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UAV Location Optimization
in MISO ZF Pre-coded VLC Networks

Mahmoud Wafik Eltokhey, Mohammad-Ali Khalighi, Zabih Ghassemlooy

Abstract—Use of unmanned aerial vehicles (UAVs) to provide
on-demand communications has been receiving growing interest,
especially for use in remote and hard-to-reach areas. Also, the
use of light-emitting diode -based lighting in UAVs has opened
opportunities for data transmission through visible-light com-
munications. To manage multi-user interference while avoiding
complex handover procedures, we consider the use of zero forcing
(ZF) pre-coding. Since the performance of ZF pre-coding depends
on the correlation between channel gains of users, we propose
in this paper to reduce it by means of location optimization
of UAVs. More specifically, we use particle swarm optimization
with the objective of maximizing the overall achievable network
throughput. Furthermore, to relax the optimization requirements
at UAVs, we investigate the case when the optimization is
performed at a specific rate under different mobility conditions.

Index Terms—Visible-light communications; unmanned-aerial
vehicles; ZF pre-coding; particle swarm optimization.

I. INTRODUCTION

Visible-light communication (VLC) systems exploit the
light-emitting diode (LED)-based luminaires to provide simul-
taneous lighting and data communications [1]. The growing
use of LEDs for illuminations in unmanned aerial vehicles
(UAVs) (i.e., drones) has opened up opportunities for VLC ap-
plications such as surveillance and monitoring, data collection
from Internet-of-things devices, off-loading traffic data from
base stations (BSs), and improving quality-of-service for the
users. Recently, the concept of Twinkle was proposed in [2],
where LEDs mounted on UAVs were used for illumination in
urban areas. In addition, UAVs with LED-based lights have
been reported for operations at night time [3].

Use of UAVs as flying BSs to provide on-demand wireless
communications offers a cost-effective and flexible solution
in a number of applications [4]. Here, RF-based transmission
may result in interference with the ground networks, and may
also decrease the applicability of high-speed communications
due to the limited energy [4]. VLC-based transmission is an in-
teresting alternative, since it maximizes the resource utilization
by using the existing LED-based lights. This combined feature
of illumination and data communication is much favored in
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search and rescue, delivery by drone at night, path illumination
by UAVs in areas with no lighting, etc. [3], as well as in
large space indoor industrial scenarios. The use of VLC in
UAV-based networks has received particular interest in the
recent literature. For instance, optimizing UAV location and
user association was considered in [3] to minimize UAV power
consumption, which was further extended in [4] using deep
learning. Also, [5] considered network sum-rate maximization
for non-orthogonal multiple access UAV-based VLC networks,
by optimizing the power allocation and UAVs’ placement.

In [3]–[5], each user was associated with a single cell,
which needs dealing with handover and cell-based inter-
user interference. To avoid handovers while mitigating inter-
user and inter-cell interferences [6], multiple-input multiple-
output techniques can be used [7] but the constraints on the
receiver (Rx) array size to ensure a full-rank channel matrix
makes multiple-input single-output (MISO) technique a more
suitable solution in practice [8]. In multi-user (MU) MISO
VLC systems with single PD-based Rxs [8], [9], linear zero
forcing (ZF) pre-coding is widely considered, as it offers
simplicity and improved performance at high signal-to-noise
ratios (SNRs) [10], [11]. However, the performance of linear
ZF pre-coding is affected by the user locations, which impacts
the correlation between the users’ channel gains. In fact, a
higher correlation in the network channel matrix results in
a degraded ZF pre-coding performance, i.e., a lower network
sum-rate. In this paper, we propose to decrease this correlation
by optimizing the locations of UAVs using particle swarm
optimization (PSO). Note that, PSO has been used in optical
wireless communications, e.g., for optimizing the diffuse spot
locations [12] and resource allocation [13]. Our main con-
tributions include: (i) proposing the use of ZF pre-coding in
UAV-based VLC networks, which to the best of our knowledge
has not been addressed before; (ii) proposing to decrease the
correlation in the network channel matrix by PSO-based UAV
location optimization; and (iii) studying the effect of varying
the optimization parameters on the network performance.

