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● HPC based on molecular dynamics and lattice Boltzmann: biomedicine, biomolecular, materials
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Centre for Computational Science at UCL (P.I.: Peter Coveney) 

○ Polymer nanocomposites

■ material properties

■ DFT → AA-MD → CG-MD

○ DNA nanopores

■ stability, transport

■ DFT → MM 

○ Blood flow

■ particles diffusion

■ CG-MD → LB

[Suter et al., 2015, 2020]

[Patronis et al., 2018]

[Jacquemin et al., 2014;

Gheorghiu et al., 2020]
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Towards actionable materials property prediction with chemical specificity

● chemical specificity from DFT/AA-MD simulations

○ validation against experiments needed

● reaching continuum

● making use of HPC resources

● certified simulations

● perspective: reduced-order 

modelling 

➞ getting rid of biased

parameterisations
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Vassaux, et al. Adv. Theor. Simul. (2020) 3.1

https://doi.org/10.1002/adts.201900122
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Single-scale all-atom molecular dynamics 
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● parameterisations (force fields) from DFT

● limited to 100,000s of atoms and 10s of nanoseconds
➞ scale separation and multiscale modelling

0ns (12660wm) 50ns (12660wm)0ns (12660wm) 50ns (12660wm)



Multiscale simulation 
methods
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● Newton’s equations of motion, complex force field, 

N-body dynamics

● Lyapunov instability leads to chaotic systems
➞ sensitive to uncertainty, need for ensembles
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Molecular dynamics

Boghosian, Coveney and Wang. Adv. Theor. Simul. (2019) 2.12 
Wan, et al. J. Chem. Theory Comput. (2015) 11, 7, 3346–3356
Suter et al.,. Adv. Mat. (2020) 32.36 

https://doi.org/10.1002/adts.201900125
https://doi.org/10.1021/acs.jctc.5b00179
https://doi.org/10.1002/adma.202003213


Maxime Vassaux         |         Multiscale modelling of material properties

Scale-bridging or coupling scales
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● different feedback frequency and resolution
○ hierarchical

○ semi-concurrent

○ concurrent

Shenoy et al. J. Mech. Phys. Solids (1999) 47.3
E et al. Phys. Rev. B: Condens. Matter (2003) 67.9

https://doi.org/10.1016/S0022-5096(98)00051-9
https://doi.org/10.1103/PhysRevB.67.092101
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Hierarchical multiscaling
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● continuum constitutive law parameterisation

● coarse-graining from all-atom molecular dynamics (IBI, STM, ...)

Vassaux, et al. Cem. Concr. Compos. 70 (2016)
Vassaux, et al. Int. J. Numer. Anal. Methods Geomech. 39.7 (2015)
Vassaux, et al. Eng. Fract. Mech. 149 (2015)

https://doi.org/10.1016/j.cemconcomp.2016.03.011
https://doi.org/10.1002/nag.2343
https://doi.org/10.1016/j.engfracmech.2015.09.040


Maxime Vassaux         |         Multiscale modelling of material properties

Hierarchical multiscaling
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● continuum constitutive law parameterisation

● coarse-graining from all-atom molecular dynamics (IBI, STM, ...)

Kempfer, et al. ACS Omega. 4 (2019)

http://dx.doi.org/10.1021/acsomega.9b00144
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Heterogeneous multiscale workflow

● weakly or semi-concurrent coupling
○ robustness due to single-scale independent models

○ highly scalable for HPC

● I/O of the atomistic and continuum model simulations: 

○ bottom-up AND top-down data exchange

● no more parameterisation!
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

https://doi.org/10.1002/adts.201900125
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● in time

○

Scales separation and computational gain

thermoplastic

thermoset

● in space

○
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Heterogeneous multiscale workflow
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

ε

σ
E, 𝜈, 𝜂

SCEMa (Simulation Coupling Environment for Materials):
https://github.com/UCL-CCS/SCEMa

https://doi.org/10.1002/adts.201900125
https://github.com/UCL-CCS/SCEMa
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Data transfer between scales

● proper stress sampling

○ how long? how many replicas?

