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Toward High Fidelity Materials Property Prediction from

Multiscale Modeling and Simulation

Maxime Vassaux, Robert C. Sinclair, Robin A. Richardson, James L. Suter,

and Peter V. Coveney*

The current approach to materials discovery and design remains dominated
by experimental testing, frequently based on little more than trial and error.
With the advent of ever more powerful computers, rapid, reliable, and
reproducible computer simulations are beginning to represent a feasible
alternative. As high performance computing reaches the exascale, exploiting
the resources efficiently presents interesting challenges and opportunities.
Multiscale modeling and simulation of materials are extremely promising
candidates for exploiting these resources based on the assumption of a
separation of scales in the architectures of nanomaterials. Examples of
hierarchical and concurrent multiscale approaches are presented which
benefit from the weak scaling of monolithic applications, thereby efficiently
exploiting large scale computational resources. Several multiscale techniques,
incorporating the electronic to the continuum scale, which can be applied to
the efficient design of a range of nanocomposites, are discussed. Then the

process that occurs at that characteristic
length and time, and to consider the infor-
mation that is passed “upward” or “down-
ward” to adjacent scales. This approach is
essential to make the computational predic-
tion of a material’s properties tractable, ow-
ing to the multiple orders of magnitude dif-
ference in the time and length scales of im-
portant processes that need to captured.
Experimentally, the design and manufac-
ture of advanced multi-functional materi-
als remain a slow, uncertain, expensive, and
time-consuming process.!? It can take 20
or more years to move a material from ini-
tial discovery to the market;’! by offering
an opportunity to access a wide range of
materials configurations rapidly, computa-

work on the development of a software toolkit designed to provide
verification, validation, and uncertainty quantification to support actionable

prediction from such calculations is discussed.

1. Introduction

The properties of any complex material are typically dependent
on interactions and processes occurring across a large range of
time and and length scales, from the chemical bonding at the
scale of electronic structure to the macroscopic level stresses
experienced during the material’s use. Although these interac-
tions essentially act across a continuum, it is conceptually use-
ful to think in terms of a set of distinct scales, each capturing a
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tional models offer a serious alternative to
the traditional experimental trial-and-error
process currently used in industryt*’! and
will surely increase in importance as com-
putational power increases.

Indeed, with the increasing preva-
lence of ever larger and more powerful
computational facilities across the globe, computational mate-
rials research stands to make significant advances through ex-
ploitation of High Performance Computing (HPC). However,
this increase in computational power is not coming primarily
from faster processors but rather from more efficient computer
infrastructures capable of coordinating a larger number of these
processors, in a parallel or distributed fashion. Choosing and de-
veloping algorithms with optimal scaling capabilities on such in-
frastructures is key to their efficient exploitation, but a monolithic
approach will sooner or later become impractical, either limited
by inter-core communication costs (in the case of strong scal-
ing, with a fixed problem size) or unreachable characteristic time
scales (in the case of weak scaling, with a proportionally increas-
ing problem size).[%

In this Progress Report, we describe procedures to exploit
these advances in computational power to predict the properties
of materials. In particular, we focus on multiscale workflows
consisting of several computational solvers, each capturing a
different aspect of the material, and what information must be
passed to couple these solvers together. Such a workflow may
be used to implement a multiphysics application, in which each
model simulates a different physical process occurring within
the system”® (e.g., thermomechanics and fluid-structure
interaction), or a domain decomposition,®'! in which the
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system is split into individual spatial subdomains which interact
continuously with their neighboring subdomains. In both
approaches, different models or subdomains may be run on
different computational resources or on different parts of an
emerging exascale machine, providing that the communication
with other models does not become a bottleneck.

In the sense we use the term here, multiscale simulations re-
fer to multi-model workflows,!'214 for which we exploit separa-
tion of time and spatial scales to allow the dynamics of different
processes to be simulated largely independently, with heavily re-
duced communication between models. For example, we may ex-
ploit the fact that the characteristic time and length of processes
in the nanostructure and macrostructure of a given material are
sufficiently different that their respective dynamics may be sim-
ulated separately.

For hierarchical multiscale approaches in the simplest multi-
scale workflows, the scales are executed sequentially, each us-
ing the output from the previous scale as input to the current
one. For example, simulations at the lower scale model uses a
single initial configuration (boundary condition, microstructure)
from the upper scale,! or alternatively, the upper scale model
uses initial parameters computed at the lower scale. We term this
coupling topology “acyclic.” On the other hand, “cyclic” coupling
requires a continuous back and forth exchange of information
between the scales, frequently referred to as a concurrent mul-
tiscale approach.l'*-1® For example, at each cycle, a simulation
of the lower scale model is performed for each unique configu-
ration found at the upper scale, increasing significantly the de-
mand for independent simulations of the lower scale model. In
this case, we term the coupling topology as “cyclic” with “dynamic
instances”.

Our interest lies in the use of multiscale modeling to deter-
mine how the micro-mechanical behavior of constituent materi-
als determines the properties of the overall material, particularly
for nano-composites. A nano-composite is defined by IUPAC as
amultiphase solid material where one of the phases has one, two,
or three dimensions measuring less than 100 nm; this phase is
commonly referred to as a “nano-particle.” Nanocomposites dif-
fer from conventional composite materials due to the exception-
ally high surface to volume ratio of the reinforcing phase and/or
its exceptionally high aspect ratio. As a result of the large inter-
facial area, nanoparticles can provide significant reinforcement
through the addition of small volume fractions (typically less than
5%).1920 However, if the extensive surface area of the nanopar-
ticle is not exposed, for example, due to aggregation, the rein-
forcement effect is diminished. The assembly and dispersion of
the nanoparticles is controlled by their shape, interfacial behav-
ior, and the properties of the surrounding matrix. Careful tun-
ing of these factors may produce nanocomposites that facilitate
dispersion, forming materials with improved properties, such as
being lightweight yet strong. There is a large market for such ma-
terials; for example, advanced aircraft in service today use com-
posite structures rather than metal: the Boeing 787 Dreamliner is
80% composite by volume and each 787 aircraft contains approx-
imately 35 metric tons of carbon fibre reinforced plastic. Further
research into nanocomposites could produce even greater weight
savings. O’Donnell et al. conducted a mass-analysis on a notional
carbon-nanotube reinforced polymer-structured aircraft.?!! Each
airframe modeled saw a 17.32% weight reduction and average
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fuel savings of over 10%. There is a clear potential here for com-
putational modeling to discover new composite materials, but ef-
fective integration within existing design processes will require
computational models to be certified via appropriate validation
and verification processes, and their predictions rendered action-
able via uncertainty quantification.
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Figure 1. Our complete multiscale computational workflow for nanoma-
terials modeling, featuring: i) hierarchical transition from DFT to AA-MD,
ii) from AA-MD to CG-MD, and iii) concurrent coupling between AA-MD
and FEM.

There are a number of challenges with multiscale simulations.
The coupling between single-scale codes is not always straightfor-
ward and can require complex transformations to generate us-
able information for other scales in the workflow. These scale-
bridging transformations often contain assumptions that are not
valid in every instance, limiting the transferability or applicability
of the overall workflow. Similarly, the assumption of scale separa-
tion is not always valid; for example, when nanoparticles have one
very small dimension and one very large dimension, and both
cannot be accurately captured in the same single-scale model.
When information is exchanged between models uncertainties
can be propagated which may affect the accuracy or stability
of the multiscale simulation. These challenges may be domain-
specific, scale-specific, or reflective of information exchange of
multi-models workflows in general. Again, rigorous analysis is
required to understand errors in multiscale simulations and is
discussed in this Progress Report.

Our research in computational materials modeling of
nano-materials is built upon three multiscale approaches (see
Figure 1). We present each approach and a related application in
the following sections. First, the interactions of graphene with
itself are determined by bridging from quantum mechanics, via
density functional theory, to all-atom molecular dynamics (MD).
Second, large-scale exfoliation dynamics of clay in polyethylene
nanocomposites is analyzed through bridging from all-atom to
coarse-grained MD. Finally, the mechanical reinforcement of
epoxy resins using graphene sheets is explored via bridging from
all-atom MD to continuum mechanics. The two first applications
employ acyclic, hierarchical multiscale approaches, while the
third employs a cyclic, concurrent multiscale approach. Figure 1
illustrates the coupling topologies between the single-scale mod-
els and their associated length- and time-scales. In each case,
we describe the domain-specific challenges in coupling the two
levels of resolution, both theoretical and practical, and opportu-
nities resulting from extending modeling of these materials to
larger scales, without encountering prohibitive computational
cost. We conclude with a discussion on validation, verification
and uncertainty quantification of such multiscale applications,
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and how this can efficiently exploit emerging massively parallel
computing resources.

