
building a personal project for beneficiaries from a very large set of possible
actions pertaining to health, social or professional aspects. Such actions have
an intrinsic cost, they should complement well one another and be relevant
for the beneficiary, and doable in a period of time suitable for the beneficiary.
We denote the long-term sequence of actions proposed to beneficiaries as their
lifelong pathways. Recommending lifelong pathways raises many challenges: (i)
formalizing the recommender output, i.e., lifelong pathways, (ii) formalizing the
problem of computing pathways adapted to beneficiary users, (iii) determining
the quality of the recommended pathways.
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:> actons modeling :{>
(P1and P2) Pathways

Recommender System (P3)

Fig. 1. Pathway Recommender System (PRS). Pi, P> and Ps relate to the formal
problems defined in Sect. 2.

Let’s consider the example of Alice as pictured in Fig. 1 who wants to know
how to achieve her personal long-term goal (apply to an accountant position).
Alice has already achieved a diagnosis of her current situation, similar to previous
beneficiaries for which diagnoses and pathways were observed beforehand. The
objective of the pathways recommender system (PRS for short) is to determine
from there what would be the most relevant next actions for Alice to undertake to
achieve her long-term goal. This is a complex problem as it is heavily constrained:
Alice has a limited time budget, and has to follow a certain learning curve
so that each new action can easily build over the previously achieved actions.
As a consequence, PRS has to estimate from previously observed beneficiaries,
diagnoses, actions and their respective pathways, what would be the cost and the
relevance for Alice to undertake an action. Similarly, the PRS needs to estimate
a distance between actions to smooth the learning curve of Alice. Finally, the
number and the diversity of actions make this problem difficult to solve.

In this paper, we contribute with a first approach that sets the bases of
lifelong pathways recommendation. We model the problem, study its complex-
ity, propose a resolution and optimizations, as well as evaluation criteria. Con-
sistently with previous works, we consider that recommending such composite
items calls for non traditional recommendation approaches [2]. More precisely,
we consider lifelong pathways as particular chain composite items (CCI) [8,10]
built from atomic actions, that have to satisfy the classical CCI properties of
maximality (in terms of relevance), validity (in terms of beneficiary budget), and
compatibility (in terms of action composition). The recommendation problem is
formalized as a form of orienteering problem [6,13], for which we implemented
two approaches for finding exact and approximate solutions. We adapt classi-
cal evaluation criteria for measuring the quality of the recommended pathways.
We experiment with both artificial and real datasets, showing our approach
is a promising building block of an interactive lifelong pathways recommender
system.

This paper is organized as follows. Section 2 gives the formal background and
defines the problem, while Sect.3 presents our approach. Section4 details the
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experimental validation. Section 5 discusses related work, and Sect. 6 concludes
and draws perspectives.

2 Formal Definitions

In this section, we briefly define the concepts on top of which we build our
problem statement for the recommendation of lifelong pathways to beneficiaries.

2.1 Model

We consider a set A of atomic actions representing various personal, professional
or health steps that can be undertaken by a beneficiary to further his life goal.

Each action a € A is associated with a cost noted cost(a) that represents the
action difficulty. Given two actions aq,as € A, we consider a distance between
them, noted dist(a, az) that represents how smooth the progression of the ben-
eficiary would be by pairing these two actions in a pathway.

In what follows, action costs and distances constitute the action profiles.
Notably, we do not differentiate between types of actions, since this would be
use case-dependent. However, they could be easily introduced by adapting cost
and distance measure. -

A beneficiary b is represented by a tuple of features f, called a diagnosis
(see Sect. 4.1 for examples of features).

A profile for b is a vector of relevance scores, one for each action. For a
beneficiary b and an action a, we note rely(a) the relevance of b in a. Given a
beneficiary b and a set of actions A, a pathway p, for b is a sequence of actions
from A.

2.2 Problem Formulation and Complexity

Our recommendation problem has the following inputs: (i) a set of actions A
for forming pathways, (ii) a set of former beneficiaries B represented by their
diagnoses D and the set of pathways P they have undertook, formed by actions
in A, (iii) a new beneficiary b with diagnosis 7 The problem consists of recom-
mending for b a pathway p, with actions of A, based on D, P and ?

We decompose our recommendation problem in three sub-problems:

P; compute action profiles in terms of action cost and distance between actions,
P, compute a user profile in terms of relevance in actions,
P53 compute recommendations of pathways.

