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I. INTRODUCTION

Visible-light communication (VLC) systems exploit the light-emitting diode (LED)-based luminaires to provide simultaneous lighting and data communications [START_REF] Ghassemlooy | Visible Light Communications: Theory and Applications[END_REF]. The growing use of LEDs for illuminations in unmanned aerial vehicles (UAVs) (i.e., drones) has opened up opportunities for VLC applications such as surveillance and monitoring, data collection from Internet-of-things devices, off-loading traffic data from base stations (BSs), and improving quality-of-service for the users. Recently, the concept of Twinkle was proposed in [START_REF] Deng | Twinkle: A flying lighting companion for urban safety[END_REF], where LEDs mounted on UAVs were used for illumination in urban areas. In addition, UAVs with LED-based lights have been reported for operations at night time [START_REF] Yang | Power efficient visible light communication with unmanned aerial vehicles[END_REF].

Use of UAVs as flying BSs to provide on-demand wireless communications offers a cost-effective and flexible solution in a number of applications [START_REF] Wang | Deep learning for optimal deployment of UAVs with visible light communications[END_REF]. Here, RF-based transmission may result in interference with the ground networks, and may also decrease the applicability of high-speed communications due to the limited energy [START_REF] Wang | Deep learning for optimal deployment of UAVs with visible light communications[END_REF]. VLC-based transmission is an interesting alternative, since it maximizes the resource utilization by using the existing LED-based lights. This combined feature of illumination and data communication is much favored in M. W. Eltokhey and M. A. Khalighi are with Aix-Marseille University, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France (e-mail: Mahmoud.Eltokhey@centrale-marseille.fr, Ali.Khalighi@fresnel.fr) Z. Ghassemlooy is with Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK (e-mail: z.ghassemlooy@northumbria.ac.uk)
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search and rescue, delivery by drone at night, path illumination by UAVs in areas with no lighting, etc. [START_REF] Yang | Power efficient visible light communication with unmanned aerial vehicles[END_REF], as well as in large space indoor industrial scenarios. The use of VLC in UAV-based networks has received particular interest in the recent literature. For instance, optimizing UAV location and user association was considered in [START_REF] Yang | Power efficient visible light communication with unmanned aerial vehicles[END_REF] to minimize UAV power consumption, which was further extended in [START_REF] Wang | Deep learning for optimal deployment of UAVs with visible light communications[END_REF] using deep learning. Also, [START_REF] Pham | Sumrate maximization for UAV-assisted visible light communications using NOMA: Swarm intelligence meets machine learning[END_REF] considered network sum-rate maximization for non-orthogonal multiple access UAV-based VLC networks, by optimizing the power allocation and UAVs' placement.

In [START_REF] Yang | Power efficient visible light communication with unmanned aerial vehicles[END_REF]- [START_REF] Pham | Sumrate maximization for UAV-assisted visible light communications using NOMA: Swarm intelligence meets machine learning[END_REF], each user was associated with a single cell, which needs dealing with handover and cell-based interuser interference. To avoid handovers while mitigating interuser and inter-cell interferences [START_REF] Eltokhey | Multiple access techniques for large space indoor scenarios: A comparative study[END_REF], multiple-input multipleoutput techniques can be used [START_REF] Gesbert | From theory to practice: an overview of MIMO space-time coded wireless systems[END_REF] but the constraints on the receiver (Rx) array size to ensure a full-rank channel matrix makes multiple-input single-output (MISO) technique a more suitable solution in practice [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF]. In multi-user (MU) MISO VLC systems with single PD-based Rxs [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF], [START_REF] Ma | Coordinated broadcasting for multiuser indoor visible light communication systems[END_REF], linear zero forcing (ZF) pre-coding is widely considered, as it offers simplicity and improved performance at high signal-to-noise ratios (SNRs) [START_REF] Eltokhey | Hybrid NOMA and ZF pre-coding transmission for multi-cell VLC networks[END_REF], [START_REF] Pham | Multi-cell VLC: Multi-user downlink capacity with coordinated precoding[END_REF]. However, the performance of linear ZF pre-coding is affected by the user locations, which impacts the correlation between the users' channel gains. In fact, a higher correlation in the network channel matrix results in a degraded ZF pre-coding performance, i.e., a lower network sum-rate. In this paper, we propose to decrease this correlation by optimizing the locations of UAVs using particle swarm optimization (PSO). Note that, PSO has been used in optical wireless communications, e.g., for optimizing the diffuse spot locations [START_REF] Eltokhey | Optimization of intensities and locations of diffuse spots in indoor optical wireless communications[END_REF] and resource allocation [START_REF] Demir | Unified resource allocation and mobility management technique using particle swarm optimization for VLC networks[END_REF]. Our main contributions include: (i) proposing the use of ZF pre-coding in UAV-based VLC networks, which to the best of our knowledge has not been addressed before; (ii) proposing to decrease the correlation in the network channel matrix by PSO-based UAV location optimization; and (iii) studying the effect of varying the optimization parameters on the network performance.