○ target: optimal uncertainty to cost ratio

■ stabilisation of mean

■ reduced confidence interval

○ time sampling using bootstrapping

■ decorrelated subsamples? 

→ subsampling time >> autocorrelation length 
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

https://doi.org/10.1002/adts.201900125
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Data transfer between scales

● proper stress sampling

○ how long? how many replicas?

○ target: optimal uncertainty to cost ratio

■ stabilisation of mean

■ reduced confidence interval

○ time sampling using bootstrapping

■ decorrelated subsamples? 

→ subsampling time >> autocorrelation length 

○ ensemble sampling using bootstrapping

■ independent replicas of the same material

● similar “global” properties

○ e.g mass, cross-link density

○ same building process
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

https://doi.org/10.1002/adts.201900125


Applications
to polymers and nanocomposites
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Fracture toughness of an epoxy resin

● assess fracture toughness prediction 
○ from chemical structure using MD+OPLS (polyethylene)

● single-scale approaches assume a uniaxial tension in 

the region of interest (where strain localizes)
○ measure dissipated energy at complete failure

● standardized “compact-tension” test (ASTM) used to 

derive the fracture toughness of structural materials
○ high strain localization at the tip of notched system 
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

https://doi.org/10.1002/adts.201900125
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Fracture toughness of an epoxy resin

● what is the actual mechanical state at the crack-tip?
○ focus on the cells in the fracture process zone

“constrained” cell

17/42
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“constrained” cell

Fracture toughness of an epoxy resin

● what is the actual mechanical state at the crack-tip?
○ focus on the cells in the fracture process zone

● highly complex (3D, nonlinear) mechanical (stress/strain) state

→ bi-axial tension + shear

18/42
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Fracture toughness of an epoxy resin

final local state of the epoxy resin at the onset of fracture
19/42
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Fracture toughness of an epoxy resin

macroscopic behaviour of the epoxy resin 
up to the onset of fracture
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Vassaux, Richardson and Coveney. Philos. Trans. R. Soc. London, Ser. A. (2019) 377.2142 

https://doi.org/10.1002/adts.201900125
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Enhancing epoxy resins with graphene nanoparticles

● two possible mechanisms
1. crack deflection, pinning, bridging

2. microcrack dispersion

Ritchie. Nat. Mat. (2011) 10.11
Park et al. Adv. Func. Mat. (2015) 25.4 
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https://doi.org/10.1038/nmat3115
https://doi.org/10.1002/adfm.201402984
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Enhancing epoxy resins with graphene nanoparticles

● two possible mechanisms
1. crack deflection, pinning, bridging

2. microcrack dispersion

● experimentally (for a wide range of %wt):

○ fracture energy ↗

○ strength ↝

➥ mostly unclear, but may favor microcrack theory

Park et al. Adv. Func. Mat. (2015) 25.4 
Wang, et al. Macromolecules. (2005) 38.3
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https://doi.org/10.1002/adfm.201402984
https://doi.org/10.1021/ma048465n
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Atomistic modelling of graphene-epoxy nanocomposites

● molecular dynamics (LAMMPS) with ReaxFF (force field) simulations 

● 92% crosslinked epoxy resins and 6nm-wide hexagonal graphene flakes
○ defective: graphene present during polymerisation, then removed

Plimpton. J. Comput. Phys. (1995) 117.1
Aktulga, et al. Parallel Comput. (2012) 38.4-5

nanocomposite (g+1) defective (g-1)

23/42

neat epoxy (g0)

8nm

https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.parco.2011.08.005
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Atomistic modelling of graphene-epoxy nanocomposites