Problem 1 (Action profiles). Let B be a set of beneficiaries, A be a set of
n actions and P be a set of pathways with actions in A, for the beneficiaries
in B. The problem consists of computing a profile for each action a of A, i.e.,
cost(a) > 0 and, for all a’ € A, a metric dist(a,a’).
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Problem 2 (Beneficiary profile). Let B be a set of beneficiaries, A be a set
of n actions and P be a set of pathways with actions in A, for the beneficiaries in
B. Let b be a new beneficiary not in B, with diagnosis f . The problem consists
of computing a profile for beneficiary b, i.e., a vector of relevance score for each
action in A, noted b = (rely(ar),...,rely(ay)).

Problem 3 (Pathway recommendation). Let A be a set of n actions, each
associated with a positive cost cost(a;) and a positive relevance score rely(a;).
FEach pair of action is associated with a distance dist(a;,a;). Let b be a beneficiary

with profile ?, and let t be a budget in terms of days left to the beneficiary for
fulfilling the recommended pathway. The optimization problem consists in finding
a sequence pp = (a1, ...,am) of actions, a; € A, without repetition, with m < n,
such that:

1. mazimizey ;- rely(a;) (mazimality)
2. minimize Z:’:ll dist(a;,a;11) (compatibility)

subject to

3. Y1, cost(a;) < t (validity).

Complezity of Ps. Problem Pj is strongly NP-hard [7] since the TSP can be
reduced to it. Indeed, any instance of TSP can be turned into an instance of
Ps3 by assigning a cost of 0 to all cities along an relevance of 1 and leaving the
distance unchanged, it is then trivial to show that an optimal solution to this Ps
instance is optimal for the original TSP instance. This result means that, unless
P = NP, P; can only be solved to optimality by algorithms with a worst-case
time complexity in A*(¢™), with ¢ a positive root and n the size of A.

3 Problem Resolution

To remain close to what is empirically observed, problems P; and P» are mostly
treated as learning problems, where distances between actions and the relevance
of an action for the beneficiary are learned from the set of existing diagnoses and
pathways, that were devised by professional social actors. The cost of an action
can be more trivially extracted from past pathways available data.

3.1 Computing Action Profiles (P;)

We model each action a in A as a vector of features, computed as the average of
diagnoses of former beneficiaries who were recommended the action a. The cost
of actions is simply fixed to the median time spent for each action, as reported in
the set of past pathways P. The median is used due to its robustness to extreme
values. Note that, should this information be unavailable, a machine learning
based approach similar to the ones described next for distances and relevance
computation, should be applied.
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Learning distances between actions corresponds to a traditional metric learn-
ing problem. Classical approaches addressing this problem include (i) transfor-
mation to classification task [5,9,14], or (ii) weekly-supervised metric learning
[15]. Regarding (i), distances are usually linear combinations of feature-wise dis-
tances between objects, obtained by fitting a linear classifier (e.g., SVM) over
pairs of objects labeled positively if objects should be in the same group and
negatively otherwise.

As to (ii), weekly-supervised metric learning approaches aim at defining a
new space based on input pairwise Must-Link or Cannot-Link constraints that
specify respectively if two points should be close or distant in the output space.
A traditional method is to learn a generalized Mahalanobis distance [15], that
is basically a generalization of the Euclidean distance defined as follows:

dar(a1,a9) = /(a1 — az2)'M (a1 — as) (1)

with (a1,as) € A% and where M = 0 is a positive semi-definite matrix to
ensure that dp; is a proper metric. In its simplest form, i.e. when M = I,
dyr is a Euclidean distance and when M is diagonal, dy; changes the relative
weights of each features in the computation of the distance. Finally, in the general
case, it can express more complex scaling and relations between features. The
method proposed in [15] relies on the following optimization problem to find the
expression of M:

3 2 . .
mn Y di(ana) 2)
(ai,a;)€S

s.t. Z du(ai,aj) >1 (3)

(ai,a;)€D
M>0 (4)

where S (resp. D) is the set of constraints indicating that 2 actions should (resp.
should not) appear in the same pathway in our case. Equation (3) is added to
avoid the trivial solution M = 0. We followed this approach to learn the distances
between actions.

