
HAL Id: hal-03452586
https://hal.science/hal-03452586

Submitted on 27 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Source HTTP Live Streaming (MSHLS), an ABR
Algorithm for Hybrid V2V-CDN Video Streaming

Ishani Sarkar, Guillaume Urvoy-Keller, Dino Lopez Pacheco, Soufiane Roubia,
Quentin Jacquemart

To cite this version:
Ishani Sarkar, Guillaume Urvoy-Keller, Dino Lopez Pacheco, Soufiane Roubia, Quentin Jacquemart.
Multi-Source HTTP Live Streaming (MSHLS), an ABR Algorithm for Hybrid V2V-CDN Video
Streaming. [Research Report] I3S, Université Côte d’Azur; EasyBroadcast. 2021. �hal-03452586�

https://hal.science/hal-03452586
https://hal.archives-ouvertes.fr


Multi-Source HTTP Live Streaming (MSHLS), an
ABR Algorithm for Hybrid V2V-CDN Video

Streaming
Ishani Sarkar,

Quentin Jacquemart
and Soufiane Rouibia

Easybroadcast
Nantes, France

Guillaume Urvoy-Keller
and Dino Martin Lopez-Pacheco

Université Côte d’Azur
Laboratoire I3S CNRS

Sophia-Antipolis, France

Abstract—Live video streaming is gaining momentum and
now represents a significant share of Internet traffic. Typical
distribution architectures for this type of service rely on CDNs
to meet the stringent QoS requirements of live video applications.
The video is broken into small chunks, encoded at different
quality levels, that the viewer downloads from a CDN server. As
CDN-based solutions are costly to operate, hybrid architectures
have been proposed, where video viewers are exchanging video
chunks between each other (V2V mode), reverting to the CDN
server only if the chunk could not be downloaded in V2V mode.

Our focus in this work is on the design of the adaptive bit-rate
(ABR) algorithm that governs the quality level requested by the
viewer. We demonstrate that the ABR algorithm is facing specific
challenges, and thus needs to be adapted for the hybrid V2V-CDN
case. We introduce MSHLS, a new ABR algorithm that takes into
account the difference of performance when downloading from
another viewer or a CDN server in a live streaming context
where the video buffers are kept small as clients need to remain
synchronized when watching the stream.

We evaluate MSHLS using controlled and live experiments in
a commercial hybrid V2V-CDN system and demonstrate that it
outperforms the HLS public reference implementation, designed
with a single source of content in mind.

I. INTRODUCTION

The adaptive bit-rate algorithms (ABR) are key tools that
content providers use to optimise video quality. These algo-
rithms run on the client side video player and dynamically
choose the bit-rate for each video chunk. The different proto-
cols (like the HTTP Live Streaming protocol –HLS– and the
Dynamic Adaptive Streaming over HTTP protocol –DASH–)
which use the ABR algorithm generally cut the video stream
into chunks of (almost) fixed size.

When joining a stream, a client downloads a manifest
file, which contains all the information about the different
bitrates1 in which the stream is encoded and the URLs to
get these streams. Generally for live stream, the manifest
files are updated periodically to adverstise the information
about the new chunks. The use of small chunks, typically a
few seconds, in live streaming, allows to change the quality

1Using the legacy convention, we use birate when referring to the video
encoding rate and throughput for the network transfer performance.

of the stream depending on the network conditions. There
are various conditions and goals which have been taken into
consideration while developing an ABR algorithm in various
literature [8, 7, 9, 4] which need to be kept in mind while
developing an ABR algorithm:

• Low Re-buffering. Rebuffering occurs when the player
consumes all the chunks in the buffer and results in a
frozen video playback.

• Low Fluctuations, i.e., changes in the playing quality.
• Small Start-Up Time, which is the time before playout

actually starts. A typical strategy is to start at a low
to intermediate video quality and then switch to higher
qualities when possible.

• Low-Latency. This criterion is specific to live streaming
which requires that the time between publishing a video
chunk and users watching it be kept small. This means
that the size of the buffer data for live streaming video
players is small and does not leave room for much error
in the choice of the video quality bitrate.

Our focus in this work is on hybrid live video streaming
where the traditional CDN distribution model is complemented
with a viewer-to-viewer approach, whereby viewers can ex-
change video chunks, thus minimizing the distribution cost for
the content owner. The hybrid V2V-CDN architecture allows
users to receive chunks from two different sources, a CDN
server or viewers connected to the same stream. Details on the
hybrid V2V-CDN protocols used in this work, e.g WebRTC,
are available in [6]. They key problem that we address in the
present work is the design of an ABR algorithm suited for the
need of hybrid V2V-CDN architectures.

