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ARTICLE INFO ABSTRACT

In this paper, detailed uncertainty propagation analysis (UPA) and variance-based global sensitivity analysis
(GSA) are performed on the widely adopted double-diffuse convection (DDC) benchmark problem of a square
porous cavity with horizontal temperature and concentration gradients. The objective is to understand the impact
of uncertainties related to model parameters on metrics characterizing flow, heat and mass transfer processes,
and to derive spatial maps of uncertainty and sensitivity indices which can provide physical insights and a better
understanding of DDC processes in porous media. DDC simulations are computationally expensive and UPA and
GSA require large number of simulations, so an appropriate strategy is developed to reduce the computational
burden. The approach is built on two pillars: (a) an efficient numerical simulator based on the Fourier series
method that generates training data, and (b) polynomial chaos expansion (PCE) meta-models that are trained
using the simulator data, and then replace the numerical model in UPA and GSA. Assuming that the Rayleigh
number (R,), the solutal to thermal buoyancy ratio (Np) and the Lewis number(L,) are the uncertain input vari-
ables, the results of UPA show that the zones of high temperature and concentration variability are located in
the regions where the flow is mainly driven by the buoyancy effects. GSA indicates that Nj, is the most influential
parameter affecting the temperature and concentration fields, followed respectively by R, and L. For heat-dri-
ven flow cases (V> — 1), the concentration field is more influenced by L, than R,. For deeper understanding of
uncertainty propagation, we estimate the bias introduced by replacing uncertain parameters by deterministic val-
ues. The resulting spatial maps of the difference between deterministic output and stochastic mean show that a
deterministic approach leads to different zones where the temperature, concentration and velocity fields can be
either overestimated or underestimated. The conclusions drawn in this work are likely to be helpful in different
applications involving DDC in porous enclosures leading to convective circulation cells.
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1. Introduction

Free convection or buoyancy driven flow caused by density varia-
tions in saturated porous media, has been studied extensively in the lit-
erature due to its wide applicability. These density variations may oc-
cur due to gradients in the fluid composition or temperature. Simul-
taneous occurrence of both gradients causes a type of flow known as
double-diffuse convection (DDC), thermosolutal or thermohaline flow
[38,40]. Instances of DDC in porous media are widespread, ranging
from large scale problems in geothermal engineering [31], CO, seques-
tration [25,26], nuclear waste disposal [22] and enhanced recovery of
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petroleum reservoirs [6], to small scale problems encountered in alloy
solidification [9], fluidized beds and fuel cells [2]. DDC in porous me-
dia is often simulated by employing Darcy momentum conservation law
with variable density, in conjunction with heat and mass transfer equa-
tions. Due to nonlinearity, DDC problems have no general analytical so-
lutions and are often simulated using numerical models.

Use of numerical models has become widespread in the study and de-
sign of physical systems involving DDC in porous media. However, the
structure and input parameters of these models are almost always prone
to uncertainty resulting from simplifying assumptions, poor knowledge
of underlying mechanisms, data insufficiency, natural stochasticity, etc.
These sources of uncertainty propagate through the model and lead
to uncertainty in model outputs. As stated by several previous stud-
ies (e.g. [37,65]), the resulting model output uncertainties have neg-
ative effects on model reliability in practical applications, and this
strengthens the need for a more in depth study of the critical
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issue of simulation under uncertainty. Addressing this issue involves at
least two interrelated aspects: first, quantification of model output un-
certainties resulting from the propagation of input uncertainties through
the numerical model, and second, allocation of model output uncertain-
ties to different sources of uncertainty in the model inputs [14,42,54].
The first aspect is known as uncertainty propagation analysis (UPA), and
the second aspect requires global sensitivity analysis (GSA). GSA and
UPA should be performed concurrently, as both are essential parts of
the model development process in reliability analysis, robust design op-
timization, data-worth analysis, and risk assessment.