● molecular dynamics (LAMMPS [1]) with ReaxFF (force field [2]) simulations 

● 92% crosslinked epoxy resins and 6nm-wide hexagonal graphene flakes
(g-1)(g0) (g+1)

nanocomposite (g+1) at 200% strain
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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Atomistic modelling of graphene-epoxy nanocomposites

● molecular dynamics (LAMMPS [1]) with ReaxFF (force field [2]) simulations 

● 92% crosslinked epoxy resins and 6nm-wide hexagonal graphene flakes

✲ analyse of the elastic, plastic and fracture properties
○ increased variability (ensemble+direction sampling)

➟ increased anisotropy 

○ increased shear modulus

○ reduced strength

○ hardly any active influence of the graphene flake

(g-1)(g0) (g+1)
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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Atomistic modelling of graphene-epoxy nanocomposites

● molecular dynamics (LAMMPS [1]) with ReaxFF (force field [2]) simulations 

● 92% crosslinked epoxy resins and 6nm-wide hexagonal graphene flakes

✲ analyse of the elastic, plastic and fracture properties
○ increased variability (ensemble+direction sampling)

➟ increased anisotropy 

○ increased shear modulus

○ reduced strength

○ small active influence of the graphene flake

✲ isolated at such small scale, the flake is mostly an engineered defect
➥ favors microcrack theory

nanocomposite (g+1) at 200% strain

(g-1)(g0) (g+1)
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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Multiscale modelling of graphene-epoxy nanocomposites

● heterogeneous multiscale model: 

continuum (FE/deal.ii), atomistic (MD/LAMMPS) 
➟ combination of large number of atomistic systems via a dynamic continuum model

● high-velocity impact (400m.s-1) on shell of nanocomposite (1% wt) 
○ 150mm×100mm×5mm shell oscillating for 0.2ms

○ 350000 (2700×500) MD simulations

○ FE simulation on 16 cores, 1 MD simulation on 64 cores

○ computational cost: 120,000 CPUhs

Bangerth, Hartmann, and Kanschat. ACM Trans. Math. Software.(2007)  33.4
Plimpton. J. Comput. Phys. (1995) 117.1

27/42

https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1006/jcph.1995.1039
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● evolution of the shell energy content during the impact

Multiscale modelling of graphene-epoxy nanocomposites
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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Multiscale modelling of graphene-epoxy nanocomposites

● evolution of the shell energy content during the impact
➟ major reduction (➘70%) of energy dissipation 

by adding graphene nanoparticles

● analyse of local mechanical state
○ moderate stress amplitude

➟ no significant void growth, or fracture via bond dissociation

- dominance of shear over volumetric stresses

○ non-existent force transfer between polymer and graphene

- relaxation of the flake

- graphene potential energy ➘1% 

(relatively to total atomistic system pot. eng.)

at 0.00015s
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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● what are suitable candidate interaction mechanisms between graphene and epoxy resin?
➟ explaining the absence of force transfer and the reduced friction/conformational changes

? passive mechanism e.g. polymer network disruption during thermosetting (curing)

? active mechanism e.g. geometric constraint limiting polymer mobility (reptation)

● density profile of carbon atoms of the polymer network in the atomistic systems
➟ no local or global densification

Multiscale modelling of graphene-epoxy nanocomposites

(to orthogonal direction to graphene plane)random sampling direction

20 replicas x 1 sampling 
planes average

20 replicas x 5 sampling 
planes average
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168
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Multiscale modelling of graphene-epoxy nanocomposites

● what are suitable candidate interaction mechanisms between graphene and epoxy resin?
➟ explaining the absence of force transfer and the reduced friction/conformational changes

? passive mechanism e.g. polymer network disruption during thermosetting (curing)

? active mechanism e.g. geometric constraint limiting polymer mobility (reptation)

● density profile of carbon in the atomistic systems
➟ no local or global densification

● simulation using “defective” (g
-1

) systems
➟ loss of reduction of energy dissipation 
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Vassaux, et al. Adv. Theor. Simul. (2019) 2.5
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Multiscale modelling of graphene-epoxy nanocomposites