While the ABR-based approaches discussed in the literature
consider downloading from a single source [8, 7, 4], the same
does not hold for hybrid viewer-to-viewer (V2V) protocols,
where a client downloads either from another client watching
the same video at the same quality or from a CDN server. The
downloading throughput varies significantly between these
two different sources, which poses unique challenges. As an
example, we observed in [5], when profiling over 34,000 users,



an average CDN throughput of around 10Mbps which drops
to 2 Mbps in V2V mode. This results in huge variations in
the network throughput observed by the ABR algorithm when
switching from downloading from a CDN server to a mere
viewer.

When devising an ABR algorithm suited for an hybrid V2V
architecture, we must thus reconcile two conflicting goals: (1)
allowing room for higher fluctuation in the network throughput
when switching from one type of source to another, in order to
increase the V2V efficiency, defined as the fraction of chunks
downloaded in V2V mode and (2) quickly reacting to changes
in the network throughput of the client to prevent depletion
of the playout buffer. More precisely, we face the following
challenges:

• The network throughput is going to be highly varying,
due to the discrepancy among viewers and CDN servers
network conditions. Thus we need some metrics which
can dampen those high variations.

• At the same time, sudden decreases in the network
throughput should be dealt very minutely. At the hybrid
V2V-CDN protocol side, we already manage a Timeout
parameter when fetching a video chunk from another
peer. This Timeout allows us to have sufficient time to
download from another peer but also keeps in check that
if the video chunk cannot be received from this peer, we
still have sufficient time to fetch it from the CDN.

• Since we consider live streaming, the buffer is adjusted to
just store only 30 seconds of video, which is quite small
as compared to VoD streaming where the buffer length
is at least 90 seconds long. Furthermore, we also use the
upload capacity of the user to upload in V2V mode to
other viewers. Both of these parameters allow room for
almost no error while deciding the bitrate for each chunk.
Thus it is important to monitor closely the fluctuations in
the network throughput and at the same time allow more
room for the fluctuations caused by slow remote viewers.

The remaining of this paper is organized as follows. In
Section II, we review the scientific and technical state of
the art of the domain, before presenting in Section III our
own algorithm, termed MSHLS for Multi-Source HTTP Live
Streaming, that we evaluate through controlled and live exper-
iments in Section V.

II. STATE OF THE ART

The default ABR algorithm against which we primarily
compare MSHLS in section V is Apple’s HTTP Live Stream-
ing (HLS). HLS [1] exploits both the buffer occupancy and the
download bandwidth estimation to select the appropriate video
bitrate. The algorithm calculates the estimated bandwidth
using an exponentially weighted moving average (EWMA)
technique. The weight for historical data is 0.7 and the weight
for present data is 0.3, which, we observed, can lead to
high fluctuations in the hybrid case due to the discrepancy
between CDN and and other viewers’ throughput. Also, the
HLS algorithms only calculates the EWMA when there are
more than 2 chunks in the buffer ; otherwise it always try

to download the smallest quality. This is a issue in the
live streaming case in V2V mode, where the buffer is often
relatively small. In our case, the buffer is 30 seconds, which
corresponds to 5 chunks for typical channels where the chunk
is 6-second long.

A number of advanced ABR algorithms have been proposed
in the literature, e.g. [8, 4, 7]. They can be classified as buffer-
based, throughput based and hybrid depending on the signal
(throughput, buffer occupancy or both) that it used to trigger
the change of requested quality level by the viewer. BOLA is
a buffer based algorithm which monitors the buffer length to
choose the bitrate for the next chunk [8]. It shares some com-
monalities with BBA [3] and was shown to outperform major
representatives of the different families of ABR algorithms in
[8]. The basic BOLA algorithm performs well only when the
buffer occupancy is high, and not in case of low latency live
streaming. To address these shortcomings, the BOLA-E variant
has been devised, which adds or removes virtual chunks in the
buffer to force changes in the bitrate [7]. Another version of
BOLA called DYNAMIC was also proposed in [7], which uses
the throughput signal to improve the performance of BOLA
during the start-up phase.