II. SYSTEM MODEL AND MATHEMATICAL FORMULATION

A. VLC System Model

Consider a UAV-based VLC system as in Fig. 1. Each UAV
acts as an access point (AP), where the LED-based APs
mounted on UAVs provide illumination and VLC downlink
to the Rxs for data communication. A central control unit,
which is mounted on one of the UAVs, or located in a separate
central UAV (not used for direct communication with the
Rxs), exchanges information with the APs and is, in turn,
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Fig. 1: Illustration of the considered system with the flow of information
between a cellular network, a central control unit, UAV APs, and Rxs.

connected to a cellular network via an RF or a free-space
optical link. Infrared uplinks are used for sending data and
estimated channel-state information (CSI) to the APs; this
latter being used in the central control unit for determining
the ZF pre-coding matrix and for UAV location optimization.

Let us denote by hij the channel coefficient between the
ith AP and the jth Rx. We account only for the line-of-sight
(LOS) path in hij , given the heights of the APs and the
dominance over the non-LOS paths. For complying with the
constraints of ZF pre-coding, we consider that the number of
Rxs (Nr) is less than or equal to the number of APs (Nt) [8].
The transmission by the considered LED luminaires can be
modeled by Lambertian pattern of order m, where [1]:

hij = ρj S
(m+ 1)

2π l2ij
cosm(φij) cos(θij)APDj

. (1)

Here, φij and θij refer to the angles of emission and incident
with respect to APi and Rxj , respectively, and lij denotes the
related link distance. Also, ρj and APDj

are the responsivity
and the surface area of the PD, respectively, and S is the
LED conversion efficiency. Note, for θij larger than the field-
of-view (FOV) of Rxj , we have hij = 0.

B. ZF Pre-coding

In the considered MU-MISO system, to eliminate MU
interference, ZF pre-coding is applied to the signals of the
Rxs. At the ith AP, the transmit signal is [8]:

xi =

Nr∑
j=1

wij dj + IDCi, (2)

where dj is the desired signal of the jth Rx, wij is the pre-
coding weight, and IDCi is the DC bias. At Rxj , after removing
the DC offset, the received signal is given by:

rj =

Nt∑
i=1

xihij + zj = hTj w
T
j dj +

∑
k 6=j

hTj w
T
k dk + zj , (3)

where hj = [h1,j , ..., hNt,j ]
T is the vector of the channel

gains associated with Rxj ; (·)T stands for transposition;
d = [d1, ..., dNr

] is the vector of the desired signals; wj =

[w1,j , ..., wNt,j ] is the pre-coding vector associated with Rxj ;
and zj is Gaussian noise with variance σ2

n, representing the
ambient light induced shot noise and the thermal noise. The 1st

and 2nd terms on the right hand side in (3) represent the desired
signal and the interference, respectively. Let r = [r1, ..., rNr

]
denote the vector of the received signals. We have:

r = HW d+ z, (4)

where H = [hT1 , ...,h
T
Nr

]T , W = [wT
1 , ...,w

T
Nr

], and z =
[z1, ..., zNr ] denote the network channel matrix, the pre-coding
weights matrix, and vector of noise component of all Rxs,
respectively. For linear ZF pre-coding, W is given by [8]:

W = HT (HHT )−1 diag(γ), (5)

where γ denotes a diagonal matrix, composed of diagonal
entries γj > 0, such that γj values can be regarded as the
coefficients of parallel sub-channels determined based on a
design criterion. For the sake of simplicity, we consider the
criterion of maximizing the minimum achievable throughput.
Defining µ = [µ1, ..., µNr ] =

[
γ1
σ1
, ...,

γNr

σNr

]
, this gives [8]:

µ = µ∗1; µ∗ =

√
Pe

max(A1)
, (6)

where A = abs
(
HT (HHT )−1

)
diag(σ); σ is the Rxs’ noise

variance vector; abs(.) applies the absolute value operation for
each element; 1 is a vector with all entries equal to one; and Pe
is the transmit electrical power per AP. For Rxj , the SNR and
the maximum achievable throughput are given as, respectively:

SNRj =

(
hTj w

T
j

)2
σ2
n

=
γ2j
σ2
n

, (7)

Rj =
B

2
log2

(
1 + SNRj) (bps), (8)

where (8) assumes DC-biased optical-orthogonal frequency-
division multiplexing with a penalty of factor 2 due to Her-
mitian symmetry, and B denotes the system bandwidth. Note
that, the achievable data rate depends on the UAVs’ locations
by affecting the path loss, as well as the correlation in H .