II. SYSTEM MODEL AND MATHEMATICAL FORMULATION

A. VLC System Model

Consider a UAV-based VLC system as in Fig. 1. Each UAV acts as an access point (AP), where the LED-based APs mounted on UAVs provide illumination and VLC downlink to the Rxs for data communication. A central control unit, which is mounted on one of the UAVs, or located in a separate central UAV (not used for direct communication with the Rxs), exchanges information with the APs and is, in turn, connected to a cellular network via an RF or a free-space optical link. Infrared uplinks are used for sending data and estimated channel-state information (CSI) to the APs; this latter being used in the central control unit for determining the ZF pre-coding matrix and for UAV location optimization.

Let us denote by h ij the channel coefficient between the i th AP and the j th Rx. We account only for the line-of-sight (LOS) path in h ij , given the heights of the APs and the dominance over the non-LOS paths. For complying with the constraints of ZF pre-coding, we consider that the number of Rxs (N r ) is less than or equal to the number of APs (N t ) [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF]. The transmission by the considered LED luminaires can be modeled by Lambertian pattern of order m, where [START_REF] Ghassemlooy | Visible Light Communications: Theory and Applications[END_REF]:

h ij = ρ j S (m + 1) 2π l 2 ij cos m (φ ij ) cos(θ ij )A PDj . (1) 
Here, φ ij and θ ij refer to the angles of emission and incident with respect to AP i and Rx j , respectively, and l ij denotes the related link distance. Also, ρ j and A PDj are the responsivity and the surface area of the PD, respectively, and S is the LED conversion efficiency. Note, for ij larger than the fieldof-view (FOV) of Rx j , we have h ij = 0.

B. ZF Pre-coding

In the considered MU-MISO system, to eliminate MU interference, ZF pre-coding is applied to the signals of the Rxs. At the i th AP, the transmit signal is [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF]:

x i = Nr j=1 w ij d j + I DCi , (2) 
where d j is the desired signal of the j th Rx, w ij is the precoding weight, and I DCi is the DC bias. At Rx j , after removing the DC offset, the received signal is given by:

r j = Nt i=1 x i h ij + z j = h T j w T j d j + k =j h T j w T k d k + z j , (3) 
where h j = [h 1,j , ..., h Nt,j ] T is the vector of the channel gains associated with Rx j ; (•) T stands for transposition;

d = [d 1 , ..., d Nr ]
is the vector of the desired signals; w j = [w 1,j , ..., w Nt,j ] is the pre-coding vector associated with Rx j ; and z j is Gaussian noise with variance σ 2 n , representing the ambient light induced shot noise and the thermal noise. The 1 st and 2 nd terms on the right hand side in (3) represent the desired signal and the interference, respectively. Let r = [r 1 , ..., r Nr ] denote the vector of the received signals. We have:

r = H W d + z, (4) 
where

H = [h T 1 , ..., h T Nr ] T , W = [w T 1 , ..., w T Nr ]
, and z = [z 1 , ..., z Nr ] denote the network channel matrix, the pre-coding weights matrix, and vector of noise component of all Rxs, respectively. For linear ZF pre-coding, W is given by [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF]:

W = H T (H H T ) -1 diag(γ), ( 5 
)
where γ denotes a diagonal matrix, composed of diagonal entries γ j > 0, such that γ j values can be regarded as the coefficients of parallel sub-channels determined based on a design criterion. For the sake of simplicity, we consider the criterion of maximizing the minimum achievable throughput. Defining µ = [µ 1 , ..., µ Nr ] = γ1 σ1 , ..., γ Nr σ Nr , this gives [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF]:

µ = µ * 1; µ * = √ P e max(A 1) , (6) 
where A = abs H T (HH T ) -1 diag(σ); σ is the Rxs' noise variance vector; abs(.) applies the absolute value operation for each element; 1 is a vector with all entries equal to one; and P e is the transmit electrical power per AP. For Rx j , the SNR and the maximum achievable throughput are given as, respectively:

SNR j = h T j w T j 2 σ 2 n = γ 2 j σ 2 n , (7) 
R j = B 2 log 2 1 + SNR j ) (bps), (8) 
where [START_REF] Yu | Multi-user MISO broadcasting for indoor visible light communication[END_REF] assumes DC-biased optical-orthogonal frequencydivision multiplexing with a penalty of factor 2 due to Hermitian symmetry, and B denotes the system bandwidth. Note that, the achievable data rate depends on the UAVs' locations by affecting the path loss, as well as the correlation in H.

III. UAV LOCATION OPTIMIZATION

To optimize the UAV locations, we consider the wellestablished algorithm of PSO, which is a metaheuristic optimization technique that mimics the swarms movement [START_REF] Kennedy | Particle swarm optimization[END_REF]. Given the non-linear nature of the considered problem and the available degrees of freedom by change in the UAVs' locations, PSO is an efficient approach, which can converge to high quality solutions at low complexity. This is an important point, allowing real-time adaptivity to the mobility of the users, given the possible limitations on the computational resources.

A. Particle Swarm Optimization

In PSO, each point in the D-dimension search space represents a solution; particles travel between the points to find the optimal solution. For each particle's movements, both the speed and the directions are influenced by its best experience (i.e., its best solution so far, P best ), and by the best position found by the ensemble of particles (i.e., the global best position, G best ). The quality of the solution is evaluated based on a fitness function. Assuming the number of iterations N maxit and the number of particles N maxp , applied to an optimization problem with the number of variables D, for the particle q at iteration , the algorithm updates the vectors of particle's position p q = [p q1 , p q2 , ..., p qD ]; velocity v q = [v q1 , v q2 , ..., v qD ]; and personal best position P best,q = [p best,q1 , p best,q2 , ..., p best,qD ]. In addition, if a q th particle offers a superior fitness than that achieved by the position in the global best position vector G best = [g best,1 , g best,2 ..., g best,D ], G best is updated by the position of the q th particle. To update the velocity of particle q at iteration + 1 for the variable d, the following equation is used [START_REF] Kennedy | Particle swarm optimization[END_REF]:

v +1 qd = w v qd + c P rand P (p best,qd -p l qd ) + c G rand G (g best,d -p qd ), (9) 
where the 1 st , 2 nd , and 3 rd terms correspond to the contributions from the old velocity of the particle, P best , and G best vectors, respectively; w refers to the inertia weight, which controls the impact of old velocity on the new value; c P and c G denote the weights for controlling P best and G best contributions to the new velocity; and rand P and rand G are random numbers taking values between 0 and 1, respectively. Defining ∆t as the time step (which is set to 1), the new position of the particle q at iteration + 1 for variable d is given by:

p +1 qd = p qd + v +1 qd ∆t. (10) 
In our simulations we take 0.4 ≤ w < 0.9 as the appropriate interval allowing a good performance for the algorithm [START_REF] Eltokhey | Optimization of intensities and locations of diffuse spots in indoor optical wireless communications[END_REF]. Also, the new positions of the particles that exceed the solution space boundaries are clipped to the boundaries.

