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OneStep : Le Cam’s One-step Estimation
Procedure
by Alexandre Brouste, Christophe Dutang and Darel Noutsa Mieniedou

Abstract The OneStep package proposes principally an eponymic function that numerically computes
Le Cam’s one-step estimator, which is asymptotically efficient and can be computed faster than the
maximum likelihood estimator for large datasets. Monte Carlo simulations are carried out for several
examples (discrete and continuous probability distributions) in order to exhibit the performance of Le
Cam’s one-step estimation procedure in terms of efficiency and computational cost on observation
samples of finite size.

Introduction

In the statistical experiments generated by i.i.d. observation samples, the sequence of maximum
likelihood estimators (MLE) is known to be asymptotically efficient under very general assumptions
and consequently presents the fastest convergence rate and the lowest possible asymptotic variance.

Although the sequence of MLE is asymptotically efficient, it is generally not expressed in a closed
form and requires time consuming numerical computations. On the other hand, the other generic
estimation procedures which can sometimes be computed faster, as the method of moments, do not
generally reach the optimal asymptotic variance.

In R, the package fitdistrplus (see Delignette-Muller and Dutang (2015)) is commonly used to
infer the parameters of univariate probability distributions. For non-censored datasets, fitdistrplus
allows four different estimation methods: maximum likelihood, moment matching, quantile matching,
and maximum goodness-of-fit estimation. The unified approach is provided by fitdist() which
returns an S3-object having usual generic functions (plot, summary, logLik, . . . ) as well as dedicated
fitdist-functions (gofstat, bootdist, . . . ).

Other packages with similar purposes are EstimationTools and DistributionFitR, providing MLE
for non-censored data. Many other packages also provide estimation procedure on the basis of one
function per probability distribution; see, e.g., packages univariateML, propagate. A final package,
which is worth mentioning, is fitter, which fits a set of probability distributions on a given dataset
sequentially.

However, as soon as the Fisher information matrix is sufficiently regular with respect to the
parameter to be estimated, Le Cam’s one-step estimation procedures can be achieved (see Le Cam
(1956)). They are based on an initial sequence of guess estimators and a single Newton step or a Fisher
scoring step on the loglikelihood function. Namely, they write

ϑn = ϑ∗
n + I(ϑ∗

n)
−1 · 1

n

n

∑
j=1

ℓ̇(ϑ∗
n, Xj), n ≥ 1, (1)

for the Fisher scoring type procedure, where (ϑ∗
n, n ≥ 1) is the initial sequence of guess estimators,

ℓ(ϑ) is the loglikelihood function, the dot is the notation for the gradient with respect to ϑ, and
I(ϑ) = −Eϑ(ℓ̈(ϑ)) is the Fisher information matrix and

ϑn = ϑ∗
n + În(ϑ

∗
n)

−1 · 1
n

n

∑
j=1

ℓ̇(ϑ∗
n, Xj), n ≥ 1, (2)

for the Newton type procedure, where În(ϑ) = − 1
n ∑n

j=1 ℓ̈(ϑ, Xj) is the opposite of the Hessian for the
loglikelihood function.

The sequence of Le Cam’s one-step estimators presents certain advantages over the sequence of
MLE and over the initial sequence of estimators (method of moments, quantile matching method, etc.)
in terms of computational cost and asymptotic variance. It is much less computationally expensive
than the MLE, while it has the same rate and the same asymptotic variance. Since there is no full
numerical optimization (but only one computation of the Newton step or the Fisher scoring step), the
procedure is faster and appropriate for very large datasets. On the other hand, it is asymptotically
optimal in terms of asymptotic variance, which is generally not the case for the initial sequence of
guess estimators.