2. From Density Functional Theory to All-Atom
Molecular Dynamics

MD simulations require forcefields to describe the interactions
between particles so as to capture the desired physics. The
functional form, and associated parameters that describe all the
interactions including bonded and non-bonded interactions are
collectively referred to as the forcefield. To validate a forcefield,
researchers would like to refer to experimental values; but ex-
perimentally accessible values (such as density, solvation energy
and diffusion coefficients) are, in almost all cases, a function of
several forcefield parameters. This means there are often degen-
erate sets of parameters that fit the experimental data equally
well. As a result, fitting a forcefield using only experimental
data is very challenging. It is therefore common to rely heavily
on theories at lower scales to design and fit the parameters in
the functional form of a forcefield. Where possible, ab initio
techniques are used to provide this data. In the following section
of this progress report we show that, by using information at the
electronic structure level to overcome deficiencies in traditional
forcefields, we can parameterise additional forcefield terms that
substantially alter behavior on much larger scales, more closely
matching behavior seen in experiment.

Lennard-Jones (L]) potentials are ubiquitous in MD force-
fields, where they describe the dispersion forces and hardcore
repulsion between non-bonded particles. This type of potential
can fail to capture the behavior correctly, for example in describ-
ing graphene sheets during exfoliation.??! The spherical symme-
try of typical dispersion potentials means that for flat, regular
structures like graphene, there is very little variation in the in-
teraction potential when two sheets slide over each other. This
results in negligible friction between sheets. Experimental obser-
vations have shown this to be incorrect; for example, for a 10 nm
graphene sheet sliding around on a graphite substrate with only
thermal energy at 5 K.?3! Simple Lennard-Jones forcefields are
therefore inappropriate for simulations involving graphene fric-
tion, exfoliation, intercalation, and aggregation, which depend
on sheets sliding past each other. This has not prevented their
widespread use in the literature.[?+-26]

We conducted a review of the data that could be used to param-
eterise a forcefield for graphene—graphene interactions.?”l Many
experiments have reported the absorption energy of graphene,
but their values vary wildly: from —20 to —66 meV per atom,?’-%]
and as such cannot be used as a starting point for forcefield pa-
rameterization. Density functional theory (DFT) may be used in-
stead. We used two functionals recommended by Wang et al.l3%
that gave values of —50.8 and 61.7 meV per atom for the adsorp-
tion energy of graphene. The choice of DFT functional is not a
trivial one; as shown by Wang et al.?% some common function-
als predict next to no adsorption energy for graphene sheets.

While optimizing the parameters of Lennard-Jones forcefields
may result in a satisfactory adsorption energy, such forcefields
fail to correctly describe dynamics. When propelled in any given
direction, graphene sheets can slide in a zigzag fashion so that
they only encounter an energy barrier of 0.8 meV per atom. To
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Figure 2. A representative trajectory from a large of ensemble of simula-
tions of a 10 nm graphene flake on a graphite surface after being pushed
out of a commensurate position. In this instance, the trajectory lasted 500
ps until the flake was stationary. The flake travels from left to right, with
color corresponding to time (red at the start, blue at the end). A snapshot
of the flake is shown every 50 ps. The flake slides and rotates freely when
unaligned with the surface lattice and is only deflected when it is aligned.
Reproduced under the terms of the CC-BY 4.0 licence.l??l Copyright 2018,
Wiley-VCH.

test the existing forcefields, we compared with the energy barrier
to sliding given by Gao and Tkatchenko.?" This is a small but sig-
nificant energy barrier; many of the tested MD forcefields, how-
ever, have barriers which are far lower, accounting for the lack of
friction when simulated graphene sheets slide over each other. In
short, L] type functions either overestimate the adsorption energy
(such as with AMBERP?) or underestimate the friction felt be-
tween sheets (OPLS B3 and COMPASSP*). We designed a force-
field, GraFF,?! to address this problem. GraFF is a three-body
potential that adds an energy penalty to atoms in adjacent sheets
that are not directly overlapping (1):

0, 0° < 0 <45°
Verrr(re, ¢, 0) = VLllz’(’(rclcz) -cos?(20), 45° <0 <135 (1)
0, 135° < 6 < 180°

where r¢ ¢, is the distance between graphitic carbon atoms, 0 is
the angle between C,, C,, and another carbon atom bonded to C;.
V}/~%(r) is a standard L] potential:

v =|(2)"-(2)] @

Fitting forcefields to such static calculations is insufficient;
they must also be validated based on dynamical studies. A study
by Feng et al.”® showed graphene flakes sliding large distances
on a graphite substrate after being given only a small impetus by
a scanning tunneling microscopy (STM) tip, a behavior known
as suberlubricity. Mimicking this with MD (see Figure 2), using
GraFF to describe the graphene—graphene interactions, recre-
ated the same observations seen by Feng et al.?}l where the pre-
existing L] forcefields failed. STM can not resolve the motion of
flakes after being pushed, whereas using MD, we were able to de-
scribe their motion and account for the mechanisms of friction
on the nanoscale.

Propelling flakes in this way is a chaotic process in the techni-
cal sense and ensembles of 40 replicas were used to get reliable
statistics on the process and compare with Feng’s experiment.
Our results compare very well with those in experiment, recre-
ating the distance the flake traveled and its temperature depen-
dence. The effective friction was caused by fleeting alignments
between the flake and the substrate lattice.
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GraFF now permits the simulation of graphene in scenarios
that were previously inaccessible with MD. Exfoliating graphene
on a large scale still poses a huge barrier to the production of
polymer nanocomposites. We expect simulation to provide in-
sight into the synthesis and production process. Simulating mi-
cromechanical exfoliation of graphene nano-flakes with MD has
shown that there is much to learn about even the simple routes
to graphene production.

To study the material reinforcement properties of graphene,
as well as its dispersion and aggregation, methods capable of
dealing with longer time and length scales are necessary. In the
next section, we illustrate how this is possible with multiscale
simulation, using the example of the dispersion of 2D clay min-
eral nano-flakes.

3. From All-Atom to Coarse-Grained
Molecular Dynamics

In this section, we look at recent progress in simulating the
behavior of nano-composites through coupling all-atom (AA)
molecular dynamics to coarse-grained (CG) MD for 2D nano-
flakes. CG-MD involves performing molecular dynamics with a
reduced representation of the atomistic system: a single bead (or
pseudoatom) often represents many atoms. This reduction in the
degrees of freedom can lead to computational speed-ups of 10-
100 times over AA-MD,] while retaining chemical specificity.
We will also discuss the challenges in coupling AA and CG levels
of representations and, finally, the opportunities for increasing
the accuracy and applicability of AA/CG coupled simulations.

In a nanocomposite material, the surface area to volume ratio
is higher for 2D layered nanoparticles compared to 1D structures
such as carbon nanotubes. As a result, there has been much inter-
est in producing composites containing highly dispersed nano-
scaled sheets, such as graphene (the sheets that form carbon
nanotubes) and naturally occurring minerals such as clays. The
degree of aggregation of the sheets will be a function of the ther-
modynamics of the system, while processing conditions often
cause the system to remain in kinetically trapped meta-stable
states. A multiscale combination of AA and CG-MD can sim-
ulate the thermodynamic tendency of the nanoparticles, such
as graphene and clays, to aggregate or disperse, and hence
can be used to make predictions of the performance of nano-
composites.