There is a whole section of algorithms relying on machine
learning models to predict the bitrate for the next chunks.
CS2P [9] uses a machine learning to identify cluster of similar
sessions in terms of throughout. The clustering step is done
offline. For each cluster the prediction engine calculates the
initial throughput by calculating the median throughput of the
cluster. To improve the bitrate prediction in the middle of the
stream, CS2P relies on a hidden Markov model. The initial
throughput and the model can be combined at the video players
and the ABR algorithm to predict the throughput of the users.
They tested their algorithm on a video player based on the
DashJS public implementation, both with actual players and
using trace driven simulations.

Pensieve [4] relies on reinforcement learning to predict
the bitrate of the next chunk. It takes as input the current
throughput, buffer occupancy and chunk length and uses a
QoE function as reward. The training of the algorithm is done
using a simulation environment, which models the dynamics
of video streaming. The Pensieve algorithm is then tested on
both real world network traces and simulated network traces.

The authors in [10] also use reinforcement learning to select
the bitrate. Since one of the major problem with machine
learning is to find sufficient data to train the model, they
created a publicly accessible website called Puffer, that live-
streams six over-the-air commercial television channels. They
assign each session to a different ABR algorithm, e.g. Pensieve
[4]. With this approach, they were able to train the model with
38.6 years or data in just a few months. Although machine
learning algorithms have shown great improvements, such
algorithms are designed to operate at the server side as they
are too computationally intensive for the players (esp. mobile
devices). The authors of [4] propose an ABR server to offload
the computation from the client to a central server, which
however raises scalability issues.



III. PROPOSED ALGORITHM

MSHLS combines, similarly to previous client side algo-
rithm, both the buffer and throughput signals to calculate the
bitrate of the next chunk.

Rather than using directly the current buffer occupancy, we
capture its minimum buffer value observed at the arrival times
of the last N chunks in the buffer. The rationale behind this
approach is to assess the minimum buffer length that needs to
be maintained before switching to the next quality. It allows
us to find the stable minimum buffer length in which the
player works without going into re-buffering. The value of
N is adjusted based on different conditions, and is discussed
in more details in Section III-A.

We further use thresholds based on the buffer occupancy.
Specifically, we divide the buffer occupancy into 3 regions: (i)
Bin 1: less than 10% of max buffer length ; (ii) Bin 2: from
11% till 30% of max buffer length and (iii) Bin 3: more than
30% of the max buffer length. Remember that the buffer length
is set to 30 seconds in our live-streaming case. We can see a
visual representation of bins in % and seconds in Figure 1.
In intuitive terms, bin 1 corresponds to a dangerous situation
where buffer starvation can occur and we must take a critical
decision. If in Bin 2, we maintain the current bitrate. When in
Bin3, we take a decision to switch to a higher bitrate in case
if some conditions are met. We detail the operations in those
3 bins below.

Bin 1 If the minimum buffer value falls in bin 1, i.e. less than
10% of the maximum buffer length (3 seconds), we shift
to the lowest bitrate available to limit the chances of
re-buffering. We choose the first bin value to be 10%
because this state can lead to re-buffering with even a
slight fluctuation in the network.

Bin 2 If the average minimum buffer value lies in the second
bin i.e. less than 30% of the maximum buffer length
(9 seconds), we remain in the current playing bitrate.
This will avoid oscillations in the buffer quality that
affect client experience if we switch back and forth
continuously and, in the worst case, might lead to re-
buffering.

Bin 3 The next bin is the largest one i.e., greater than 30%
of maximum buffer occupancy (10-30 seconds). This bin
represents the buffer values that are high enough for
attempting an increase in the quality of the stream without
starvation. It is in this bin that we handle the variations
introduced by downloading from two different sources.
When the buffer value lands in this bin, we further
calculate the standard deviation (Std) of the N minimum
buffer sample values and the average throughput over
the same period of time. The standard deviation aims
at capturing the fluctuations introduced by downloading
from different sources:

– We use a function that finds the level which allows
streaming using 80%2 of the current bitrate.

2Similarly to the commercial ABR algorithms (HLS or DASH).

Fig. 1. Bin breakdown of buffer in MSHLS

– After identifying the quality level in which the cur-
rent bitrate allows downloading the data, we check
the standard deviation.