For several probability distributions (Gaussian, Exponential, Lognormal, Poisson, Geometric),
a fast computable sequence of estimators is already asymptotically efficient, and no correction is
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needed. When the Fisher information is given in a closed form (Gamma, Beta, χ2, Weibull, Pareto II,
Cauchy), Le Cam’s one-step estimation procedure (1) is executed. In all the other cases, the estimation
procedure (2) is used either with the score function and the Hessian in a closed form (Negative
Binomial) or with the numerical approximation of the score function and the Hessian with the package
numDeriv (see Gilbert and Varadhan (2019)).

Le Cam’s one-step estimation procedures are implemented in the package OneStep, and the
eponymic function onestep is described in this paper and used on different examples. Monte Carlo
simulations are performed for several examples in order to exhibit the performance of Le Cam’s
one-step procedure on samples of finite size. They exhibit their asymptotic efficiency simultaneously
with their better computational cost for several probability distributions.

The function onestep

Let (X1, X2, . . . , Xn) be a sample of i.i.d. random variables. The probability density function of X1 is
denoted f and depends on an unknown parameter ϑ ∈ Θ ⊂ R

p which is to be estimated.

Le Cam’s one-step estimation procedure is based on an initial sequence of guess estimators and
a Fisher scoring step or a single Newton step on the loglikelihood function. For the novice user, the
function onestep automatically chooses the best procedure to be used. There is, consecutively, a single
command for the user, which is

onestep(data,distr)

The function onestep presents several procedures internally depending on whether the initial se-
quence of guess estimators is in a closed-form or not and whether the score and the Fisher information
matrix can be elicited in a closed-form.

Here is the list of the procedures taken into account in the onestep function:

1. Distributions for which the MLE is already explicit: norm, exp, lnorm, invgauss for continuous
probability distributions, and pois, geom for discrete probability distributions. For this class, the
explicit MLE is returned.

2. Distributions for which the initial sequence of guess estimators, the score and the Fisher infor-
mation matrix have been elicited in a closed-form: gamma, beta, chisq with an initial sequence
of moment estimators, cauchy with an initial sequence of quantile matching estimators, and
weibull with an initial sequence of graphical plot estimators. For this class, Le Cam’s one-step
procedure (1) is applied.

3. Distributions for which the initial sequence of guess estimators, the score, and the Hessian have
been elicited in a closed-form: nbinom. For this class, Le Cam’s one-step procedure (2) is applied.

4. Distributions for which the initial sequence is numerically computed on a subsample, but the
score and the Fisher information matrix have closed-form: pareto. For this class, Le Cam’s
one-step procedure (1) is executed.

5. For all other distributions, if the density function is well defined, the numerical computation
of the Newton step in Le Cam’s one-step procedure (2) is proposed with an initial sequence
of guess estimators, which is the sequence of maximum likelihood estimators computed on a
subsample.

As is described, all explicit distributions of the mmedist function from fitdistrplus have been
corrected in the onestep function, except unif and logis. The example unif is a famous example of
the singular behavior of the MLE. The correction of logis is of very small gain from the method of
moments estimator to the MLE. For these two distributions, the method of moments is returned.

However, the package also offers several new explicit computations as cauchy, chisq and weibull
and applies to distributions coming from the actuar package (see Dutang et al. (2008)) such as invgauss
and pareto.

The function onestep allows the user to propose its own initial guess estimation in the one-step
procedure by specifying the parameter init in the command

onestep(data,distr,init)

The user can consequently use different initial guess estimators for the aforementioned classical
distributions (moment estimators, estimators based on the characteristic function, quantile matching
estimators, Bayesian estimators, mode-type estimators, graphical methods, etc.). Several examples can
be found in the documentation of the onestep function.