One area of our research has focused on the use of atomistic
MD to study clay mineral surfaces interacting with synthetic ther-
moplastic polymers and biomolecules. The length and timescales
of AA-MD are ideal for studying the behavior of polymers on the
surface of clay. We have used AA-MD to address the rational de-
sign of clay-swelling inhibitors for use in the oil industry,”! which
in turn led to the development of new biodegradable inhibitors.
We also gained insight into the structure, conformation and sta-
bility of nucleic acids when interacting with clay surfaces (for ap-
plications in drug delivery and origins of life research).¢-38I

While AA-MD is now a routine tool for understanding the
interfacial behavior of clay surfaces, it soon became clear that
to simulate the large-scale behavior of clay sheets, including
their aggregation or dispersion within thermoplastic polymers,
we needed to extend our simulations to much larger time and
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Figure 3. a) Three key configurations observed in clay—polymer interactions: encapsulated (left), intercalated (middle) and exfoliated state (right), where
the gray hexagonal platelets are representative of the clay sheets. b) Schematic overview of several possible tactoid alignments, including face—face (left),
edge—face (middle), and edge—edge (right). The final microstate depends not only on the interactions present, but also on the processing conditions.
c) Mapping of coarse-grained particles to atoms for PVA. The coarse-grained particles are indicated by the larger semi-transparent spheres, blue for
terminal monomers and green for non-terminating monomers. d) Same as (c), but for PEG. e) Starting arrangement of the eight tactoids in our coarse-
grained simulations shown in the xz plane. f) Same as (e), but shown in the xy plane. Reproduced under the terms of the CC-BY 4.0 licence.>! Copyright

2015, Wiley-VCH.

length scales. Clay sheets typically have lateral dimensions of 10
to 1000 nm, well beyond the practical limits of AA-MD. To that
end, we now routinely use multiscale methods to model chemi-
cally specific combinations of clay and polymers, allowing predic-
tions of the materials properties of clay-polymer nanocomposites
for clay platelet sizes approaching those found in nature (diame-
ter > 10 nm) at low clay volume fractions (5%), through coupling
AA-MD with CG-MD.

Clays, such as montmorillonite (MMT), consist of nanometer
scale sheets of magnesium aluminium silicate (see Figure 3). The
sheets are stacked into platelets (often named tactoids) composed
from a few to hundreds of individual sheets. The sheets possess
dimensions of 1 nm thickness and range from 10 to 500 nm in
diameter, which results in a very high aspect ratio. On the level
of an individual platelet, the clay layers are very stiff: transfer of
stress from the thermoplastic polymer to the mineral—in part
due to the large interfacial area between the clay and polymer—
results in increased mechanical strength, while the flexibility
of the polymer prevents the composite from being brittle.2
Our multiscale AA/CG-MD approach has enabled us to predict
the melt intercalation behavior and final morphologies of MMT
clay—polyvinyl-alcohol (PVA) and MMT clay—polyethylene-glycol
(PEG) systems.’% The CG representation of the clay—polymer
system consists of CG pseudo-atoms, defined as the center of
mass of 7-10 atoms of the polymer and single unit cells of the
clay framework (with different pseudo-atoms types represent-
ing charged, non-charged and edge clay sites), see Figure 3. The
CG interaction parameters were generated by matching to struc-
tural properties of the AA-MD system, calculated from numerous
small AA-MD simulations. These properties included radial dis-
tribution functions (RDF) or density profiles perpendicular to the
clay sheet (using Iterative Boltzmann Inversion IBI, discussed
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below) and through potential of mean force (PMF) calculations
when an unbiased AA-CG simulation did not sample enough
configuration space to define a potential using IBI. To examine
intercalation and subsequent exfoliation of the clay by the sur-
rounding polymer, our initial system consisted of eight tactoids of
four sheets, of approximate diameter 10 nm, dispersed in a poly-
mer melt simulation cell of 40.2 nm x40.2 nm x 24.0 nm (see
Figure 3). The CG system was run at elevated temperatures (500
K) and pressure (100 atms) of melt-processing. See ref. [39] for the
technical details of the simulations. The longer timescales of CG-
MD allowed us to observe the dynamical process of polymer in-
tercalation into pristine clay tactoids over timescales above 100 ns
and the ensuing aggregation of polymer-entangled tactoids into
larger structures (over timescales of 500 ns). We concluded that
the intercalation of molten polymers occurs only when there are
favorable interactions with the clay surface (in the case of PVA,
hydrogen bonding to the hydrophilic clay surface), otherwise the
tactoids remain un-intercalated and self-assemble into larger, un-
intercalated tactoids.

Furthermore, through these large-scale CG simulations, we
can probe the elastic properties of the self assembled clay-
polymer system. Suter et al.?”) examined the changes in elas-
tic response to strain (i.e., the Young’s modulus) for the in-
tercalated PVA-clay composite and the un-intercalated PEG-clay
composites. Coarse-grained interaction potentials generated
through structural matching are not expected to reproduce elas-
tic properties, so the resulting stress—strain plots are qualita-
tive, but they clearly show that the stress transfer from poly-
mer to the much stiffer clay is significantly less effective for un-
intercalated clay-platelets. We found that the in-plane Young’s
modulus increased from 0.372 GPa for neat polymer to 0.637
GPa for the intercalated PVA-clay system, but only increased

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4. a) The initial structure used in the uniaxial tension and compression calculations for the clay-PVA system displayed; the x-direction is along
the horizontal axis, and z-direction along the vertical axis. Note that the platelets are mainly oriented in the xy plane. b) The corresponding stress—strain
curves in the x (black)- and z-directions (cyan) for the system shown in (a). The neat polymer stress—strain curve is also shown (red). c) The initial
structure for the uniaxial tension and compression calculations for the clay-PEG nanocomposite, also shown along the x-direction (horizontal axis) and
the z-direction (vertical axis). d) The stress—strain curves for the PEG—clay nanocomposite shown in (c). Reproduced under the terms of the CC-BY 4.0

licence.l®! Copyright 2015, Wiley-VCH.

from 0.127 to 0.137 GPa for non-intercalated PEG-clay (see
Figure 4).

These CG simulations showed that, while controlling the dis-
persion of clay nanoparticles into polymer matrices is a chal-
lenge, it is required to achieve the pronounced property improve-
ments theoretically promised by polymer nanocomposites. Fa-
vorable interactions between the clay surface and polymer were
necessary to induce intercalation; for organophilic polymers the
nanoparticles are typically immiscible with the organic phase
and materials properties are much reduced as the clay sheets
do not disperse. Experimentally, one approach to overcoming
this difficulty is to modify the clay surface by grafting it with
organophilic chains. This increases the attraction of the clay sur-
face to the polymers, and pillars open the clay layers to allow ac-
cess to the clay surface.?” In our recent research, using CG-MD,
we showed that by increasing the density of the surfactants on
the clay surface, it was possible to make the dispersed morphol-
ogy the most stable, and hence increase the final properties of
the composite material.*% The organophilic surfactants are based
on a PEG backbone, with a quaternary ammonium head-group.
Before mixing with polymers, the surfactants increase the sep-
aration of the clay layers to approximately 2.0-2.8 nm (depend-
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ing on the density of surfactants), and when mixed with PEG
polymers—which did not intercalate with the pristine clay, as we
showed in Suter et al.l’%—they fully extend and allow intercala-
tion. With sufficient surfactant density, the intercalated PEG—clay
system, now at a clay-layer separation of approximately 3.2 nm,
eventually exfoliates due to thermal motion (see Figure 5 for a
snapshot from simulation).

However, when clay nano-particles are mixed with highly hy-
drophobic polymers, such as polyethylene, the clay-tactoids re-
main stubbornly aggregated despite surfactant treatment. To
overcome these residual adhesive forces, large processing forces
are often used to break apart the clay platelets (through shear, for
example). We have used coarse-grained simulations of polymer-
clay systems under shear forces to understand the mechanisms
involved in breaking these adhesive forces.*!! To compute the
stress required to exfoliate a clay sheet from a tactoid, we con-
structed a two-layer clay system, with clay lateral dimensions of
14 nm X 10 nm, immersed in a simulation box of molten poly-
mers of size 20 nm x 20 nm X 20 nm. The CG simulations con-
sisted of a variety of hydrophobic and hydrophilic polymers and
surfactants, with simulation containing approximately 77 000
CG atoms, equivalent to 554 000 atoms. We found that, with
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Figure 5. Snapshots from the CG-MD simulation, comprising eight tac-
toids (32 layers) of models containing a) medium density of surfactants
and b) high density of surfactants after approximately 3 ps of simulation.
The PEG polymer and surfactant molecules have been removed to aid vi-
sualization. The high-density surfactant system has fully dispersed. Repro-
duced under the terms of the CC-BY licence.[*%l Copyright 2015, American
Chemical Society.

hydrophobic polymer (PE) and chemically identical surfactants,
there is no thermodynamic driving force for the polymer to in-
tercalate, and the un-intercalated tactoid requires large shear
stresses to overcome the adhesive force generated by the inter-
acting surfactant molecules from both surfaces. For hydrophilic
polymer and surfactant, the clay-layers expand and intercalation
is promoted. The application of shear force can exfoliate the clay
layer with less shear force required than for the un-intercalated
clay-tactoid. This shear force is, however, larger than for non-
interacting clay sheets. These simulations therefore demonstrate
that, while surfactants promote the initial intercalation of poly-
mer into the clay gallery, it is their interactions that also resist the
shear-induced exfoliation.