B. UAV Location Tuning Using PSO

The flow chart of the proposed PSO-based UAV location optimization is depicted in Fig. 2. Firstly, random positions and velocities for each particle are generated prior to evaluation of their associated UAV locations in the ZF pre-coding. The considered optimization problem targets decreasing the correlation in H for maximization of the sum-rate, Nr j=1 R j . To calculate the correlation in H, the 2-norm condition number, denoted cond(H), is considered, which is defined as the ratio of the largest singular value of H to the smallest one. To decrease this correlation, we consider minimizing cond(H).

The variables used for controlling cond(H) are the UAVs' locations that directly impact H, and are optimized using PSO. The sum-rate and cond(H) for the corresponding network configuration are used to determine a fitness function F for evaluating the solution quality. Here, we consider:

F = F 1 × Nr j=1 R j -F 2 × cond(H) -(F 3 × N 0 ), (11) 
where N 0 is the number of users with no LOS link with any AP. The 1 st term in [START_REF] Pham | Multi-cell VLC: Multi-user downlink capacity with coordinated precoding[END_REF] promotes the solutions with higher sum-rates, the 2 nd term downgrades those resulting in a poor condition number of H, and the 3 rd term avoids solutions with users experiencing blocked LOS. Constants F 1 , F 2 , and F 3 control the contribution of the different terms. Note that, minimizing cond(H) may result in a less optimal sum-rate performance compared with when maximizing the sum-rate directly. However, the former approach results in a lower probability of obtaining an ill-conditioned H. Based on the value of F , both P best and G best are updated, followed by calculating the new position and velocity of the particle in the solution space. After evaluating each particle for all iterations, the G best vector will contain the optimized UAV locations.

When only discrete and non-uniformly separated UAV locations are considered (e.g., due to constraints on the localization accuracy), the possible UAV locations are converted to integers, and the problem is considered as an integer programming problem. Then, the indexes of UAV locations in the x and y coordinates form the solution space, to ensure equal spacing between successive solutions in each coordinate. The number of variables D is equal to the number of UAVs multiplied by the number of optimized variables per UAV.

To manage how particles search for the optimal solution in the solution space and benefit from their experiences, the weight c l P in ( 9) is decreased from 2.5 (at the start of optimization) to 0.5 (at the end) for a better exploration of the solution space at the beginning by maximizing the reliance on P best . On the other hand, for G best , c l G is increased from 0.5 (at the start of optimization) to 2.5 (at the end) to enhance the convergence to the optimal solution [START_REF] Eltokhey | Optimization of intensities and locations of diffuse spots in indoor optical wireless communications[END_REF].

The complexity of the proposed optimization mainly depends on calculating the particles' locations in PSO, evaluating the fitness function, and ZF pre-coding. For the considered PSO algorithm, the time and space complexities are O(N maxit × N maxp × D) and O(N maxp × D), respectively [START_REF] Eltokhey | Optimization of intensities and locations of diffuse spots in indoor optical wireless communications[END_REF].

IV. PERFORMANCE ANALYSIS

For the two cases of indoor industrial and outdoor scenarios, consider 4 LED-based APs, each mounted on a rotary-wing UAV, and 4 Rxs positioned at a height of 0.85 m above the floor level. The key system parameters are given in Table I. Considering a 10 MHz system bandwidth, the sum-rate R j corresponding to the 1 st term in (11) will be around tens of Mbps, whereas cond(H) can reach orders of 10 3 . Therefore, Fig. 3: Top view for the grid of possible UAV locations and the parameters considered for indoor industrial and outdoor scenarios.

we set F 1 , F 2 , and F 3 to 1, 10 5 , and 10 10 , respectively, to prioritize LOS blockage avoidance, while degrading the solutions with large condition numbers. In fact, although for the considered UAV heights it is unlikely that a Rx experiences a LOS blockage, the 3 rd term in [START_REF] Pham | Multi-cell VLC: Multi-user downlink capacity with coordinated precoding[END_REF] guarantees the applicability of the proposed algorithm to a wide range of scenarios. Figure 3 shows the top view for the considered communication environment, highlighting the grid of possible locations for the four UAVs, and the corresponding parameters for the considered indoor industrial and outdoor scenarios.