– If the standard deviation Std is less than an threshold
SD (initially equal to 1.5), we select the quality
previously chosen by the algorithm. If the standard
deviation is greater than SD, we switch to the
previous quality if the estimated bitrate does not
allow the streaming in the current playing quality;
otherwise we stay in the current playing quality. This
ensures that there are no unnecessary oscillations
due to the fluctuations that arise while downloading
from different sources. Discussion on the value of
the threshold SD is done in Section V-A3.

A. Adjusting the number of samples N

Setting the value N for the number of buffer level samples is
challenging. On the one hand, a large value enables to dampen
transient variations. On the other hand, we need to reduce it for
the start-up of the session. We adopt the following strategies:

1) Start-up phase. The first three chunks are downloaded
directly from the CDN. The quality chosen to download
these three chunks is the so-called auto quality men-
tioned in the manifest file. For the channel used in the
experiments for the present work, the auto quality is the
medium quality. As we would like the ABR algorithm
to quickly react, we set N = 3 at start-up. We next use
N = 5.

2) Stationary phase. One of the drawbacks of the above
approach is that for a period corresponding to the
download of N chunks, the ABR algorithm just waits
and collects data. In particular, it does not react to
some sudden decrease in the network throughput. To
address this issue, we take into consideration another
characteristics of our V2V algorithm. The timeout for
gathering a chunk in V2V mode is close to the duration
of a chunk. For the channel used in our experiments,
the chunk duration is 6 seconds and the timeout value
is set to 5 seconds, which allows us time to revert to the
CDN and download chunk in case of unsuccessful V2V
download. The duration of the chunks remains almost
the same for all quality levels.



To monitor that there is no sudden change in the network
throughput, we monitor the buffer every T second (T is
the duration of the last download), to check if some fresh
data has reached the buffer. If after T seconds, there is
no data, we immediately cancel the current download,
check the current buffer length according to the bins, and
if the buffer occupancy corresponds to the first two bins,
we switch to the smallest quality to ensure that the buffer
receives data before it is depleted. If it corresponds to
bins 3 we switch to the previous quality level.

3) Rebuffering events. We probe the player every second
to detect any rebuffering event and if this occurs, we
immediately stop the current download and switch to
the lowest quality.

IV. EXPERIMENTAL STRATEGY

A. Experimental Approach

The baseline scenario against which we compare MSHLS
is the HLS public reference implementation. We use HLS
because it is one of the most used streaming protocol in our
production environment.

We performed experiments in a controlled environment,
where clients run over physical servers in a Grid’5000 data
center [2]. We used 4 nodes (physical machines) and used
KVM along with cgroups to create isolated viewers. Each node
hosts 15 viewers, for a total of 60 viewers. Each session lasts
30 minutes and we repeated each experiment 10 times.

The 60 viewers are watching a forked version of an existing
channel dedicated to them that features three quality levels
corresponding to 4, 7.2 and 10 Mbps respectively. For the
considered stream, the HLS protocol uses a chunk duration of
6 seconds that we also adopted for our solution.

The controlled environment allows us to tune the access link
characteristics of each client and assess how our algorithm
performs for cases where all clients have similar or dissimilar
access links. We use the traffic Control (tc) module of Linux
to tune the access link characteristics.

It is not possible to perform reproducible experiments in
the wild, e.g to adjust the ABR algorithm, HLS or MSHLS or
parameters like the SD threshold. We however take advantage
of our library that reports per client information to observe
how our algorithm operates in the wild.

B. Upper bound on V2V efficiency

A key performance indicator for us is the V2V efficiency
defined as the fraction of chunks downloaded in V2V mode.

We can compute an upper bound on the V2V efficiency
taking into account the two following operational constraints:
a viewer maintains connections with at most 10 other viewers
(forming a swarm) and can upload to a maximum of 3 viewers
simultaneously. These values of 3 and 10 have been observed,
in our production system, to offer a good trade-off between the
diversity of video chunks and the efforts needed to maintain
those channels active.

We further assume that (i) the network performance of
each viewer while uploading or downloading do not vary over

time and (ii) a peer has an upload capacity equal to 3 times
the video bitrate, i.e can upload continuously to three other
viewers. In such a situation, the maximum achievable V2V
efficiency is 70% and is obtained with the following scenario:
three viewers download in a continuous manner the chunks
from the CDN server and serve the 7 other viewers in the
swarm.

V. RESULTS

A. Experiments in a Controlled Environment

1) Impact of Access Network: In this scenario, we consider
an ideal case where all clients are homogeneous in terms
of access link characteristics. Specifically, we build three
scenarios:

• The first experiment is done without restricting the upload
or download capacity to allow the algorithm to choose the
highest possible quality.