3.1. Challenges and Opportunities

The investigations described above are only accessible due to the
longer time and length scales possible with CG-MD compared to
AA-MD. They have allowed us to probe mechanisms on microm-
eter length scales with resolution on A length scales. To enable
these large and accurate CG-MD production simulations using a
AA/CG multiscale approach, we mapped the lower to the higher
level of description in a systematic manner using the IBI method;
however, depending on the system or property under consider-
ation, these methods will not always reproduce the behavior of
the underlying atomistic system. In the following, we describe
the challenges in applying such AA/CG multiscale approach rou-
tinely; we have categorized these difficulties as a “representabil-
ity problem,” a “transferability problem” and an “error propaga-
tion problem.” Hitherto, primacy has been placed on structural
features, meaning that particular molecular properties are pre-
served in moving between the AA and CG descriptions, based
on the Iterative Boltzmann Inversion (IBI) procedure, or similar
iterative approaches.[**? In IBI, a numerical coarse-grained pair-
wise potential U(r, 1) is iteratively refined until a target structure
is reproduced within a predefined error:

Uri+1) = U(ni) +k;Tln { Z(;(;)) } (3)
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Here U(r, i + 1) is the new CG potential, U(r, i) the potential used
in the previous iteration i, k; the Boltzmann constant, T the tem-
perature, g(r, i) the RDF obtained from the CG run and g,, (r) the
atomistic target RDF.

This ensures that the free energy of the reduced variables
is matched. However, while the IBI procedure can reproduce
structural details at the molecular level, still unknown is the ex-
tent to which we can also match to response functions such as
heat capacity, thermal expansion and isothermal compressibility,
which are related to equilibrium fluctuations (the so-called “rep-
resentability problem”). These functions are not expected to be
well represented in a CG model due to the smoothing of the po-
tential energy surface. However, thermodynamic properties and
non-equilibrium properties are required to fully exploit the pre-
dictive capability of AA/CG multiscale simulation. As the whole
system (thermodynamic and structural) is effectively included
when performing IBI—as we are matching the free energy—the
pair potentials optimized at one set of conditions will not gener-
ally be transferable to another (the “transferability problem”).*]
We have discussed above the use of CG-MD to determine ma-
terials properties as a function of nano-particle dispersion; how-
ever, it should also be noted that CG-MD can be used to examine
many other thermodynamic properties of nano-composite mate-
rials, with varying degrees of accuracy. The glass transition tem-
perature (T,) and thermal expansion coefficient of a polymer bulk
or polymer nano-composite can be estimated from the variation
of inverse density (specific volume) with temperature. The spe-
cific volume is linear with decreasing temperature, until a change
in the slope at T, (due to the change in the thermal expansion co-
efficient between the glass and rubber phases). To use CG-MD
to determine T,, therefore, requires the CG-MD potentials to be
transferable between different temperatures. An example illus-
trating how the “transferability problem” can affect these proper-
ties is shown by Carbone et al.,[*] where they found that T, and
thermal expansion coefficient of a CG-MD model of polyamide-
6,6 agreed with experiment, but for a CG-MD polystyrene model
with interaction parameters computed at 500 K, the dependence
of density on temperature was unphysical. This was attributed to
the phenyl ring reorientation that assumes more importance as
the temperature decreases, and is not adequately captured by CG-
MD parameterization at high temperature. For further discus-
sion on the transferability of CG-MD potentials for polystyrene,
see the review by Karimi-Varzaneh.[*0!

One avenue to improve AA/CG coupling is to use machine-
learning techniques to perform general mappings, computing
the landscape of possible properties at the lower resolution level
by varying the features of interest.*”~*] Multi-objective cost func-
tions are being investigated to investigate whether we can locate
the optimal mapping. For example, Moore et al.’% have devised
a Multistate IBI method, where multiple thermodynamic states
are used in the cost function.

Furthermore, when we coarse-grain, we eliminate significant
components of entropy and dissipation. Where pair potentials
cannot be optimized to give good enough agreement, it is pos-
sible to add frictional terms to perform Langevin dynamics, in
an attempt to rescale the dynamics, but doing so in a consistent
way remains a challenge.P!

Coarse-grained potentials are no more accurate than the
underlying atomistic simulations they are matched to (the
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“error propagation problem”). For example, forcefields for or-
ganic molecules and mineral solids have to be combined, nor-
mally through heuristic combinations such as the Lorentz-
Berthelot rules for Lennard-Jones parameters (o; = (0; + 0;)/2
and ¢; = (e;¢5)/2), for atoms i and j. This is somewhat unsatis-
factory as the chemical peculiarities of the non-bonded interac-
tions such as the specific mutual polarization of atoms i and j
are not fully taken into account. The individual forcefields have
been parameterized to reproduce the properties of each phase
individually, so there is no advantage to altering these. One ap-
proach to overcoming this difficulty could be to define directly
the non-bonded interaction parameters between atoms of type
i and j (where i is in the organic phase and j is in the mineral
solid) through matching to high-quality adsorption energies, cal-
culated from quantum mechanical simulations (such as DFT)5?
that include recently developed empirical van der Waals disper-
sion terms. Of course, such accuracy comes at considerable com-
putational cost, as it requires numerous high accuracy DFT simu-
lations. In the case of clay—polymer interactions, it would require
the calculation of the adsorption energies of numerous small rep-
resentative organic fragment molecules corresponding to parts of
the polymer, on the clay mineral surface. The increase in accuracy
may not be sufficient for the increase in time and computational
cost required for the DFT simulations; it is an area of research to
investigate where traditional combination rules for non-bonded
interactions fail.

One of the reasons atomistic forcefield approaches in AA
molecular dynamics have been successful is that, in general,
the combination rules are flexible. Once we have parameterized
for representative chemical environments (known as an “atom
type”), these parameterizations can be reused for a huge variety
of environments. If we want to use high throughput comput-
ing for coarse-grained simulation, that is, running many hun-
dreds or thousands of automated simulations of differing chem-
ical composition, we would need such an approach. However, we
need to overcome one of the “transferability problems” described
above. Along with the thermodynamic state-point dependence
mentioned earlier, ideally, one would also increase the chemical
transferability; that is, whether a coarse-grained potential defined
for a fragment in one molecule is appropriate for the same frag-
ment in a different chemical environment. For example, a widely
used generic coarse-grained forcefield in biomolecular molecular
dynamics simulations is MARTINI,P? but it still lacks significant
accuracy for quantitative purposes. There is ongoing research to
develop a generic forcefield for mineral-organic interfaces, where
the adsorption properties of molecules is of significant interest.
One avenue to achieve this will be to use feature extraction meth-
ods to determine a (unbiased) combination rule to reconstruct an
accurate interaction potential within a tolerance level. However,
we have to sacrifice accuracy (i.e., parameterization for each new
interaction) for speed (using a general forcefield and combina-
tion rules). It is the focus of sensitivity analysis efforts to deter-
mine whether a generic forcefield can be accurate for properties
of interest.

Finally, there is considerable interest in “reverse mapping”
using AA/CG coupling from CG to AA.PY However, it is not
straightforward to reintroduce the previously eliminated degrees
of freedom. Methods which have been considered include using
restraints and least-squares fitting to remove high energy over-
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laps when recreating the atomistic system, and invoking libraries
of conformations to generate atomistic structures (for example,
see Ghanbari et al.5). It is an active area of research to gener-
ate these reverse-mapped structures quickly and efficiently, such
that it would be possible to move from the CG level of represen-
tation to AA and back again. This would allow “on-the-fly” pa-
rameterization and refinement in a single, concurrently coupled
simulation.

In summary, we have shown that the longer time and length
scales of multiscale AA/CG-MD allow the study of phenomena,
such as the aggregation and dispersion of clay nano-particles
in a polymer medium, that are inaccessible through atom-
istic simulation alone. Parameterization is required for each
coarse-grained system, as transferring coarse-grained interaction
potentials to different thermodynamic states or chemical envi-
ronments cannot be relied upon to produce accurate results. Sim-
ilarly, coarse-grained potentials matched to certain characteristics
(such as structural properties) cannot be guaranteed to quantita-
tively match other properties (such as thermodynamic response
functions). Addressing these issues is an active area of research,
and we have outlined some new and novel approaches. Finally,
we have shown how error propagation caused by coupling AA
and CG-MD is very important and must be addressed; this is the
focus of Section 5.