3.2 Computing Beneficiary Profile (P)

Preliminaries. Recall from Sect. 2.2 that any beneficiary b € B is represented
by a tuple of features 7 = (b1,...,bs). It is then possible to determine for
each action a € A if beneficiary b has undertaken it. Thus, each action a can
be represented as a tuple of f features @, whose values are set as the average
values observed for the beneficiaries b € B that undertook a in their respective
pathways:

7:%2@1,...,@) (5)
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Collaborative Relevance Score. As can be seen in Fig. 1, the set of former path-
ways can be seen as a graph of the actions that were undertaken in the past.
While this graph could have been used to extract action popularity scores for
instance using Page Rank or centrality measures, which may be useful for rec-
ommending popular actions, our goal is to compute a different profile for each
new beneficiary. As such, our problem is close to a cold start problem for a new
user, for which we use a hybrid approach (in the sense of [11]), leveraging both
the beneficiary diagnosis and the former diagnoses and pathways.

Precisely, we define the collaborative relevance of action a € A for beneficiary
b by the probability rely(a) = P(alb) that beneficiary b undertakes the action
a. We express this problem as a traditional binary classification task aiming to
predict T'rue if action a is relevant for b or False otherwise, based on the diag-
nosis 7 of b. We use a naive Bayes approach to obtain the expected probability
values. By generalizing the prediction for a beneficiary based on the observations
over past beneficiaries, this score accounts for a collaborative score of relevance.

3.3 Pathway Recommendation (Ps)

Problem P3 can be seen as an extension of the orienteering problem [12] with
service time. Such problem was already formulated in the Exploratory Data
Analysis community, to find a series of relevant queries [6]. We choose to use the
Mathematical Integer Programming (MIP) model proposed by [4] as we expect
most instances to be small enough for an exact solution to be tractably found by
a state-of-the-art solvers like CPLEX. Such model allows to trivially add linear
constraints on a case by case basis, whenever needed. For efficiency purpose, the
resolution of such problems classically reformulates the initial multi-objective
problem into a single objective problem (the maximization of the relevance)
and rewrites the last two remaining objectives (minimizing the time budget and
the distance) as so-called epsilon constraints with upper bound on the time
budget and the distance [4]. This reformulation benefits from single objective
optimization mechanisms available in CPLEX.

For those larger instances of the problem that could not be handled by
CPLEX, we also implemented a simple greedy algorithm to efficiently compute
approximate solutions to Pj3. Its principle is as follows. It starts by picking the
most relevant action, and then adds subsequent actions by computing a score by
dividing relevance by distance, and picking the actions achieving the best score.
A windowing system is used to limit the number of comparisons (the larger the
window, the greater the number of best relevant actions considered). Addition-
ally, at each iteration, costly actions not respecting the remaining budget are
pruned.

4 Tests

This section describes the experiments conducted to evaluate our approach. They
answer 2 main questions: (i) how effective is our PRS approach to recommend
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lifelong pathways?, (ii) to which extent PRS scales to larger instances of the
problem, i.e., to a larger population of possible actions?

Problems 1 and 2 where solved using Python, sklearn library providing an
implementation of a Naive Bayes classifier, and metric-learn library providing
the implementation of the algorithm proposed by [15]. The mathematical model
relies on CPLEX 20.10 and is implemented in C++'. The greedy algorithm,
GreedyPRS, is implemented in Java.

4.1 Effectiveness of PRS

Dataset. In this first test, we use a real dataset named “French RSA?” composed
of 2812 user diagnoses and 56 actions, with 14 descriptive features that represent
a set of beneficiary contextual information such as “need for housing assistance”,
“need for childcare”, “health diagnosis”, “searching for a job”, etc. A few null
values were replaced with the most frequent ones.

Evaluation Criteria. Our evaluation scheme uses classical evaluation metrics for
recommender systems, namely precision and recall of the discovered composite
items when compared to the real pathways that were undertaken by the benefi-
ciaries. However, as the recommendation task is complex, we consider precision
and recall at a certain similarity threshold. In what follows, we denote by ~ a
similarity function between actions. We consider that there is a match between
a recommended action and an expected action from the pathway if their similar-
ity exceeds a threshold that is a parameter of the precision and recall measures,
similar to what is done in [1,5].

More formally, considering: (i) the set of all actions A, (ii) a real path-
way P as a set of s actions {p;}jcni,s and, (iii) the set R of m recom-
mended actions {n}ie[l?m] produced by PRS, we define the True Positive set
as TP = {r € R|r ~ p,p € P}, the False Positive set as FP = R\ TP
and the False Negative set as FN = {a € A\ R|a ~ p,p € P}. From these

o . TP .y TP
sets, it is possible to compute, Recall = W, Precision = W and

Fl-measure = 2 gfeecciissii;s—:}%%eecgallll .