III. UAV LOCATION OPTIMIZATION

To optimize the UAV locations, we consider the well-
established algorithm of PSO, which is a metaheuristic op-
timization technique that mimics the swarms movement [14].
Given the non-linear nature of the considered problem and
the available degrees of freedom by change in the UAVs’
locations, PSO is an efficient approach, which can converge to
high quality solutions at low complexity. This is an important
point, allowing real-time adaptivity to the mobility of the users,
given the possible limitations on the computational resources.

A. Particle Swarm Optimization

In PSO, each point in the D-dimension search space
represents a solution; particles travel between the points to
find the optimal solution. For each particle’s movements,
both the speed and the directions are influenced by its best
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experience (i.e., its best solution so far, Pbest), and by the
best position found by the ensemble of particles (i.e., the
global best position, Gbest). The quality of the solution is
evaluated based on a fitness function. Assuming the number of
iterations Nmaxit

and the number of particles Nmaxp
, applied

to an optimization problem with the number of variables D,
for the particle q at iteration `, the algorithm updates the
vectors of particle’s position pq = [pq1, pq2, ..., pqD]; velocity
vq = [vq1, vq2, ..., vqD]; and personal best position Pbest,q =
[pbest,q1, pbest,q2, ..., pbest,qD]. In addition, if a qth particle offers
a superior fitness than that achieved by the position in the
global best position vector Gbest = [gbest,1, gbest,2..., gbest,D],
Gbest is updated by the position of the qth particle. To update
the velocity of particle q at iteration `+ 1 for the variable d,
the following equation is used [14]:

v`+1
qd = w`v`qd + c`P randP (pbest,qd − plqd)

+ c`G randG (gbest,d − p`qd),
(9)

where the 1st, 2nd, and 3rd terms correspond to the contribu-
tions from the old velocity of the particle, Pbest, and Gbest
vectors, respectively; w` refers to the inertia weight, which
controls the impact of old velocity on the new value; c`P and c`G
denote the weights for controlling Pbest and Gbest contributions
to the new velocity; and randP and randG are random numbers
taking values between 0 and 1, respectively. Defining ∆t as the
time step (which is set to 1), the new position of the particle
q at iteration `+ 1 for variable d is given by:

p`+1
qd = p`qd + v`+1

qd ∆t. (10)

In our simulations we take 0.4 ≤ w` < 0.9 as the appropriate
interval allowing a good performance for the algorithm [12].
Also, the new positions of the particles that exceed the solution
space boundaries are clipped to the boundaries.

B. UAV Location Tuning Using PSO

The flow chart of the proposed PSO-based UAV location
optimization is depicted in Fig. 2. Firstly, random positions and
velocities for each particle are generated prior to evaluation of
their associated UAV locations in the ZF pre-coding. The con-
sidered optimization problem targets decreasing the correlation
inH for maximization of the sum-rate,

∑Nr

j=1Rj . To calculate
the correlation in H , the 2-norm condition number, denoted
cond(H), is considered, which is defined as the ratio of the
largest singular value of H to the smallest one. To decrease
this correlation, we consider minimizing cond(H).

The variables used for controlling cond(H) are the UAVs’
locations that directly impactH , and are optimized using PSO.
The sum-rate and cond(H) for the corresponding network
configuration are used to determine a fitness function F for
evaluating the solution quality. Here, we consider:

F = F1 ×
Nr∑
j=1

Rj − F2 × cond(H)− (F3 ×N0), (11)

where N0 is the number of users with no LOS link with any
AP. The 1st term in (11) promotes the solutions with higher
sum-rates, the 2nd term downgrades those resulting in a poor
condition number of H , and the 3rd term avoids solutions
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Fig. 2: Flow chart of the proposed algorithm for location optimization of
three UAVs, where ` and q are the indexes of the number of iterations and

particles, respectively. Dashed boxes on the left and right illustrate how
UAV locations are converted to integers (Int.), and how two particles move

in the solution space to find the optimal solution, respectively.

with users experiencing blocked LOS. Constants F1, F2, and
F3 control the contribution of the different terms. Note that,
minimizing cond(H) may result in a less optimal sum-rate
performance compared with when maximizing the sum-rate
directly. However, the former approach results in a lower
probability of obtaining an ill-conditioned H . Based on the
value of F , both Pbest and Gbest are updated, followed by
calculating the new position and velocity of the particle in the
solution space. After evaluating each particle for all iterations,
the Gbest vector will contain the optimized UAV locations.