• For the second experiment, the download capacity is set
to 8.5 Mbps and the upload capacity is 3 × 8.5 Mbps
(as a client can send to 3 peers in parallel in the best
case). This experiment is designed to force the algorithm
to choose between the highest and middle quality.

• For the third experiment, the download capacity for the
viewer is 4.5Mbps whereas the upload capacity is 3×4.5
Mbps. This experiment is designed to force the algorithm
to choose between the middle and the smallest quality.

Table I reports the measured V2V efficiency as well as the
number of video quality fluctuations (changes in quality level)
for the default HLS implementation and MSHLS.

From Table I, we conclude that when there is no restriction
on the bandwidth of the viewers, HLS fluctuates a lot, once
every minute on average during the 30 minutes long experi-
ments. This can be directly related to the discrepancy between
the CDN and V2V throughputs. The results of MSHLS are
in sharp contrast as there is 4.2 fluctuations on average over
the entire experiment time. We further report in Table II the
number of chunks downloaded in each quality level for HLS
and MSHLS. We observe that MSHLS enables the clients to
watch the highest quality for most of the playing time for the
first (unconstrained) scenario.
For the second scenario, the fluctuations for the two algorithms
become similar. However, HLS forces half of viewers to
receive the smallest quality as can be seen in Table II. This is
not the case with MSHLS where for 97% of the session time,
clients remain in the middle playing quality, in line with their
network link characteristics.

For the third scenario, where the bandwidth is between
smallest and middle quality, all clients are in the lowest quality
for both the algorithms.

From the above set of experiments we conclude that
MSHLS allows the viewers to watch the content in the
quality in line with its download capacity. MSHLS does not
under-estimate or over-estimate the downloading bitrate and
thus the playing quality. MSHLS performs much better than
HLS algorithm wrt. the quality perceived by the viewers in



different scenarios and the V2V efficiency of the viewers is
also improved with MSHLS. Since there are less fluctuations
with respect to changes in quality of stream, the QoE for the
viewer’s is also improved.

MSHLS HLS
V2V % Fluctuation V2V % Fluctuation

Scenario 1 65 +/- 2.1 4.2 43.27 +/- 4.1 34.2
Scenario 2 54.29 +/- 3.7 5.3 40.25 +/- 4.28 6.4
Scenario 3 45.2 +/- 2.9 0 38.35 +/- 4.56 0

TABLE I
V2V%, STANDARD DEVIATION OF V2V AND AVERAGE FLUCTUATION

MSHLS HLS
Highest Medium Smallest Highest Medium Smallest

Scenario 1 467.11 14.6 21.2 176.23 110.32 212.469
Scenario 2 28.2 453.20 20.14 96.12 182.48 229.32
Scenario 3 0 0 510 0 0 514

TABLE II
NUMBER OF CHUNKS PER QUALITY LEVEL

2) Competition among clients (with different access links):
Experiments in the previous section was focused on homoge-
neous scenarios where all clients have the same access link.
The next set of experiments consists in mixing clients able
to download at the highest quality level (termed good clients)
and intermediate quality level (termed bad clients).

The objective is to put MSHLS under pressure as the
throughput and buffer occupancy are going to fluctuate more
over time depending on whether a client is receiving a chunk
from a good client, a bad client or the CDN server. We do not
present HLS results in this case as its performance significantly
degrades, leading to good clients stuck in the middle or low
quality.

One could a priori think that good and bad clients will be
independent from each other and won’t interact together. This
is however not the case as when the clients, good or bad,
joined the session, they start with the auto quality, which is
the middle quality in the case of this stream. Good clients
will thus, upon arrival, interact with bad clients. When this
happens, they receive the chunks very late which affects the
buffer occupancy measured by MSHLS. In contrast, when
the good clients receive the chunk from either CDN or good
viewer, the minimum buffer length increases but this also
increases the standard deviation estimated in MSHLS.

The objective here is to thus observe the interplay between
good and bad clients and to check if good clients can indeed
converge to their expected quality level. We consider three
scenarios:

• 50% of the clients are good viewers i.e. their download
capacity is not restricted and 50% of the viewers are bad
viewers, i.e. their download capacity is restricted to just
above the middle quality level (8.5 Mbps).