Methodology. As explained in Sect. 3.3, Pj3 is handled by reformulating objectives
as epsilon constraints for which an upper bound has to be provided. We experi-
ment with several values for these bounds. Noticeably, we consider 3 thresholds
for the cost constraints expressed as the run time of actions, respectively 207, 364
and 601 days as these are the average observed period of time for respectively,
below 25 years old (y.o.), between 25 and 55 y.o. and above 55 y.o. to go back to
work after an unemployment period®. Similarly, for the distance constraint we

! https://github.com/AlexChanson/Cplex-TAP.

2 RSA stands for Revenue de Solidarité Active and is French form of in work welfare
benefit aimed at reducing the barrier to return to work.

3 These are the most related official indicators that we found on the topic of social
assistance giving hints how to set these thresholds in case of RSA social benefit.
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consider 3 distance thresholds: 3, 4, and 5 that allows to run several actions in
one recommended pathway.

Figure 2 provides histograms of the distributions of run time costs and dis-
tances which assess the choices for the aforementioned thresholds.

Distribution of distances between actions

Distribution of run time

Frequency

e = N w & wn o N

Frequency

100 120 000 025 050 075 100 125 150 175
Run Time (Days) Distances

Fig. 2. Histograms of observed run time cost for the actions in the French RSA dataset
(left) and histogram of distances between actions (right).

In order to assess the accuracy of our metric learning, we run a comparison
with a simple Euclidean distance on all the previous scenarios. Finally, a 3-fold
cross validation is set up to ensure that train and test sets are well separated
and to produce average values.

Results. Figures3, 4 and 5 summarize the main results of our experiments in
terms of F-Measure at a given similarity threshold. Note that Figs.4 and 5
represent different groupings of the same data, averaging distance and time,
respectively. Results presented are averaged by the 3-fold cross validation process
and standard deviation around each mean is represented as light color areas
around the plots. Importantly, the similarity is expressed as a function of the
distance d(a, as) between actions as follows: sim(ay,as) = 1/(1 + d(a1, az)).

Figure3 and 4 show the importance of the distance between actions in our
method. Indeed, Fig.3 presents results with a traditional Euclidean distance
between actions, that does not benefit from external knowledge of which actions
should be grouped together to better fit the observed pathways. Also, the lower the
similarity threshold on theses figures, the easier it is to find a match between a rec-
ommender and an observed action, and the more likely the F-measure score is to
be high. Consistently with this observation, both Figs. 3 and 4 show a decreasing
F-Measure score with the increase in similarity threshold. However, our learned
distance between action allows for a very high F-Measure until the similarity score
is close to 1 while the traditional Euclidean distance falls for smaller similarity
thresholds. Interestingly, in both cases, the F-Measure score when looking for a
perfect match (similarity threshold = 1) are close to 0.3 but with slightly better
performances for the tuned metric. Finally, the F-Measure score is higher in case
of short-term pathways which is normal as it is easier to predict for short period
of time and shorter sequences for which it is easier to improve the recall.
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»- 364

me 601
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Fig. 3. F-measure scores computed for different similarity thresholds for 3 run time
costs thresholds. Distance between action is set to an Euclidean distance.

10

F1 Measure

0.2 1 Time for pathway (days)
- 207
-®- 364
= 601

0800 0825 0850 0875 0900 0925 0950 0975 1000
Threshold Similarity

Fig. 4. F-measure scores computed for different similarity thresholds for 3 run time
costs thresholds. Distance between action is learned as explained in Sect. 3.1.
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Fig. 5. F-measure scores computed for different similarity thresholds for 3 distances
thresholds. Distance between action is learned as explained in Sect. 3.1.
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Figures4 and 5 show that Problem P; can be solved as efficiently if we
consider constraints on the time budget as in Fig. 4 or the maximal distance as
in Fig. 5. Allin all, the formulation of the resolution of P53 with epsilon constraints
does not seem to be the limiting factor in the observed F-Measure results. In the

next section, we study the influence of the number of actions on the resolution
of Problem Pj.