Monte Carlo simulations are done for several examples (discrete and continuous probability
distributions) in order to exhibit the performance of Le Cam’s one-step estimation procedure in terms
of efficiency and computational cost on observation samples of finite size.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 368

For the assessment of the efficiency, the proximity of the renormalized statistical errors (Y1, Y2, . . . , YM)
to the centered Gaussian asymptotic distribution (for a coordinate in the multivariate setting) is evalu-
ated with the Cramer-Von Mises statistic

T = Mω2
M = M

∫
R
(FM(y)− F∗(y))

2 dF∗(y) =
1

12M
+

M

∑
i=1

(
F∗(Y(i))−

2i − 1
2M

)2
,

where the order statistics are denoted Y(1) ≤ Y(2) ≤ · · · ≤ Y(M), F∗(·) is the theoretical Gaussian
asymptotic cumulative distribution function and

FM(y) =
1
M

M

∑
i=1
1{Yi≤y}

is the empirical cumulative distribution function. The asymptotic distribution of T is tabulated, for
instance, in the goftest package. Note that a value of the statistic below 0.7434 corresponds to accept
the null (and the equivalence to theoretical Gaussian asymptotic distribution) with an error of type I
equal to 1%.

Timing performance (given in seconds) is done with the proc.time function ("elapsed" time) on
a laptop with an Intel Core i7 2.7 GHz processor with 8GB RAM. The onestep function is compared
to the MLE computed with mledist of the fitdistrplus package and to the sequence of initial guess
estimators (for instance, the moment estimator is computed with mmedist for the gamma, beta, and
nbinom distributions).

The functions benchonestep and benchonestep.replicate were used to compare the performance
of estimators (see documentation of the OneStep package).

Closed-form sequence of initial guess estimators

For the majority of the "closed formula" cases, the initial sequence of guess estimators of the unknown
parameter ϑ is the sequence of moment estimators.

Let (X1, X2, . . . , Xn) be a sample of i.i.d. random variables. Let us denote the theoretical moments
mk(ϑ) = Eϑ(Xk

1) and the empirical moments m̃k = 1
n ∑n

j=1 Xk
j . The sequence of moment estimators

(ME) is generally defined as the solution of the system of equations

mk(ϑ
∗
n) = m̃k, k = 1, . . . , p.

Indeed, under very mild conditions, the sequence of moment estimators (ϑ∗
n, n ≥ 1) is asymptotically

normal, and therefore,
√

n-consistent (see Ibragimov and Has’minskii (1981)). Namely,

√
n (ϑ∗

n − ϑ) −→ N
(

0, J−1(ϑ)A(ϑ)J−T(ϑ)
)

(3)

in law as n → ∞, where

J(ϑ) =

(
∂

∂ϑj
mi(ϑ)

)
1≤i≤p,1≤j≤p

and
A(ϑ) = Eϑ

(
(Xi

1 − mi(ϑ))(X j
1 − mj(ϑ))

)
1≤i≤p,1≤j≤p

.

Here, the notation MT means the transpose matrix of M. Several examples (Gamma, Beta, and
Negative Binomial) are given later on in this section.

However, other
√

n-consistent sequences of initial guess estimators can be used. For instance, an
initial sequence of quantile matching estimators is employed for the Cauchy distribution.

It had been shown in Le Cam (1956) that for a
√

n–consistent initial sequence of guess estimators
and an uniformly continuous Fisher information matrix, the sequence of Le Cam’s one-step estimators
defined in (1) or (2) is consistent, asymptotically normal and efficient (in the Fisher sense) with

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
.

In other words, for an initial sequence which is asymptotically rate but not variance efficient, the new
sequence is asymptotically rate and variance efficient.

Gamma The first example is the joint estimation of the shape parameter α and scale parameter β in
the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Gamma random variables
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whose probability density function is given by

f (x) =
βα

Γ(α)
xα−1 exp(−βx), x > 0.

Let us denote ϑ = (α, β). In this statistical experiment, the sequence of maximum likelihood
estimators (ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

ψ(2)(α) − 1
β

− 1
β

α
β

)
.

Here, ψ(n) is the polygamma functions (see (Abramowitz and Stegun, 1972, section 6.4.1, page 260))
defined by ψ(n)(α) = ∂n

∂αn log Γ(α). Consider that

mk(ϑ) =
α(α + 1) . . . (α + k − 1)

βn .