4. From All-Atom Molecular Dynamics to the Finite
Element Method

4.1. Understanding the Interaction between Graphene
and Epoxy Resins

Polymer thermosets, such as epoxy resins, are an attractive can-
didate for building nanocomposites from graphene. Exhibiting
apparent ductility in nanoscale simulations,®>”] epoxy resins
consistently exhibit a brittle response in engineering tensile
testing.’#%% In the transition from the atomistic scale to the
bulk, epoxy resins lose their strain hardening capabilities and
much of their resilience to large strains. Increased fracture tough-
ness at smaller scales is a common phenomenon, %2 character-
ized by the Griffith’s criterion,®3l which states that larger sam-
ples will statistically contain larger defects, or weaker links, and
consequently, smaller samples usually exhibit higher fracture
strengths than larger ones. Observing the transition between
these regimes with simulation will require techniques that bridge
multiple length scales.

The introduction of 2D nanoparticles (such as graphene)
in these crosslinked polymer networks is expected to limit
the predominant consequences of void growth, bringing about
crack pinning, deflection, and dispersion.**%! In other words,
2D nanoparticles are expected to impede strain localization
mechanisms.

Graphene is generally mixed with the polymer precursor (e.g.,
DGEBA, TGMDA) before curing, in proportions varying from
low 0.02%/°! to high 6% weight ratios.°*¢”:%¢] The Young’s mod-
ulus is systematically increased, which is seen as a consequence
of the nanoscale constraints, imposed by the relatively rigid in-
clusions. In light of these mechanisms, some authors believe the
large surface area of the 2D particles is not so much the deciding
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factorl® as the degree of spontaneous curling® (seen in flakes
longer than 10 nm).

The enhancement of fracture related properties is less clear.
Fracture toughness of the epoxy resin is initially improved, but
may then reach a plateau or even decrease at weight ratios above
1-2%.1606667] Two different, potentially complementary theories
have been formulated in this regard: crack deflectionl®®”] and
microcrack dispersion.®® The former relates to a lengthened
main crack path, whereas the latter favors a more diffuse crack-
ing pattern. The dispersed microcracking explains the observed
plateau, for which the density of microcracks actually facili-
tates the propagation of the main crack. Consistent observations
have been made with other 2D nanoparticles such as clay”” or
silica.”! The crack deflection theory does not predict significant
strength alteration since, at the time of propagation, the strain
associated with the peak stress is already overcome. Conversely,
with an increased dispersion of the microcracking the mate-
rial's load bearing capability should decrease before attaining the
peak stress. Experimentally, some studies observe increased peak
stresses, ] inconclusive variations,®® or even weakening of the
nanocomposites.”] The observations of weakening support the
dispersed microcracking theory.

Graphene-based enhancement of the intermediate mechanical
properties of epoxy resins, such as yield and hardening, are rarely
addressed experimentally. The response in a dogbone sample of
epoxy resin, subject to tensile loading, instantly transitions from
elastic to brittle fracture. The intermediate properties are there-
fore not observable through standard engineering testing proce-
dures. However, yield and hardening are highly relevant in the
service use of structural components. They express the materials
aptitude to store and return strain energy, under cyclic loading,
while remaining functional.

Atomistic simulations of the nanocomposite revealed little dif-
ference in the responses between the neat and the graphene-
enhanced epoxy resins under uniaxial tension."” The Young’s
modulus, Poisson ratio, yield stress, hardening, and strength
show surprising similarity in the two cases. Our atomistic sim-
ulations led to the conclusion that a graphene nanoparticle em-
bedded in a crosslinked polymer network acts mostly as a defect.

4.2. Optimized Heterogeneous Multiscale Method for
Time-Dependent Materials

Loosely coupled hierarchical schemes are a common trend in
multiscale modeling. The continuum-level constitutive equa-
tions are parametrized beforehand using lower-level molecu-
lar or coarse-grained simulations.>”7% However, in trying to re-
produce the wide variety of lower-scale mechanisms occurring,
these empirically formulated constitutive equations suffer vast
increases in complexity, becoming ill-defined and difficult to
integrate.”””78l Consequently, constitutive equations are reduced
massively, to a simplified description of the true behavior of the
material, potentially missing out important phenomena that ap-
pear due to non-trivial mechanical states at the microscopic level.

As a (partial) remedy to these problems, computational
schemes have been developed that seamlessly couple multi-
ple scales in a semi-concurrent fashion, implemented through
the heterogeneous multiscale method (HMM)."#1 A similar
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Figure 6. Scales within the heterogeneous multiscale approach. Our work-
flow features a finite element method based solution of continuum me-
chanics equations at the macroscale. Constitutive behavior is informed
by simultaneous molecular dynamics simulations at the nanoscale. Each
scale model can feature heterogeneous structures, characteristic of their
respective scales. Here, the continuum shows stiffer inclusions organized
in parallel planes at 45° (left). The corresponding molecular materials fea-
ture either one (right) or two (middle) graphene sheets, rendering them
respectively, less or more stiff.

scheme built on two finite element models is the finite element
squared (FE2) method.®2# The scheme has been classified as
semi-concurrent™ because the multiple models are run in paral-
lel but solved separately, in contrast to concurrent methods which
embed a discrete and a continuum description within a single
domain.®#] HMM and other semi-concurrent methodologies
have the benefit of being extremely scalable, since the lower-
scale models are independent of each other and can therefore be
simulated in parallel (and across separate compute resources, if
requested).

The proposed workflow®®! computes the dynamic equilibrium
of mechanical forces in a continuum structure using the finite el-
ement method (FEM). In a classical FEM approach the local con-
stitutive relation between stresses and strains is a series of phe-
nomenological mathematical equations, but in the present case
it is replaced by an MD simulation Figures 6 and 7 respectively
show a illustrative and flowcart representation of the workflow.
An MD simulation, with nanoscale detail of the material struc-
ture, is performed, whenever the stress resulting from an applied
strain history is required. In a nutshell, the application consists
of a macroscopic FEM model which synchronizes the simulation
of a large number of microscopic MD models, and is performed
iteratively as time advances.

Implementations of HMM bridging such scales® % are rare
and have to date been limited to elastic mechanics. In an at-
tempt to analyze or predict mechanical properties related to fail-
ure, fatigue, energy dissipation (and many other situations), cap-
turing these inelastic mechanisms is of the utmost importance.
In our recent work, we introduced modifications to the standard
HMM implementation to capture history dependent mechanical
behavior, including non-linear and irreversible mechanisms.®l
In turn, our approach is able to track the evolution of the
structure at the atomistic scale associated with each continuum
location. Although, the initial atomistic systems are identical,
they diverge rapidly due to different mechanical loading his-
tory. The proposed workflow handles the large amount of data
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a

and computations induced by time-dependency of the material
structure.

As versatile as the HMM workflow may be, it remains con-
strained by load balancing issues. In a naive scheduling ap-
proach, the total allocation is split in equal suballocations to
which the microscopic simulations are assigned, a priori. The
unknown and variable execution time of the microscopic sim-
ulations leads to certain suballocations to complete ahead of
others. We propose to address this using two mechanisms: i)
a PilotJob Manager (PJM) internal scheduler, and ii) optimiza-
tion of suballocation size. These have been developed as part of
a European initiative to optimize the computational efficiency
of multiscale computing application called ComPat (Comput-
ing Patterns for High Performance Multiscale Computing, http:
| [www.compat-project.eu/). The benefits to the speedup of an
HMM simulation by these two mechanisms are displayed in
Figure 9.

The PJM mechanism essentially consists®! of an internal job
scheduler for the large allocation provisioned for the whole set of
micromodel simulations of a given iteration. The execution order
of the jobs is specified in a First In First Out (FIFO) manner. The
main advantage of the PJM is that all the jobs are gathered in a
single queue, allowing execution on any subset of cores from the
large allocation, as soon as the required resource size is available.
Moreover, the size of this suballocation can be easily specified
independently for each job, which helps when size adjustment is
needed to reduce execution time disparities.
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In order to reduce the variability of the micromodel simula-
tions execution time, the suballocation size can be adjusted indi-
vidually. Acknowledging that micromodel simulations ought to
scale strongly up to certain number of cores, this can be achieved
without any loss of efficiency, as long as the suballocation size re-
main in the strong scaling domain. The upper limit of the strong
scaling domain can easily be attained from a scaling plot, our
MD simulations using the LAMMPS modeling package,!” since
about 40 000 atoms typically scale strongly up to 200 cores. Subse-
quently, a simulations allocation size can be rescaled proportion-
ally to their estimated execution time. The longest simulations
are performed with the number of cores associated with the up-
per boundary of the strong scaling domain, while the shortest are
performed with the lower boundary, that is, on one core.