• 25% bad viewers and 75% good viewers.
• 75 bad viewers and 25% good viewers.

Obviously, the more bad clients surround the good clients,
the more difficult it is for the algorithm to take the right deci-
sion. There is thus an increasing complexity as the fraction of
bad clients increases. Figures 2 to 4 present typical trajectories
for the three scenarios. For these figures, we have aggregated
the playing quality of each viewer for each chunk over slices
of 5 minutes. Since the player quality for each viewer has been
aggregated for 5 minutes, it is possible that a single client is
present in two or three different quality levels based on the
fluctuations it observes for this slice.

For the first experiment, the V2V efficiency (over all experi-
ments) for this case is 67.94%, close to the 70% upper bound,
with an average number fluctuation over the 30 minutes of
7.72. Almost 95% of the good clients were able to achieve the
highest quality. Results are similar for the second experiment:
66.37% of V2V efficiency and average fluctuation of 8.94. The
last scenario is the more challenging and in about one third of
the cases, the good clients are not served at the highest quality,
see Figure 4. We also observe more fluctuations between the
middle and smallest quality. Thus the viewers in the above
heterogeneous experiments do not converge to the their ideal
playing quality trajectory and the average fluctuations for the
playing quality increased too.

This lead us to further investigate the impact of the SD
threshold (initially equal to 1.5) that should be large enough
to account for the multi source scenario, but not to large to
react to actual network fluctuations.

3) Impact of the SD threshold: The SD parameter plays a
key role to give a chance to the good clients to converge to
a higher video quality. In the section, we focus on the most
challenging heterogeneous scenario with 75% of bad clients
and observe the impact of adjusting the SD parameter, by
increasing the SD value to 3 and then to 5.

When SD = 3, around 70% of the good viewers achieved
the highest quality as compared to just 30% with SD value of
1.5. Also, on average over 90% of the bad clients achieve the
middle quality as compared to 66% when SD = 1.5. When
increasing SD to 5, we observe from Figure 6 that almost
95% of the good clients reach the highest quality and every
bad client is also able to reach the middle quality.

Based on the results obtained in the controlled environ-
ment, we decided to deploy MSHLS in the wild with an
SD threshold of 3, as it significantly outperforms the initial
1.5 case. Remember that using a too high SD value might
affect the reactivity of the algorithm to actual changes in the
network conditions. To assess the behavior of the algorithm
in realistic conditions, we report observations on specific or
random clients operating the new version of the library in the
next section.

B. Tracing of clients in the wild

We tested MSHLS on two different streams being used in
production for different clients. Both the streams feature 3
different playing qualities that correspond to 0.56, 1.19 and
2.01Mbps for stream 1 and 0.7, 1.15, 1.89Mbps for stream
2. While these rates are smaller than the ones used in the



Fig. 2. 45 Good 15 Bad Viewers

Fig. 3. 30 Good 30 Bad Viewers Fig. 4. 15 Good 45 Bad Viewers

Fig. 5. Heterogeneous Clients, SD = 3 Fig. 6. Heterogeneous Clients, SD=5

controlled experiments, they are representative of the channels
operated by Easybroadcast, that originate for the majority from
Africa, while client are mostly in North Africa or Europe.

We watched the stream with a client under our control
(called local viewer) and captured all the minimum buffer val-
ues and standard deviation values calculated by the algorithm
to closely monitor the decisions taken by MSHLS. Our local
machine has an FTTH connection to the Internet and thus
operates in favorable network conditions.

We further compared the result of the local viewer with
the ones of the other viewers in the same channels during the
same time period, either with some aggregate statistics or by
tracking the trajectories of random viewers. An advantage of
the local client compare to the random clients is that we have
access to more statistics, e.g., the exact time series of buffer
samples, while for random clients, we only have the averages
over 30 seconds time slices.

1) Throughput: We first characterize the throughput ob-
served for the two channels. The throughput of the local viewer
for the first stream is 5Mbps on average for V2V transaction
whereas the CDN throughput was around 125Mbps. For the
second stream, the values are 4.1Mbps and 83Mbps respec-
tively. The time series of observed V2V and CDN throughputs
are presented in Figure 7 and Figure 8 respectively. We can
thus clearly see that the bitrate calculation of MSHLS will
feature high variations.