Consecultively, the sequence of moment estimators (ϑ∗
n = (α∗n, β∗n), n ≥ 1) given by

α∗n =
m̃2

1
m̃2 − m̃2

1
and β∗n =

m̃1

m̃2 − m̃2
1

is asymptotically normal (see (3)) with

J =

( 1
β − α

β2

1+2α
β2 − 2α(α+1)

β3

)
and A(ϑ) =

 α
β2

2α(α+1)
β3

2α(α+1)
β3

α(4α+6)(α+1)
β4

 ,

and consequently does not reach asymptotical efficiency.

We can see in Figure 1 (and in Table 1 with the Cramer-Von Mises statistics) that the sequence of
Le Cam’s one-step estimators (LCE) reaches efficiency and naturally overperforms the initial sequence
of ME in terms of asymptotic variance. Moreover, this sequence is faster to be computed on M = 10000
Monte Carlo simulations than the sequence of MLE, as shown in Table 1, displaying total computation
times over M.

MLE ME LCE
Computation time (s) 1559.74 29.72 37.46

CvM statistic alpha 0.63 1.04 0.23
CvM statistic beta 0.47 0.86 0.19

Table 1: Computation time and CvM statistics

As it was mentioned in the introduction, the major advantage of the sequence of one-step estimators
is that it is computed faster than the maximum likelihood estimator for large datasets. We illustrate
this fact in Table 2, where the average computation times (over 10 Monte Carlo simulations) are done
for different sample sizes n = 10r, r = 3, . . . , 9 for both MLE and LCE. LCE is between 20 times and 55
times faster than MLE, especially for large sample sizes when there is memory overload.

10^3 10^4 10^5 10^6 10^7 10^8 10^9
MLE 0.0121 0.1193 1.0056 10.4735 99.4203 2339.0437 31600.8313
LCE 0.0007 0.0053 0.0252 0.2361 2.3152 40.0440 540.7393

Table 2: Average computation time (s)

Beta The second example is the joint estimation of the first shape parameter α and the second shape
parameter β in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Beta random
variables whose probability density function is given by

f (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, x ∈ [0, 1].
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Figure 1: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Gamma distribution with (α, β) = (2, 3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
ME, respectively.

Let us denote ϑ = (α, β). In this statistical experiment, the sequence of maximum likelihood
estimators (ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

ψ(2)(α)− ψ(2)(α + β) −ψ(2)(α + β)

−ψ(2)(α + β) ψ(2)(β)− ψ(2)(α + β)

)
.

It is worth mentioning that for the Beta distribution

mk(ϑ) =
Γ(α + k)Γ(α + β)

Γ(α)Γ(α + β + k)

that allows one to build closed-form moment estimators. Namely, denoting w̃n = m̃1(1−m̃1)
m̃2−m̃2

1
− 1, we

obtain
α∗n = m̃1w̃n and β∗n = (1 − m̃1)w̃n.

Asymptotic variance in (3) of the sequence of moment estimators (ϑ∗
n = (α∗n, β∗n), n ≥ 1) can also be

computed with

J =

 β
(α+β)2 − α

(α+β)2

2α2 β+2αβ2+2αβ+β2+β
(α+β)2(α+β+1)2 − α(α+1)(2α+2β+1)

(α+β)2(α+β+1)2


and

A(ϑ) =

 αβ
(α+β)2(α+β+1)

2αβ(α+1)
(α+β)2(α+β+1)(α+β+2)

2αβ(α+1)
(α+β)2(α+β+1)(α+β+2)

α(α+1)(2α3+6α2 β+4αβ2+14αβ+4α2+4α+6β2+6β)
(α+β)2(α+β+1)(α+β+2)(α+β+3)

 ,

and consequently the sequence does not reach asymptotical efficiency.