4.3. Simulation of Polymer Thermosets with Graphene
Nanoparticles

We performed heterogeneous multiscale simulations of a
150 mm X 100 mm x5 mm shell of the novel nanocomposite
transiently oscillating following a ballistic (see Figure 10). Our
approach was able to capture the heterogeneity of the slab of
nanocomposite at the atomistic as well as the continuum scale.
The computations enabled us to simulate the behavior of the shell
for more than 0.2 ms using 150 000 core hours. Using the scale
separation assumption to simulate the shell is 10?° (10?3 in space
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and 10’ in time, in the case where 10 replicas are used) times
less expensive than a molecular dynamics simulation that explic-
itly considers the whole system.

Multiscale analysis of the nanocomposite uncovered enhanced
elastic capabilities due to inclusion of graphene particles. At
relatively low amplitude oscillations, the nanocomposite is
shown to dissipate a smaller portion, up to 70% less, of the en-
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ergy brought in by the impact in the form of strain energy. While
the properties of the epoxy resin appeared hardly modified with
the presence of graphene in uniaxial tension, under these 3D
anisotropic loading conditions the presence of graphene was in
fact observed to extend the elastic regime and reduce hysteresis
effects. We have thus established that the graphene particle acts
as a nanoscale constraint preventing conformational changes of
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Figure 10. a) The finite element model of a shell is impacted vertically in its center by a rigid cylinder travelling at 400 m.s™'. The edges of the shell
are fixed. The shell is either composed entirely of neat epoxy (go) or a mixture of neat epoxy and nanocomposites/defective epoxy (go—g.,_1). Each
cell of the FE mesh is associated with a system type, with a random distribution of the g, (blue) and g, ,_; (gray) systems across the shell. b) The

deformed shell 1.5x 107#s after impact. The color indicates the amplitude of the vertical displacement. The mechanical wave induced by the impact
propagates throughout the shell and reflects on fixed boundary conditions showing some interference patterns. d) Evolution of the total energy in the shell
during the simulation. In addition to the neat epoxy (blue, gy), three mixture configurations are tested: i) the neat epoxy is mixed with nanocomposite
epoxy having all the sheets aligned in the plane of the shell (green, go-g,; Il), ii) all the sheets orthogonal to the plane of the shell (purple, go-g,;
1), and iii) with the defective epoxy having all the defects aligned in the plane of the shell (red, gyo-g_; ||). The dashed black line indicates the end
of contact between the shell and the cylindrical impactor. The quantification of the total energy transferred from the impactor to the shell is shown
in the left insert, while the total energy dissipation at the end of the simulation is found in the right insert. The gy—g, ; shell is able to retain almost
the entire impact elastic energy independently of the orientation of the sheet, while the g, dissipates more than a third. Interestingly, when the sheets
are removed, the energy dissipation returns to that of the neat epoxy shell. Reproduced under the terms of the CC-BY 4.0 licence.l’?l Copyright 2019,

Wiley-VCH.

the polymer network, with direct improvement of the shear mod-
ulus and strain energy restitution of the nanocomposite.

4.4. Time and Size Limitations to Molecular Dynamics

HMM enables independent simulation of the models at the dif-
ferent scales assuming scale separation (see Figure 8), yet not
all materials display mechanisms clearly isolated at single scales.
Epoxy resins, and more generally thermoset polymers, constitute
very practical materials for the application of HMM. Indeed, the
high degree of crosslinking of epoxy resins causes their atomistic
structure to be homogeneous over a few nanometers, and pre-
vents diffusion of polymer chains, thus allowing fast relaxation
in a few picoseconds. For epoxy resins time and space character-
istic lengths at the atomistic and continuum scales are separated
by several orders of magnitude.

Conversely, for graphene, the separation of scales presents
more of an issue. In the present work, we had to limit the scope
of our simulations to short graphene sheets, a few nanome-
ters wide, but exfoliated sheets often span over a few microm-
eters. Considering small flakes could potentially be an approx-
imation too far for both calculating the mechanical properties
of polymer-nanocomposite, and studying the dynamic mecha-
nisms of exfoliation. In the current literature, there are two ap-
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proaches to explain the mechanism of graphene reinforcement
of a polymer matrix. First, Marom and Wagner® argue that
nanocomposites should be considered as molecular composites
or self-reinforced composites. This approach takes into account
the nanoparticles role as a nucleation site for crystallization and
polymer confinement. However, it cannot explain the often dis-
appointing reinforcement ability of graphene compared to the
predictions made by the “rule of mixtures.” An alternative ex-
planation is proposed by Young et al.”®l who acknowledge that
in no reported experiment has the reinforcement contribution
of nanocomposite achieved a Young’s modulus close to that of
graphenes 1.0 TPa. Effective transfer of this exceptional stiffness
to the polymer network is impossible. Instead, the composites
stiffness is a function of the matrix’s stiffness and the aspect ratio
of the sheet. This description is derived from continuum shear-
lag theory and neatly explains that the reinforcement is due to the
filler particles aspect ratio, not its stiffness. It is noteworthy that
Dby this explanation, few-layer graphene (e.g., 5 sheets thick) is a
Dbetter reinforcement particle than graphene itself because it will
not crumple in the polymer and so retains a higher aspect ratio.
Young et al.’s!®?l theory explains the elastic modulus at low strains
but does not account for graphenes effect on the composites
toughness.

Particle-based simulation methods here face a serious chal-
lenge: to simulate graphene with an aspect ratio capable of
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giving adequate reinforcement, accurate descriptions of atoms
and above 10 pm are needed. Simulating aspect ratios of over
10° are out of reach of current methods. Therefore, insights into
the reinforcement mechanisms, exfoliation, dispersion, and pro-
cessing will require new approaches. Coarse-grained simulations
are a typical way of accessing longer time and length scales (see
Section 3. This coarsening of particles necessarily loses detail;
however, novel-shaped particles or mixed precision within the
simulation offer some ways to preserve the aspect ratio. These
techniques often run into problems of load balancing as the
computational demand varies between simulation domains, but
progress has been made recently in tackling this problem.¥

Another complicated case is multiscale modeling of thermo-
plastic polymers. Reptation of single polymer chains, each hun-
dreds of nanometers long, require several microseconds to relax.
In both graphene and thermoplastics, scale separation is hardly
feasible as atomistic detail needs to be preserved in models attain-
ing microscale dimensions. Only simulating a few picoseconds
per MD simulation, the total computational cost of one of our
HMM simulations reaches hundreds of thousands of core hours
to simulate the impacted nanocomposite shell. Overall computa-
tional cost would directly suffer from longer polymer relaxation
times. As MD simulations can only scale strongly up to a certain
point, larger supercomputers are not a practical solution. How-
ever, steered or accelerated MDI®® might be serious candidates to
tackle this problem.

Our current HMM framework simulates concurrently
two scales, atomistic and continuum, as shown in the
graphene/epoxy application. Yet biomaterials, such as bone,l
whale baleen,”] or meta-materials!®®! display more than two
characteristic length scales. Accurate modeling of bulk polyethy-
lene would require an atomistic description of polymer chains,
a microscopic description of the arrangement of crystalline
and amorphous phases, and a continuous description the
engineering testing conditions. Similar to two-scale HMM,
homogenization is used to transfer data from the lower to the
adjacent upper scale, and projection to transfer data the other
way around, and this is repeated as many times as there are
connected single scale models. Such a coupling method is easily
implemented as long as one continuous description is involved,
as homogenization and projection are then straightforward.
However, for large, heterogeneous molecular structures, that
is graphene®! or clay sheets (see Section 3), an intermediate
particle-based description may be preferable (see Section 2).
While bottom-up homogenization can be replaced by fitting
CG-MD inter-particles potentials from AA-MD, it is far more
intricate to deal with top-down data transfer. Projection of
coarse-grained trajectories onto all-atom structures!!® do not
find a unique solution, and so currently remains an area of
limited interest.

Modeling many classes of realistic materials will typically re-
quire resolving processes occurring on more than just these two
(separated) scales, such as by using techniques to bridge time
scales within a single spatial scale (e.g., through application of al-
ternating Monte Carlo and Molecular Dynamics!'®!) or by requir-
ing a mesoscopic spatial scale to be inserted between the existing
two and coupled in the same manner (strain passed downward,
stress passed upward). This is likely necessary for a proper treat-
ment of polymeric materials, which have important processes oc-
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curring on many scales (for more on this see the review by Li
et al.l%?). However, as the number of scales integrated within
the HMM scheme multiplies, the number of independent,
single-scale simulations can increase dramatically. In the cur-
rent state of our HMM, where the upper-scale model requires a
unique simulation at the lower-scale for each spatial discretiza-
tion and at each time increment, considering more than two
scales may well appear not to be computationally tractable. In
the following section, we address our current developments rel-
ative to surrogate modeling, aiming at reducing redundancies in
lower-scale model simulations.