● what are suitable candidate interaction mechanisms between graphene and epoxy resin?
➟ explaining the absence of force transfer and the reduced friction/conformational changes

? passive mechanism e.g. polymer network disruption during thermosetting 

? active mechanism e.g. geometric constraint limiting polymer mobility

● density profile of carbon in the atomistic systems
➟ no local or global densification

● simulation using “defective” (g
-1

) systems
➟ loss of reduction of energy dissipation

➥  favors the geometric constraint hypothesis.
○ at low-amplitude

○ with volume-constant/shear deformation (nanoconfinement)

32/42

Vassaux, et al. Adv. Theor. Simul. (2019) 2.5

https://doi.org/10.1002/adts.201800168


High-performance computing and scalability 
of multiscale simulations 
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Benchmarking and scalability

● benchmark and optimisation
○ POP-CoE (Brian Wylie, FZ Juelich)

○ potential for exascale application

● a concurrent model coupling asynchronously

○ embarrassingly parallel application

● computational costs
○ 0.1 core hour per microscale simulation

○ 10,000 cells x 8qps/cell x 5 replicas/qp

➞ 400,000 independent microscale simulations 

per macroscale simulation timestep

theoretical speed-up w.r.t 
single core performance
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● Original version ran successfully up to 6400 nodes, but peak speed-up 512 compute nodes

● Revised version executes faster, and continues to scale well to 1024 (peak at 2048) compute nodes
➞ 300x speed-up for 1024 nodes compared to a single compute node (previous best 100x)

35/42

Benchmarking and scalability
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Our current infrastructure playground: 

● Tier-0 and Tier-1 supercomputers

○ Summit (ORNL) - #2*

○ Frontera (TACC) - #8

○ Marconi-100 (CINECA) - #9

○ SuperMUC-NG (LRZ) - #13

○ MareNostrum (BSC) - #37

○ Scafell Pike (STFC) - #247

○ Archer (EPCC) - #386

○ Eagle (PSNC)

○ Kathleen (UCL, RITS)

*June 2020 Top 500 rankings
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Uncertainty quantification: VECMAtk —  a generic toolkit for (VV)UQ

● UQ is essential for actionable simulations and requires HPC

● Objective: develop a VVUQ toolkit for potential exascale 

multiscale applications (VECMa)
○ identified UQ patterns

○ fully automated generation, management, and execution 

of UQ campaigns on Supercomputers

Groen et al. Philos. Trans. R. Soc. London, Ser. A. (2021) 379.2197
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VECMA: https://www.vecma.eu/
VECMA Toolkit: https://www.vecma-toolkit.eu/

https://doi.org/10.1098/rsta.2020.0221
https://www.vecma.eu/
https://www.vecma.eu/


Perspective: 
Automated parameterisation
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● acceleration of multiscale simulations using graph-based clustering

● compute similarity of strain histories

● graph-based clustering: 3-fold reduction MD simulations count!

Highly redundant simulations
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Vassaux, et al. Adv. Theor. Simul. (2020) 4.2

https://doi.org/10.1002/adts.202000234
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Surrogate modelling of molecular dynamics

● remove parameterisation bias

● surrogate model from an Artificial Neural Network

● reduce I/O of the molecular model to the 4 tensors (3x3)
○ inputs

■ current strain

■ previous stress

■ previous strain

○ outputs

■ current stress
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Surrogate modelling of molecular dynamics

● surrogate model from an Artificial Neural Network

● reduce I/O of the molecular model to the 4 tensors (3x3)
○ 1000x speed-up of stress query
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Conclusions

● implementation of parameterisation-free multiscaling

● application of multiscale modelling
○ fracture and viscoelasticity of polymer nanocomposites

○ hydration and dynamics of self-assembled proteins

● highly-scalable method suited for HPC

● reduced-order modelling and model-form UQ for 

online learning of unbiased parameterisation
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