Here again, the sequence of Le Cam’s one-step estimators naturally overperforms the initial
sequence of ME in terms of asymptotic variance (see Figure 2 and the next Table for CvM statistics).

It is computed faster than the sequence of MLE, as shown in Table 3.
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Figure 2: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Beta distribution with (α, β) = (0.5, 1.5) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
ME, respectively.

MLE ME LCE
Computation time (s) 2324.99 43.26 52.02

CvM statistic alpha 0.22 0.06 0.05
CvM statistic beta 0.34 0.11 0.20

Table 3: Computation time and CvM statistics

Cauchy The third example is the joint estimation of the location parameter m ∈ R and the scale
parameter d > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Cauchy
random variables whose probability density function is given by

f (x) =
d

π
(

d2 + (x − m)2
) , x ∈ R. (4)

Let us denote ϑ = (m, d). In this statistical experiment, the sequence of maximum likelihood estimators
(ϑ̂n, n ≥ 1) of ϑ is not in a closed-form. The sequence of MLE satisfies

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =
(

1
2d2 0
0 1

2d2

)
.

It is worth mentioning that the Cauchy distribution has no first moment, and consecutively its
unknown parameter ϑ cannot be estimated via the classical method of moments. But a quantile
matching method allows one to define

m∗
n = Qn

(
1
2

)
and d∗n =

1
2

(
Qn

(
3
4

)
− Qn

(
1
4

))
, (5)
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where the sample quantile is usually computed for p ∈ (0, 1) as

Qn(p) = X(⌊np⌋),

with the order statistics denoted X(1) ≤ X(2) ≤ · · · ≤ X(n). This sequence of estimators (ϑ∗
n =

(m∗
n, d∗n), n ≥ 1) can be shown to be consistent and asymptotically normal, namely

√
n (ϑ∗

n − ϑ)−→N (0, Γ1) ,

where

Γ1 =

( 1
4 f (m)2 0

0 1
16 f (q1)2

)
. (6)

Here q1 is the theoretical first quartile. Consequently, this estimator does not reach the efficient
asymptotic variance.

As mentioned previously, the sequence of Le Cam’s one-step estimators overperforms the initial
sequence of quantile matching estimators (QME) in terms of asymptotic variance (see Figure 3 and the
next Table for CvM statistics).
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Figure 3: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, QME, and LCE for the Cauchy distribution with (m, d) = (2, 3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
QME, respectively.

It is computed faster than the sequence of MLE, as shown in Table 4.

MLE QME LCE
Computation time (s) 225.32 7.40 27.59

CvM statistic m 0.08 0.42 0.08
CvM statistic d 0.04 0.10 0.04

Table 4: Computation time and CvM statistics

Pólya (negative binomial) The fourth example is the joint estimation of the size parameter r and
the mean parameter µ in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d.
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negative binomial random variables whose (discrete) probability density function is given by

f (x) =
Γ(r + x)
Γ(r)x!

(
r

µ + r

)r ( µ

µ + r

)x
, x ∈ N.

Let us denote ϑ = (r, µ). In this statistical experiment, the sequence of maximum likelihood estimators
(ϑ̂n, n ≥ 1) of ϑ is not in a closed-form and the Fisher information matrix neither.

For this distribution,

m1(ϑ) = µ and m2(ϑ) = µ2 + µ +
µ2

r
that gives closed-form sequence of moment estimators (ϑ∗

n = (r∗n, µ∗
n), n ≥ 1) given by

r∗n =
m̃2

1
(m̃2 − m̃2

1)− m̃1
and µ∗

n = m̃1.

In this discrete case, the sequence of Le Cam’s one-step estimators (2) defined with the Hessian
still overperforms the initial sequence of ME in terms of asymptotic variance (see Figure 4 and the
next Table for CvM statistics). Let us mention that the CvM statistics are computed with the estimated
variances for MLE and LCE.
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Figure 4: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of
the MLE, ME, and LCE for the Polya distribution with (r, µ) = (1, 5) and n = 10000. Superimposed
red line is the empirical Gaussian asymptotic distributions of the MLE. Superimposed blue line is the
theoretical centered Gaussian asymptotic distributions of the ME.