4.5. Increasing Efficiency by Comparing the Mechanical State of
Time-Dependent Materials

Naively initiating microscale simulations from the macroscale
model often results in redundant calculations, with very similar
input parameters. In terms of our coupled FE/MD model, this
arises from recalculation of the stress tensor, €, from an applied
strain tensor, o, that has already appeared. For example, in a lin-
ear elastic continuum, where all the quadrature points have the
same properties, the stress will only need to be calculated once.
However, when it comes to nonlinear inelastic mechanics, the
mechanical state is not only defined by the current strain tensor,
but by the entire local strain history. Indeed, outside of the elas-
tic regime the mechanical response of a material depends on its
loading history, not just the current strain state. Consequently,
the number of parameters needed to define a microstate of the
material grows rapidly with time, so that comparing the defor-
mation history of two quadrature points presents a challenging
problem.

When the stress is calculated using phenomenological consti-
tutive laws, internal variables are introduced to account for time-
dependency. But in multiscale applications, the stress is calcu-
lated using an expensive microscopic model and the mechani-
cal/deformation history cannot be reduced to one or a few in-
ternal variables. We are currently investigating reduction of the
dimensionality of the strain history based on spline modeling.
The evolution of the strain tensor with time can be fitted with
a spline in a 7 D space (6 strain tensor components and time,
see Figure 11). The number of parameters needed to describe
a mechanical state then becomes constant and independent of
the time span simulated. The similarity between two quadrature
points is then quantified as an inverse of the distance between
their associated splines. Once the similarity between quadrature
points is estimated, an algorithm based on graph theory can be
used to optimally reduce the number of micromodel simulations
to perform. A larger number of simulations can be avoided by
analyzing the dependencies in the graph of similarities. Without
any interpolation, the number of simulations to perform could
be drastically reduced using clever data-driven and order reduc-
tion methods.

4.6. Interpolation and Surrogate Modeling
While the constitutive relation of the material remains un-

known, it can be assumed to be piecewise linear for small strain
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Figure 11. Reducing order of strain history. a) The time evolution of the
six components of the strain tensor are fitted with six independent splines
using 10 control points for each spline. The colored lines represent the
full data, the dots the splines control points and the black lines the fitted
splines. The strain history corresponds to a uniaxial tensile test.

increments. This linear operator relating the variations of the
stress and strain tensors is a fourth-order tensor in its most gen-
eral form (4). In addition to o, the tangent (or instant) stiffness
C tensor for a given mechanical state must then be computed
using an atomistic simulation. Within a limited range of defor-
mation from that mechanical state, C can be used to compute
o, rather than performing an atomistic simulation. In short,
we have introduced the simplest form of constitutive equation
parametrized using an atomistic model. Such a linear constitu-
tive equation, unlike more detailed relations based on plasticity
theory (for example) has a much narrower range of validity.
The fourth-order tensor C (4):

~ ¢ 609»
W= Sedey ey “
ij0€k kl

is defined as the second partial derivative of the Gibbs free energy
¢ with respect to the strain tensor ¢.

The benefits of such an interpolation technique are limited.
In the case of inelastic mechanics, the current state of the sys-
tem is dependent on the entire mechanical history. Consequently,
when we exceed the valid range of C (and a new simulation of the
atomistic model is required), the full succession of deformation
increments since the previous simulation has to be applied to
the system. A linear interpolation of ¢ does not remove the need
to evolve the atomistic system for the quadrature point where
the stress is interpolated. Indeed, it is a requirement for later
stress estimations using the atomistic model. And as the atom-
istic strain rate is constant, this evolution cannot be accelerated,
therefore the gains remain limited. Nevertheless, the computa-
tional costs associated with starting a new simulation from a pre-
vious state (allocation of the resources and re-initialization) and,
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Figure 12. Workflow of an atomistic simulation and subsequent homog-
enization of the stress tensor ¢ and the elastic constants C; the sampling
of C introduces a significant overhead consisting of 12 stress samplings.

more significantly, with the homogenization of ¢ are avoided.
Therefore, the interest in using such an interpolation method
lies in the comparison of the cost of computing the instant stiff-
ness tensor with the costs of restarting and sampling the atom-
istic simulations that were skipped.

Computing the homogenized C tensor can be achieved in two
different ways, either using its continuum mechanics definition,
or from the pressure or deformation fluctuations of the atomistic
system.[193-105] We shall focus briefly on the first approach as its
computational cost can be quickly evaluated and related to the
cost of sampling o. The homogenization procedure of C consists
of loading the atomistic system with six linearly independent ¢,
after each of which the resulting ¢ is sampled, and a subset of the
stiffness constants can be estimated using (4). The deformation
is applied positively and negatively (extension and compression)
along the strain orientation vector, and the final C is obtained by
averaging over both estimations. Note that the amplitude of the
strain perturbation applied during each of these six states defines
the range of validity of C, with larger amplitudes giving a wider
range of validity but less accurate estimates of C. Overall, the ho-
mogenization of C comprises the equivalent of twelve atomistic
model simulations (deformation and sampling). This procedure
is summarized in Figure 12.

Stochastic, data-driven methods also have the potential to re-
duce the number of atomistic simulations required. The HMM
approach produces a significant amount of data, particularly as
a result of the numerous atomistic models, but most of these
simulations overlap (approximately) in the parameter space (or
feature space in a machine learning context). Simple linear re-
gression, or more sophisticated Gaussian process regression, 1%
have been shown to produce excellent results in estimating the
output of atomistic models based on the output of previous sim-
ulations in the framework of HMM applied to time-independent
materials.®8% However, such approaches remain limited in the
case of inelastic mechanics. Before such regression methods
could be applicable to estimate o, order-reduction methods
would need to be applied. Similarly, the O(N?) scaling of the
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basic algorithm means that large training sets (resulting in large
N) quickly render a GPR surrogate uneconomical with respect
to simply running the MD micromodel, particularly in cases
where each run lasts of the order of minutes. Using multiple
GPR models to cover different domains of the same training
space could be a way forward, and has indeed been helpful in
cases confined to the elastic regime.® However, the much larger
dimensionality introduced by history-dependent mechanics may
yet impede tractable solutions in this context.

5. Perspectives

Throughout this report, we have focussed on the scale-bridging
necessary for capturing the multiscale nature of these nanocom-
posite materials, and the development of individual tools and
methods for particular materials. However, we now put this work
into the context of a more general problem: how can the results
of such materials modeling be trusted enough for use in action-
able decision-making?

5.1. Lack of Reproducibility

In recent years, there has been an unprecedented focus on ques-
tions of reproducibility!®”! and the perceived lack thereof across
multiple fields of scientific research. This is an area within
which computational science can and should excel, for example,
via portable workflow descriptions, logging and archiving of re-
sults with comprehensive meta-data. However, reproducibility is
merely one part of the wider issue of the certification of simu-
lations for use in decision-making processes in an industrial or
clinical context. Meaningful trust in the results equally necessi-
tates validation of the simulation code against experimental data,
verification of the correctness of the numerical solution, sensitivity
analysis to determine the most influential input parameters, and
uncertainty quantification for the output quantities of interest. The
three concepts of validation, verification, and uncertainty quan-
tification can be referred to under the umbrella acronym VVUQ.
A number of libraries and tools have been developed to aid in the
area of sensitivity analysis and uncertainty quantification.[103-111]

We can see with relative ease the importance such consider-
ations should have in the area of computational materials re-
search. The sensitivity of MD simulations to, say, choice of force-
field, is important to the level of trust we may place in the re-
sults. Even small changes in dispersion energies can result in
completely different behavior on the macroscale such as wetting
properties and dispersion/aggregation, for example. The situa-
tion is further complicated by the difficulties in characterizing 2D
materials: the flake size and shape. The density and type of de-
fects are often unclear, or of a wide distribution. When 2D mate-
rials interact with biomolecules, the additional complexity intro-
duced by the numerous different biochemical interactions that
can occur makes macroscopic behavior even more challenging
to predict from chemical detail. In turn, detecting trends relat-
ing input parameters to macroscopic properties is largely done
by hand-waving. Tuning defects, or chemically controlling the
surface could, for example, increase the dispersion by increas-
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ing the interfacial interaction or enhancing the interfacial stress
transfer by chemically bonding polymer to the surface, or thermal
conductivity for heat management applications.''?l However,
such modifications can come at a price to the performance; for
example, the properties of reduced graphene oxide are much re-
duced compared to pristine graphene. Creating new functional
multicomponent 2D materials, therefore, can be viewed as a com-
plicated multi-objective optimization problem. Automated test-
ing tools to determine the accuracy and reliability of forcefields
would further aid in full validation of a multiscale application.