When only discrete and non-uniformly separated UAV loca-
tions are considered (e.g., due to constraints on the localization
accuracy), the possible UAV locations are converted to inte-
gers, and the problem is considered as an integer programming
problem. Then, the indexes of UAV locations in the x and y
coordinates form the solution space, to ensure equal spacing
between successive solutions in each coordinate. The number
of variables D is equal to the number of UAVs multiplied by
the number of optimized variables per UAV.

To manage how particles search for the optimal solution
in the solution space and benefit from their experiences,
the weight clP in (9) is decreased from 2.5 (at the start of
optimization) to 0.5 (at the end) for a better exploration of the
solution space at the beginning by maximizing the reliance on
Pbest. On the other hand, for Gbest, clG is increased from 0.5
(at the start of optimization) to 2.5 (at the end) to enhance the
convergence to the optimal solution [12].

The complexity of the proposed optimization mainly de-
pends on calculating the particles’ locations in PSO, evalu-
ating the fitness function, and ZF pre-coding. For the con-
sidered PSO algorithm, the time and space complexities are
O(Nmaxit×Nmaxp×D) and O(Nmaxp×D), respectively [12].

IV. PERFORMANCE ANALYSIS

For the two cases of indoor industrial and outdoor scenarios,
consider 4 LED-based APs, each mounted on a rotary-wing
UAV, and 4 Rxs positioned at a height of 0.85 m above the
floor level. The key system parameters are given in Table I.
Considering a 10 MHz system bandwidth, the sum-rate Rj
corresponding to the 1st term in (11) will be around tens of
Mbps, whereas cond(H) can reach orders of 103. Therefore,
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TABLE I: Simulation parameters

Parameter Value
LED conversion efficiency S 0.44 W/A [9]

Transmit power per LED 15.84 W
LED Lambertian order m 1

Noise power spectral density (indoor/outdoor night) 10−21 A2/Hz [10]
Link bandwidth 10 MHz [10]

PD responsivity ρj 0.4 A/W [10]
PD area 1 cm2 [10]

Optical Rx FOV 62 deg. [8]
Rx height 0.85 m [8]
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Fig. 3: Top view for the grid of possible UAV locations and the
parameters considered for indoor industrial and outdoor scenarios.

we set F1, F2, and F3 to 1, 105, and 1010, respectively,
to prioritize LOS blockage avoidance, while degrading the
solutions with large condition numbers. In fact, although
for the considered UAV heights it is unlikely that a Rx
experiences a LOS blockage, the 3rd term in (11) guarantees
the applicability of the proposed algorithm to a wide range
of scenarios. Figure 3 shows the top view for the considered
communication environment, highlighting the grid of possible
locations for the four UAVs, and the corresponding parameters
for the considered indoor industrial and outdoor scenarios.

A. Effect of Parameter Optimization

To find the best combinations of the numbers of particles
and iterations for a given number of evaluations, we compare
in Fig. 4 the average sum-rate for different combinations of
Nmaxp

and Nmaxit
, over 1000 random user positions, for

both indoor and outdoor scenarios. As shown, the average
sum-rate improves with increasing Nmaxp × Nmaxit . For the
same evaluation number, generally, a higher average sum-rate
is achieved for Nmaxp

> Nmaxit
, which is because of a better

exploration of the solution space prior to converging to the
optimal solution. Note that, lower sum-rates are achieved for
the outdoor scenario since UAVs are considered with higher
altitudes with the same transmit power as for the indoor case.
Also, note that the required number of evaluations is much
smaller than when evaluating all possible solutions (4 UAVs,
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Fig. 4: Effect of Nmaxp and Nmaxit on the average sum-rate of 4 Rxs
with 1000 random positions, in indoor industrial and outdoor scenarios.

with 25 possible locations each, see Fig. 3). Based on these
results, we set Nmaxp = 20 and Nmaxit = 10 in the sequel.