It also overperforms the sequence of MLE in terms of computation time, as shown in Table 5.

MLE ME LCE
Computation time (s) 2038.33 39.59 104.75

CvM statistic r 0.18 0.71 0.19
CvM statistic mu 0.05 0.05 0.05

Table 5: Computation time and CvM statistics

Weibull The fifth example is the joint estimation of the shape parameter τ > 0 and the rate parameter
β > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Weibull random
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variables whose probability density function is given by

f (x) = βτ(βx)τ−1 exp (−(βx)τ) , x ∈ R+
∗ .

Let us denote ϑ = (τ, β). In this example, neither the ME nor the MLE is in closed-form. However, the
score and the Fisher information matrix can be explicitly computed. For instance,

I(ϑ) =

 1
τ2

(
ψ(2)(1) + [ψ(1)(2)]2

)
1
β ψ(1)(2)

1
β ψ(1)(2) τ2

β2

 .

Moreover, it is possible to define a closed-form initial sequence of graphical plot estimators (based
on the explicit form of the cumulative distribution function). Let us denote xi = log(− log(1 − i/(n +

1))) and Zi = log
(

X(i)

)
for i = 1, . . . , n. The sequence of ordinary least square (OLS) based estimators

(ϑ∗
n = (τ∗

n , β∗n), n ≥ 1) is defined by

τ∗
n =


n
∑

i=1
(xi − xn)Zi

n
∑

i=1
(xi − xn)2


−1

and β∗n = exp
(

Zn − (τ∗
n )

−1xn

)
,

where Zn stands for the average of Z1, . . . , Zn.

The sequence of Le Cam’s one-step estimators overperforms the initial sequence of OLS-based
estimators in terms of asymptotic variance (see Figure 5 and the next Table). Since OLS presents a
small bias for samples of finite size, its CvM statistics are bigger in the next Table.
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Figure 5: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, OLS, and LCE for the Weibull distribution with (τ, β) = (0.8, 3) and n = 10000. Superimposed
red line is the theoretical centered Gaussian asymptotic distributions of the MLE. Superimposed blue
line is the empirical Gaussian asymptotic distributions of the OLS.

It also overperforms the sequence of MLE in terms of computation time for large datasets, as
shown in Table 6.
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MLE OLS LCE
Computation time (s) 568.83 32.64 82.64

CvM statistic tau 0.13 17.26 0.06
CvM statistic beta 0.59 2.33 0.59

Table 6: Computation time and CvM statistics

Numerically computed initial sequence of guess estimators and numerical computations
in the generic case

As soon as the ME is not in closed form or no other closed form estimators can be elicited, the use of a
numerical ME as an initial sequence of guess estimator in Le Cam’s one-step procedure is difficult to
justify. Indeed, no gain will be given in terms of time computation and the use of the MLE is finally
equivalent. We propose therefore to use in the onestep function an improvement of the classical Le
Cam procedure.

Indeed, it can be shown (see Kamatani and Uchida (2015) or Kutoyants and Motrunich (2016))
that for a nδ/2–consistent initial sequence of guess estimators (with 1

2 < δ ≤ 1) and a Lipshitz Fisher
information matrix, the sequence of Le Cam’s one-step estimators is also consistent, asymptotically
normal and efficient (in the Fisher sense). In this setting, for a initial sequence which is neither
asymptotically rate nor variance efficient, the new sequence is asymptotically rate and variance
efficient.

This result allows one to use the numerical computation of the MLE on a subsample (of size nδ,
for 1

2 < δ ≤ 1) as an initial sequence of guess estimators. Namely, for this initial sequence of guess
estimators (ϑ∗

n, n ≥ 1),
n

δ
2 (ϑ∗

n − ϑ) → N
(

0, I(ϑ)−1
)

.