The multiscale nature of many materials applications® fur-
ther complicates this goal. Validation and verification of each
submodel in the application does not imply validity of the full,
coupled system of submodels. Similarly, naive non-intrusive
sampling methods may not be an efficient route to quantify-
ing uncertainties in multiscale applications, particularly with re-
spect to HPC codes with wildly varying resource requirements,
and may additionally miss pathological behavior introduced by
complex (sometimes conditional) coupling of submodels. Semi-
intrusive Monte Carlo methods have been explored as a more effi-
cient method for applications characterized by a large asymmetry
in the computational expense of the submodels.!'!?]

While there is no doubt that VVUQ methods are being increas-
ingly used in computational science, particularly in the engineer-
ing disciplines, the uptake has nevertheless been patchy, and sys-
tematic, rigorous certification of simulations (such as in the pub-
lished literature) cannot be said to be the norm in every field.
This may reflect, to some extent, the lack of uptake in available
tools, and perhaps also that current tools do not yet cover signif-
icant portions of use cases. In particular, we find that VVUQ on
complex, multiscale workflows with diverse HPC requirements
has not been fully addressed by existing tools.'™ This is due to
the need to handle complex execution patterns across multiple
HPC resources, rigorous handling of job failure, and efficient
communication of high dimensional distributions, to name a few
factors. In short, we do not simply require tools that provide im-
plementations of existing UQ algorithms but instead provide a
suite of building blocks that can be integrated in such complex
workflows. Such a suite would result in a library from which ef-
ficient and tailored algorithms for a specific multicomponent ap-
plication may be rapidly prototyped and tested, and that allow the
granularity of execution control necessary for efficient execution
across multiple HPC resources.

To this end, we are developing software tools to provide solu-
tions to these problems, as part of the EU funded VECMA project
(Verified Exascale Computing for Multiscale Applications, https:
//www.vecma.eu/ na d https://www.vecma-toolkit.eu/).''l The
development of standard communication formats for the com-
munication between solvers/scales of very high dimensional,
multimodal distributions (and their compression), the very large
data sets involved, and design of cheap surrogate models to re-
place expensive submodels are additional matters of concern.

5.2. Efficient Use of Emerging High-Performance
Computing Resources
The advent of exascale computing brings with it a number of chal-

lenges for existing codes and workflows, with the main focus on
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how we might scale these to most efficiently exploit the extreme
parallelism of exascale platforms. Traditional approaches, such
as strong scaling (increasing the node count with a fixed prob-
lem size) soon level out due to rapidly accruing communication
costs, whereas weak scaling (problem size increases in propor-
tion to available compute nodes) expands the spatial scales reach-
able, but not the correspondingly larger time scales necessary to
resolve a given physical process. Use of accelerators (e.g., GPUs)
can increase the time scales accessible by, for example, MD, but
the scaling (at present) is nevertheless limited by the inefficiency
of using multiple GPUs per MD job—an inefficiency we expect
will eventually be addressed.

Performance modeling and predictions of N-body codes indi-
cate severe limitations in the number of iterations (time steps)
feasible on an exascale machine, defined here as 1 billion cores,
within a reasonable period of computing time (for example, 1.5
days).l% For a naive O(N?) MD algorithm, exascale is unlikely to
benefit MD approaches in the aim of simulating larger systems
for longer physical times. Methods with highly local interactions,
such as lattice-Boltzmann (fluid dynamics), will scale more effi-
ciently to very large core counts, although the output of a single
run is now recognized to be of questionable scientific value, and
a more efficient use of the resource should be sought.

In conclusion, there are clear limits to the time and length
scales attainable for a given MD simulation that appear long be-
fore the number of processors is exhausted. It is clear that large,
single jobs are not likely to be an efficient use of exascale re-
sources for the computational techniques currently employed in
materials research, particularly at the atomic or molecular scales.

However, when taking into account the absolute necessity of
sensitivity analysis and uncertainty quantification for such work,
amore practical approach emerges. The sampling of results from
many individual runs, known as ensemble computing, is a char-
acteristic component of many UQ methods. As there is no inter-
replica communication in these approaches, sampling methods
may scale in a simple, embarrassingly parallel manner to the full
use of one or more computing resources. As such, SA and UQ ap-
proaches that employ replica computing approaches lend them-
selves well to efficient exploitation of exascale computers. Sam-
pling algorithms will need to be employed which take advantage
of replica computings natural resistance to node failures, as com-
pared to monolithic approaches.

This would apply particularly well to the HMM application de-
scribed in Section 4, which already homogenizes local stress ten-
sors via a bootstrapping of measurements from multiple replica
MD simulations.

5.3. Validation of Multiscale Models via Specifically
Designed Experiments

Certification of the simulation results also necessitates that the
models be validated against experimental data. In the case of
multiscale models, designing specific experiments to this end
can often be non-trivial. Experimental evidence may be absent or
not sufficient to validate each submodel separately, or sometimes
even the fully coupled application (for example, in the case of
simulating the operation of a new fusion reactor). In our area of
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2D materials simulation, we wish to validate submodels ranging
from the quantum regime (in which DFT and quantum Monte
Carlo approaches reign) via the molecular regime (AA-MD and
CG-MD) up to the continuum scale (FEM, etc.).

For 2D systems, at the quantum/atomistic level, the adsorption
characteristics can often be determined by weak dispersion forces
which, as we have seen in Section 2, are poorly described by the-
oretical methods, resulting in difficulties in calculating accurate
adsorption energies. Even sophisticated quantum methods such
as DFT suffer from various well-known shortcomings (notably
self-interaction errors and problems with dispersion bonded sys-
tems), for which there has been work in ameliorating and under-
standing for water.l'"”]

With respect to validation at longer length scales (generally re-
lating to continuum, FEM solvers), a number of good candidate
techniques exist. Full field strain measurements use digital im-
age correlation to time resolve the local material displacement
field'® through speckling or X-ray computed tomography!'!’!
which could be used to assess and compare with general defor-
mation and cracking characteristics in simulated materials trajec-
tories. This approach also allows estimation of local elastic prop-
erties, which could allow separate validation of the finite element
submodel with respect to the molecular dynamics submodel. A
standard set of experiments similar to the CARPIUC benchmark
for cracking in concretel!’#19 would also enable systematic vali-
dation of our full multiscale application with respect to fracture
in cured epoxy nano-composites. Close collaboration of compu-
tational modellers with experimentalists should inevitably lead to
further, more specific measurements.

5.4. Aims and Perspectives

The exceptional mechanical, thermal, optical, and electrical prop-
erties of graphene and other 2D nanomaterials, along with the
potential for bespoke chemical modifications to the surface, of-
fer unique opportunities for engineering novel interactions that
enhance existing materials, and also between living and synthetic
biological materials. Without accurate predictive modeling tools
for evaluating early-stage designs it will be difficult to exploit
this potential.

We aim to ensure that multiscale modeling becomes a rou-
tine predictive tool within functional 2D materials research and
development, integrated into both academic research and in-
dustrial design-processes. We intend that our predictions be
certified through code verification and experimental validation
procedures with academic and industry partners, based on care-
ful uncertainty quantification (VVUQ). Such work will reduce
the risk in developing new technologies and thereby encourage
innovation.

One of the critical challenges faced in this area is how to ef-
ficiently manage the great computational expense of multiscale
materials modeling in this context. Reduced cost surrogate mod-
els, in particular those exploiting the ascendance of machine
learning techniques such as Gaussian Process Regression, will
be key to this, although the high dimensionality of representa-
tions of history-dependent material behavior make this a non-
trivial endeavour. With respect to uncertainty quantification, we
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expect that the increasing availability of computing power and
the advent of exascale computing will facilitate the application of
both sampling and surrogate UQ approaches.

Through ongoing work on all these fronts, we seek to bring
multiscale materials modeling to a more reliable position in the
design of 2D nanocomposite materials.
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