As for the other viewers connected to the same streams
during the same time period, we observed, for the first stream,
an average V2V throughput of 3.83Mbps whereas the CDN
throughput is 30.86Mbps. For the second stream, the values
are 3.0Mbps and 13.93Mbps respectively. The time series of
throughput values (one sample corresponds to 30 seconds) of
all clients are presented in Figure 9 and Figure 10. While the
local client with FTTH access does experience much higher
network throughput as compared to the viewers in the wild in



general, most client still have enough throughput to download
chunks from either CDN or V2V mode.

This overall picture indicates that the quality of experience
perceived by the clients should be quite high for these two
channels. This is confirmed by the overall fraction of chunks
in each quality level. Concerning the first stream, 76% of the
chunks were downloaded in the highest quality, 12% in the
middle quality and 11% of the chunks in the smallest quality.
For the second stream, 84% of the chunks were downloaded
in the highest quality, 6% in the middle quality and 10% in the
lowest quality. In the next section, we will look at individual
trajectories of viewers to exemplify the behavior of MSHLS
in the wild.

2) Buffer Length Variations and Playing Quality: The
minimum buffer values are calculated by the algorithm over
a period of N = 5 chunks. The length of each chunk being
6 seconds (with slight variations), this roughly corresponds to
30 seconds.

Let us first focus on the local viewer under our control.
For the first stream, we report in Figure 11 the average and
median of the minimum buffer values over 30-second period.
In Figure 12 we see the standard deviation calculated and the
decisions taken by the algorithm. Each time the deviation gets
higher than the thresold (SD = 3), the algorithm changes
the playing quality. For the second stream, we observe the
same behavior, see Figures 13 and 14. While these changes of
quality may be deemed as false positives, we observe that they
occur relatively infrequently. We consider them as a price to
pay to maintain the reactivity of MSHLS to more significant
network changes. We investigated the changes of network
conditions by observing the trajectory of random clients in
the wild, as it is difficult emulate the actual changes faced by
clients in a control environment as we did in Section V-A

Since, in the wild, the current version of the library does not
capture the minimum buffer values or the standard deviation
calculated by the algorithm, we cannot plot the same graphs
as for the local viewer. We can however report the buffer value
(over 30-second slices) and the playing quality of the stream
of random clients.

We picked four clients, two for the first stream and two
for the second stream that experienced different network
conditions, leading to different dynamics in their buffer. Their
trajectory in terms of buffer and playing quality (right-side of
graphs, 3 is the highest quality, then 2 and 1) are presented
in Figures 15 to 18. The duration of the graphs is a function
of the session duration: approximately 3,5 hours for viewers
1 and 4 and 1 hour for viewers 2 and 3. We can make the
following observations:

• Viewer 1 experiences the highest buffer occupancy. As
such, its quality level is often the highest (3).

• Viewers 2 and 3 achieve lower performance than viewer
1, which result in buffer occupancy in the range
[10s, 15s], which corresponds to bins 2 and 3 (Figure 1).
MSHLS still manages to keep them often in the highest
quality and we don’t often observe low values which
could indicate buffer starvations.

• Viewer 4 has buffer occupancy often in bin 1 (less than
3 s) and bin 2. Consequently, MSHLS maintains it most
of the time in the intermediate to lower quality.

In conclusion, in the cases exemplified by these 4 viewers,
we observe that MSHLS manages to maintain high quality
levels with low fluctuations as the rates of the four clients
are respectively: 0.14 per mn for viewer 1, 0,375 for viewer
2, 0.2 for viewer 3 and 0.23 for viewer 4. Interestingly, the
V2V efficiency remains acceptable for all clients. The overall
efficiency for stream 1 is 40% and 30.7% for stream 2. As for
the four viewers, we obtain: 41.36% for viewer 1, 31.57% for
viewer 2, 25.83% for viewer 3 and 26.7% for viewer 4. While
not a formal proof of the efficiency of MSHLS in the wild,
these case studies however underscore that the algorithm offers
a goof trade-off between quality level and V2V efficiency.

VI. CONCLUSION AND FUTURE WORK

The HLS algorithm is not meant to handle the bandwidth
fluctuation that arises from downloading from different sources
of content, esp. if their throughput is very different. MSHLS
does a better job in handling the discrepancy between the CDN
and V2V downloads. It improves the V2V efficiency, which
is the good news for the content owner, and at the same time
improves the user experience.