Then the sequence of Le Cam’s one-step estimators given by (2) is also consistent, asymptotically
normal and efficient (in the Fisher sense) with

√
n
(

ϑ̂n − ϑ
)
→ N

(
0, I(ϑ)−1

)
.

The choice of the exponent δ that measures the size of the subsample 1
2 < δ ≤ 1 is set to 0.9 by

default and can be chosen by the user with the parameter control, for instance in the call

onestep(data, distr, control=list(delta=0.7))

The example of Pareto II distribution is interesting and shows the gain in terms of variance (with
respect to the initial sequence of guess estimators) and in terms of computation time in comparison
with the MLE.

This improved method is also used when the distribution does not belong to the closed-formula
family. The initial sequence of maximum likelihood estimators is computed on a subsample with the
mledist function of the fitdistrplus package. The score and the Hessian in the Newton step of the Le
Cam procedure (2) are numerically computed with the functions grad and hessian of the numDeriv
package (see Gilbert and Varadhan (2019)).

Pareto II The sixth example is the joint estimation of the shape parameter α > 0 and the scale
parameter σ > 0 in the statistical experiment generated by a sample (X1, X2, . . . , Xn) of i.i.d. Pareto II
(Lomax) random variables whose probability density function is given by

f (x) =
ασα

(σ + x)α+1 , x ∈ R+.

In this example neither the ME (when it exists for α > 2) nor the MLE are in closed-form. But the
score and the Fisher information matrix can be explicitly computed.

Let ϑ = (α, σ). Then, considering the MLE computed on a subsample of size nδ, 1
2 < δ ≤ 1, as an

initial sequence of guess estimators (ϑ∗
n, n ≥ 1), we get

n
δ
2 (ϑ∗

n − ϑ) → N
(

0, I(ϑ)−1
)
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with

I(ϑ) =
(

α
σ2(α+1) − 1

σ(α+1)
− 1

σ(α+1)
1
α2

)
.

The computation of the Fisher information matrix can be found in Brazauskas (2003).

Here again, the sequence of Le Cam’s one-step estimators naturally overperforms the initial
sequence of MLE computed on a subsample in terms of asymptotic variance (see Figure 6 and the next
Table for the CvM statistics).
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Figure 6: Histograms for the M = 10000 Monte Carlo simulations of the rescaled statistical error of the
MLE, ME, and LCE for the Pareto II distribution with (α, σ) = (1.1, 0.3) and n = 10000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the MLE and the
MLE on a subsample, respectively.

It is also computed faster than the sequence of MLE, as shown in Table 7.

MLE MLEsub LCE
Computation time (s) 1013.00 393.42 414.08

CvM statistic alpha 0.25 4.72 1.44
CvM statistic sigma 0.43 5.54 1.42

Table 7: Computation time and CvM statistics

Generic function For the generic example, we study the Weibull distribution again and force it to be
numerically computed with the function parameter method="numeric" in order not to use the closed
form processing.

We recall that, in the generic procedure, the score and the Hessian in the Newton step of the Le Cam
procedure (2) are numerically computed with the functions grad and hessian of the numDeriv pack-
age. By default, the initial sequence of maximum likelihood estimators is computed on a subsample if
size nδ with δ = 0.9.

The numerically computed sequence of Le Cam’s one-step estimators reaches asymptotic efficiency
for a simulation of M = 10000 Monte-Carlo replications of samples of size n = 10000 as shown by the
CvM statistics summarized in the next table. It is still computed faster than the sequence of MLE, see
Table 8.
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MLE LCE GLCE
Computation time (s) 568.83 82.64 405.10

CvM statistic tau 0.13 0.06 0.25
CvM statistic beta 0.59 0.59 1.08

Table 8: Computation time and CvM statistics
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