A. Effect of Parameter Optimization

To find the best combinations of the numbers of particles and iterations for a given number of evaluations, we compare in Fig. 4 the average sum-rate for different combinations of N maxp and N maxit , over 1000 random user positions, for both indoor and outdoor scenarios. As shown, the average sum-rate improves with increasing N maxp × N maxit . For the same evaluation number, generally, a higher average sum-rate is achieved for N maxp > N maxit , which is because of a better exploration of the solution space prior to converging to the optimal solution. Note that, lower sum-rates are achieved for the outdoor scenario since UAVs are considered with higher altitudes with the same transmit power as for the indoor case. Also, note that the required number of evaluations is much smaller than when evaluating all possible solutions (4 UAVs, with 25 possible locations each, see Fig. 3). Based on these results, we set N maxp = 20 and N maxit = 10 in the sequel.

B. Case Study of UAVs With Optimized Locations

To see how the sum-rate improves with the proposed optimization through iterations, we consider in Fig. 5 an indoor industrial scenario with (x, y) of the Rxs' positions of (0.26, 4.63), (2.93, 3.55), (6.17, 3.18), and (7.54, 9.87). The evolution of the fitness function F , from [START_REF] Pham | Multi-cell VLC: Multi-user downlink capacity with coordinated precoding[END_REF], is illustrated in the dashed blue boxes, together with the UAVs' location indexes (with respect to the grid), sum-rate, and cond(H), over every change in F (i.e., the best performance achieved). The dashed red box shows the case UAVs are positioned at the center of their corresponding grid space. Also, at the right side, we have shown the optimal positions of the UAVs with respect to the Rxs positions. We notice that PSO converges at iteration 5 to the optimal solution. Meanwhile, no improvement is achieved from iteration 2 to 3, i.e., the new positions found in iteration 3 did not result in an improvement of G best . In fact, in the first iterations, PSO focuses on the solution space exploration, rather than convergence to the optimal solution. It is worth mentioning that the obtained solution via PSO after convergence (i.e., a sum rate of 0.973 × 10 8 bps) is quite close to the global optimal solution of 1.007 × 10 8 bps, obtained via parameter sweep (with considerably higher complexity).

C. Optimizing UAV Locations in Case of Mobility

In a dynamic scenario where the Rxs move around, the UAVs' locations need to be updated accordingly to ensure the best network performance. Figure 6 shows a comparison of the average sum-rate over different Rx mobilities, for the indoor industrial and outdoor scenarios, for different optimization rates used. For each mobility case, 1000 users' positions are generated according to the random way-point mobility model, where the time interval between each two successive positions is set to 0.5 sec. The considered maximum user speeds of 0.5 and 1.4 m/s correspond to walking and fast walking users, whereas the cases of 2 and 5 m/s correspond to equipment movements in current and future industrial scenarios [START_REF] Sauer | Delay tolerant networks in industrial applications[END_REF], respectively. The considered time interval between optimizations are 0.5, 1, 2, and 5 sec. We have also considered the nonoptimized cases where UAVs are located at their grid space in order to vary the inter-UAV distances from the minimum to the maximum. For the case of indoor scenario, as UAVs get closer, the similarity in the users' channel gains increases, resulting in an increased correlation in H, and subsequently a decreased sum-rate. For outdoor scenarios, the advantages of maximizing the inter-UAV distances are reduced due to the increased path loss (due to increased LOS path length between the UAVs and the Rxs). Given the highlighted trade-off between the decrease in the channel correlation and the increase in the channel gain, the maximum distance between UAVs should be constrained in the system design by parameters such as the users' data rate requirements. On the other hand, results show an improved performance for optimized UAVs' locations for all cases. As expected, decreasing the optimization rate results in a performance degradation, which is more considerable with increased mobility. Indeed, larger variations in the users' positions over the given time window results in a faster deviation from the optimal UAVs configuration. Interestingly, even for the highest mobility case, updating optimized UAV positions at the lowest rate (i.e., every 5 sec) offers an improved performance, thus demonstrating the robustness of the proposed optimization.
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 1 Fig. 1: Illustration of the considered system with the flow of information between a cellular network, a central control unit, UAV APs, and Rxs.
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 2 Fig.2: Flow chart of the proposed algorithm for location optimization of three UAVs, where and q are the indexes of the number of iterations and particles, respectively. Dashed boxes on the left and right illustrate how UAV locations are converted to integers (Int.), and how two particles move in the solution space to find the optimal solution, respectively.
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 4 Fig. 4: Effect of Nmax p and Nmax it on the average sum-rate of 4 Rxs with 1000 random positions, in indoor industrial and outdoor scenarios.
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 56 Fig. 5: Evolution of fitness value over iterations. Blue and red boxes correspond to optimized and non-optimized cases, respectively.