MSHLS has two important parameters. First, the number
of samples N that governs the time horizon over which we
assess the buffer occupancy. The other key parameter is the
SD threshold value that allows to account for the variations
when downloading from a CDN server or another viewer.
Overall, using these parameters, MSHLS offers a good trade-
off between the reactivity to network fluctuations and the
ability to receive from sources with different performance.

We demonstrated the effectiveness of MSHLS using con-
trolled experiments with all the clients watching a stream
under our control and also through the observation of clients
in the wild. The latter enables to validate the behaviour of
MSHLS when facing actual changes in the network conditions
that are difficult to emulate in a controlled environment.

For future work, we intent to test our algorithm against all
the DASH algorithms as well. We would also like to extend
our algorithm for the VoD streams, still for an hybrid V2V-
CDN scenario.

REFERENCES

[1] https://github.com/video-
dev/hls.js/blob/master/docs/api.md.

[2] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel
Daydé, Frédéric Desprez, Emmanuel Jeannot, Yvon
Jégou, Stephane Lanteri, Julien Leduc, Noredine Melab,
et al. Grid’5000: A large scale and highly reconfigurable
experimental grid testbed. The International Journal of
High Performance Computing Applications, 20(4):481–
494, 2006.

[3] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: evidence from a large video



Fig. 7. Throughput Local Viewer:
Stream1

Fig. 8. Throughput Local Viewer:
Stream2

Fig. 9. Throughput Wild Viewers:
Stream1

Fig. 10. Throughput Wild Viewers:
Stream2

Fig. 11. Avg. Minimum Buffer Val-
ues(Local Viewer): Stream1

Fig. 12. Std and Playing Qual-
ity(Local Viewer): Stream1

Fig. 13. Avg. Minimum Buffer Val-
ues(Local Viewer): Stream2

Fig. 14. Std and Playing Qual-
ity(Local Viewer): Stream2

Fig. 15. BufferLength & Play-
ingQuality,Viewer1: Stream1

Fig. 16. BufferLength & Play-
ingQuality,Viewer2: Stream1

Fig. 17. BufferLength & Play-
ingQuality,Viewer3: Stream2

Fig. 18. BufferLength & Play-
ingQuality,Viewer4: Stream2

streaming service. In Fabián E. Bustamante, Y. Charlie
Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy, edi-
tors, ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, IL, USA, August 17-22, 2014, pages 187–198.
ACM, 2014.

[4] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017, pages 197–210.
ACM, 2017.

[5] Ishani Sarkar, Soufiane Roubia, Dino Martin López-
Pacheco, and Guillaume Urvoy-Keller. A data-driven
analysis and tuning of a live hybrid CDN/V2V video
distribution system. In Oliver Hohlfeld, Andra Lutu, and
Dave Levin, editors, Passive and Active Measurement -
22nd International Conference, PAM 2021, Virtual Event,
March 29 - April 1, 2021, Proceedings, volume 12671
of Lecture Notes in Computer Science, pages 128–140.
Springer, 2021.

[6] Ishani Sarkar, Soufiane Rouibia, Dino Lopez Pacheco,
and Guillaume Urvoy-Keller. Proactive information dis-
semination in webrtc-based live video distribution. In
16th International Wireless Communications and Mobile
Computing Conference, IWCMC 2020, Limassol, Cyprus,
June 15-19, 2020, pages 304–309. IEEE, 2020.

[7] Kevin Spiteri, Ramesh K. Sitaraman, and Daniel Spara-
cio. From theory to practice: improving bitrate adaptation
in the DASH reference player. In Pablo César, Michael
Zink, and Niall Murray, editors, Proceedings of the
9th ACM Multimedia Systems Conference, MMSys 2018,
Amsterdam, The Netherlands, June 12-15, 2018, pages
123–137. ACM, 2018.

[8] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-
man. BOLA: near-optimal bitrate adaptation for online
videos. IEEE/ACM Trans. Netw., 28(4):1698–1711, 2020.

[9] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan
Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. CS2P:
improving video bitrate selection and adaptation with
data-driven throughput prediction. In Marinho P. Bar-



cellos, Jon Crowcroft, Amin Vahdat, and Sachin Katti,
editors, Proceedings of the ACM SIGCOMM 2016 Con-
ference, Florianopolis, Brazil, August 22-26, 2016, pages
272–285. ACM, 2016.

[10] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized experi-
ment in video streaming. In Ranjita Bhagwan and George
Porter, editors, 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020, pages 495–511.
USENIX Association, 2020.