B. Case Study of UAVs With Optimized Locations

To see how the sum-rate improves with the proposed
optimization through iterations, we consider in Fig. 5 an indoor
industrial scenario with (x, y) of the Rxs’ positions of (0.26,
4.63), (2.93, 3.55), (6.17, 3.18), and (7.54, 9.87). The evolution
of the fitness function F , from (11), is illustrated in the dashed
blue boxes, together with the UAVs’ location indexes (with
respect to the grid), sum-rate, and cond(H), over every change
in F (i.e., the best performance achieved). The dashed red
box shows the case UAVs are positioned at the center of
their corresponding grid space. Also, at the right side, we
have shown the optimal positions of the UAVs with respect to
the Rxs positions. We notice that PSO converges at iteration
5 to the optimal solution. Meanwhile, no improvement is
achieved from iteration 2 to 3, i.e., the new positions found
in iteration 3 did not result in an improvement of Gbest. In
fact, in the first iterations, PSO focuses on the solution space
exploration, rather than convergence to the optimal solution. It
is worth mentioning that the obtained solution via PSO after
convergence (i.e., a sum rate of 0.973×108 bps) is quite close
to the global optimal solution of 1.007×108 bps, obtained via
parameter sweep (with considerably higher complexity).

C. Optimizing UAV Locations in Case of Mobility

In a dynamic scenario where the Rxs move around, the
UAVs’ locations need to be updated accordingly to ensure the
best network performance. Figure 6 shows a comparison of the
average sum-rate over different Rx mobilities, for the indoor
industrial and outdoor scenarios, for different optimization
rates used. For each mobility case, 1000 users’ positions are
generated according to the random way-point mobility model,
where the time interval between each two successive positions
is set to 0.5 sec. The considered maximum user speeds of 0.5
and 1.4 m/s correspond to walking and fast walking users,
whereas the cases of 2 and 5 m/s correspond to equipment
movements in current and future industrial scenarios [15], re-
spectively. The considered time interval between optimizations
are 0.5, 1, 2, and 5 sec. We have also considered the non-
optimized cases where UAVs are located at their grid space in
order to vary the inter-UAV distances from the minimum to the
maximum. For the case of indoor scenario, as UAVs get closer,
the similarity in the users’ channel gains increases, resulting in
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Fig. 5: Evolution of fitness value over iterations. Blue and red boxes correspond to optimized and non-optimized cases, respectively.
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Fig. 6: Comparison between optimized and non-optimized UAV locations
for different user mobilities for (a) indoor industrial and (b) outdoor

scenarios, considering different optimization update intervals.

an increased correlation in H , and subsequently a decreased
sum-rate. For outdoor scenarios, the advantages of maximizing
the inter-UAV distances are reduced due to the increased path
loss (due to increased LOS path length between the UAVs and
the Rxs). Given the highlighted trade-off between the decrease
in the channel correlation and the increase in the channel gain,
the maximum distance between UAVs should be constrained in
the system design by parameters such as the users’ data rate
requirements. On the other hand, results show an improved
performance for optimized UAVs’ locations for all cases. As
expected, decreasing the optimization rate results in a perfor-
mance degradation, which is more considerable with increased
mobility. Indeed, larger variations in the users’ positions over
the given time window results in a faster deviation from the
optimal UAVs configuration. Interestingly, even for the highest
mobility case, updating optimized UAV positions at the lowest
rate (i.e., every 5 sec) offers an improved performance, thus
demonstrating the robustness of the proposed optimization.

V. CONCLUSIONS

We proposed optimization of the UAV locations using
PSO, for MU-MISO ZF pre-coded UAV-based VLC networks
and demonstrated the achieved performance improvement.
We showed the importance of carefully choosing the fitness
function as well as the adequate number of particles for a
sufficient exploration of the solution space. Generally, as the
number of variables (i.e., UAVs) increases, a larger number
of evaluations should be considered to avoid being trapped in
local solutions. We also considered different mobility scenarios

and showed the robustness of the proposed solution for differ-
ent optimization rates due to limited computational resources
and/or high user mobility. The proposed optimization could be
extended to carry out the pre-coder design while accounting
for CSI uncertainty due to outdated or noisy CSI, as proposed
in [9], which could be addressed in a future work.
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