Initialize random position and velocity vectors Iteration tℓ Convert integers in solution space to UAV locations Update position and velocity Use UAV locations in ZF pre-coding scenario Particle pq Optimized UAV locations are equal to G best vector

  

	𝐢 𝟓						𝑮 𝐛𝐞𝐬𝐭 𝑷 𝐛𝐞𝐬𝐭
					No	Yes	Particle position
	y-axis					ℓ > 𝑵 𝐦𝐚𝐱𝒊𝒕 ?	Original velocity
	𝐢 𝟏	𝐢 𝟏	x-axis	𝐢 𝟓	No	Yes 𝒒 > 𝑵 𝐦𝐚𝐱𝒑 ? ℓ = ℓ + 1	Resultant velocity Velocity towards 𝑮 𝐛𝐞𝐬𝐭 Velocity towards 𝑷 𝐛𝐞𝐬𝐭
	𝐔𝐀𝐕𝐢 location				
						q = q + 1	Location
							of UAV3
	Int. of							1	2
	for 𝐔𝐀𝐕𝐢 x-coordinate Int. of y-coordinate for 𝐔𝐀𝐕𝐢	Calculate sum-rate and condition no.	Evaluate Fitness Update 𝑮 𝐛𝐞𝐬𝐭 and 𝑷 𝐛𝐞𝐬𝐭	Location of UAV1	1	of UAV2 Location 2

TABLE I :

 I Simulation parameters

		Parameter				Value
	LED conversion efficiency S		0.44 W/A [9]
	Transmit power per LED			15.84 W
	LED Lambertian order m			1
	Noise power spectral density (indoor/outdoor night)	10 -21 A 2 /Hz [10]
		Link bandwidth			10 MHz [10]
	PD responsivity ρ j			0.4 A/W [10]
		PD area				1 cm 2 [10]
		Optical Rx FOV			62 deg. [8]
		Rx height				0.85 m [8]
				X max		
		13		XU max	
			YU max		
	y axis	5 9	Δxu	grid UAV	UAV	Y max
			Δyu		
		1	5	9	13	
			x axis		
		Parameter	Indoor (m)	Outdoor (m)
		X max		10	20	
		Y max		10	20	
		XU max		2	4	
		YU max		2	4	
		Δxu		0.5	1	
		Δyu		0.5	1	
		UAV height	8	12	

V. CONCLUSIONS

We proposed optimization of the UAV locations using PSO, for MU-MISO ZF pre-coded UAV-based VLC networks and demonstrated the achieved performance improvement. We showed the importance of carefully choosing the fitness function as well as the adequate number of particles for a sufficient exploration of the solution space. Generally, as the number of variables (i.e., UAVs) increases, a larger number of evaluations should be considered to avoid being trapped in local solutions. We also considered different mobility scenarios and showed the robustness of the proposed solution for different optimization rates due to limited computational resources and/or high user mobility. The proposed optimization could be extended to carry out the pre-coder design while accounting for CSI uncertainty due to outdated or noisy CSI, as proposed in [9], which could be addressed in a future work.