4.2 Scaling to Larger Instances

For our scalability test, in order to understand what is the maximum number
of actions PRS can handle, we generated 8 artificial datasets as follows. We
first used a KDE-gaussian kernel to fit the distributions of relevance, cost and
distance, respectively, with the samples obtained from the real dataset used for
the effectiveness tests. We then generated 8 datasets of increasing sizes (100,
200, 300, 400, 500, 1000, 5000, 10,000), representing the inputs of Ps by draw-
ing relevance, cost and distance following the distributions obtained with the
estimator.

We run CPLEX on each dataset, setting a time out of 1h. This test was
conducted on a Fedora Linux (kernel 5.11.13-200), workstation running CPLEX
20.10 on a Intel Xeon 5118 with 256 GB of main memory. The results, depicted
in Fig. 6, are as expected and illustrate the hardness of the problem. For sizes
above 500 actions, the time out of one hour was reached.

0 100 200 300 400 500 600 700 800
Number of Actions

Fig. 6. Scalability of P5 (exact)

We also run greedyPRS on the 8 datasets, varying budget (from 100 to
1000) and window size (from 10% to 100% of budget). For scalability testing,
we report only the results for dataset 10,000. As shown in Fig.7(a), contrary
to the exact resolution by CPLEX, greedyPRS solves much larger instances of
the problem in milliseconds. Of course, because of the simplicity of the greedy
algorithm, solutions may not be feasible since the distance espilon-constraint is
not checked. To understand the quality of the solutions found by greedyPRS, we
also run it on the French RSA dataset, varying window size from 10 to 60. As
illustrated in Fig. 7(b), the greedy approach maintains a reasonable F-measure
in recommendation albeit not as good as PRS in our preliminary tests.
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Fig. 7. Resolution of P3 with GreedyPRS (approximate solution). Left: scalability.
Right: F-measure.

5 Related Work

Our way to learn action profiles is similar to user intent discovery [5,9,14]. For
instance, Guha et al. [9] discover user intent behind web searches, and obtain
content relevant to users’ long-term interests. They develop a classifier to deter-
mine whether two search queries address the same information need. This is
formalized as an agglomerative clustering problem for which a similarity mea-
sure is learned over a set of descriptive features (the stemmed query words, top
10 web results for the queries, the stemmed words in the titles of clicked URL,
etc.). A similar approach is used in [5] to discover BI user intents in BI queries.

Composite items (CIs) address complex information needs and are prevalent
in problems where items should be bundled to be recommended together [2],
like in task assignment in crowdsourcing or travel itinerary recommendation.
CI formation is usually expressed as a constrained optimization problem, and
different CI shapes require the specification of different constraints and optimiza-
tions. Our formulation of lifelong pathways is a particular case of chain shaped
CIs [3,8,10], that are traditionally defined in terms of compatibility (e.g., geo-
graphic distance), validity (e.g., the total cost of an itinerary is within budget)
and maximality (e.g., the itinerary should be of the highest value in terms of
its POIs popularities), this last one often being used as the objective function.
Retrieval of chain Cls is usually NP-hard, being reduced to TSP or orienteer-
ing problems, and has been addressed through greedy algorithm [3,10], dynamic
programming or dedicated TSP strategies [8].

While being consistent with previous formulations, our formalization of life-
long pathway recommendations borrows from the Traveling Analyst Problem
(TAP) [4,6]. This problem describes the computation of a sequence of interest-
ing queries over a dataset, given a time budget on the query execution cost, and
such that the distance between queries is minimized. TAP differs from the classi-
cal orienteering problem by adding a knapsack constraint to it. This formulation
is close to that of [10], but the latter simplifies the problem by merging action
cost and travel time budget.

In our case, similarly to [6], the distance we use has a semantics in itself and
cannot be made analogous to a time or to a physical distance. Thus it must
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be considered as a separate constraint. Furthermore we are not specifying any
starting or finish point for the sequence as the classical orienteering problem.

6 Conclusion

This paper introduces a system for lifelong pathways recommendation. We model
lifelong pathways as particular chain composite items that are built from atomic
actions, and whose retrieval is formalized as a form of orienteering problem.
We experiment with both artificial and real datasets, showing our approach
is a promising building block of an interactive lifelong pathways recommender
system. Our short term perspectives consist of including in our model a multi-
stakeholders context, to conciliate the objectives or constraints of beneficiaries,
social actors and services providers, as well as mechanisms for the exploration of
pathways, so that users can interact with the recommender. On the longer term,
we plan to add an explanation mechanism of the recommendations to increase
trust of stakeholders in the proposed pathways and to improve their acceptance.
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