The majority of studies on DDC in porous media use a scenario-based
approach to analyze the effect of inputs variations on model outputs
(e.g. [17,30,46,49, 50, 64]), and despite the importance of the sub-
ject, few studies have addressed formal UPA and GSA for various types
of DDC problems in porous media, or even done so in the broader con-
text of DDC in bulk fluids. Key studies in this regard are reviewed in
Table 1. Le Maitre et al. [32] discussed different techniques of UPA for
compressible flows. Ganapathysubramanian and Zabaras [18] analyzed
the effects of random parameters on natural convection in bulk-fluids.
The same problem has been addressed in Venturi et al. [57] by as-
suming perturbed boundary conditions. Based on Monte Carlo method.
Shome et al. [53] performed UPA for mixed convection in a circu-
lar tube. Fajraoui et al. [14] conducted UPA for natural convection
in porous media. A parameter sensitivity analysis is presented in Shir-
van et al. [52] for heat transfer in a porous solar cavity receiver. Sha-
hane et al. [48] used deep neural networks to perform UPA for nat-
ural convection in a 3D box cavity. This review shows that existing
studies are limited to purely thermal natural convection. Most of these
studies in both porous media and bulk fluids, investigated scalar vari-
ables characterizing the overall heat transfer flux and velocity predic-
tions, such as the average Nusselt number and maximum velocities.
Hence, information on the spatial variability of model output uncer-
tainties and sensitivity indices are not available, though similar stud-
ies have been done in Fajraoui et al. [14]. So, there are gaps in the
investigation of UPA and GSA for problems of DDC in porous media.
This study tends to address these gaps by performing detailed UPA and
variance-based GSA on the widely adopted DDC benchmark problem of
a square porous cavity with horizontal temperature and concentration
gradients. The objective is to understand the impact of uncertainties re-

Table 1

Review of literature on UPA and GSA for natural convection in bulk fluids and porous media.

lated to model parameters on metrics characterizing flow, heat and mass
transfer processes, and to derive spatial maps of uncertainty and sensi-
tivity indices which can provide physical insights and a better under-
standing of DDC processes in porous media.

Perhaps the most important hindrance in the way of UPA and GSA of
DDC problems is the computational cost. Due to nonlinearity and high
dimensionality of DDC models, the unit cost of a forward simulation
could be very high, depending on the time and space scale. Even for
small time and space scales, simulation of DDC at high Rayleigh num-
bers requires dense computational grid and small time steps size, which
contribute to a high CPU time. GSA and UPA both involve repetitive sim-
ulations by the numerical model, and hence the large number of DDC
simulations required for obtaining accurate solutions may become com-
putationally infeasible. To overcome the computational challenge, we
(a) employ a highly efficient simulator based on the Fourier series so-
lution [49] which allows for accurate solution with reduced degree of
freedom, and (b) use the numerical model to train and validate poly-
nomial chaos expansions (PCEs). The PCEs then replace the numerical
model in UPA and GSA computations [43].

The structure of the present study is as follows. In Section 2, we
describe our DDC problem and the governing equations of the mathe-
matical model used in its simulations. Section 3 describes the UPA and
GSA procedure and how PCEs are used in this context. In Section 4 the
results of the UPA and GSA are presented with regards to each of the
output quantities of interest (Qols) and physical insight are provided. Fi-
nally, the summary and conclusions are provided in Section 5.

2. Problem framework
2.1. Problem statement and assumptions

Numerical models of DDC in porous media have been used in many
industrial and environmental problems under realistic configurations.
However in most theoretical studies, DDC in porous media is studied us-
ing the hypothetical problem of a porous enclosure. It is a very popu-
lar benchmark for DDC numerical codes (see the review by Corcione et
al. [10]). Part of the popularity of this benchmark problem stems from
its simplicity in terms of geometry and boundary conditions, and the
fact that there are many published studies regarding its numerical solu-
tion using a variety of numerical methods [49]. This problem has been

Uncertain
Reference Type of problem Uncertain input (s) output (s) Method
Le Maitre et al. [32] 2D (SC-HG), TNC, BF (Zero-Mach- BT (GD) T and q fields, UPA (PCE)
number flows) Nu>
Ganapathysubramanian, and 2D (SC-HG),TNC, BF/SPM BT, BSR, ¢ (GD) T, q and p fields UPA (PCE)
Zabaras, [18] -
Venturi et al., [57] 2D (SC-HG), TNC, BF BT (GD) Nu UPA (MCS), GSA
(Sobol)
Shome [53] 3D (circular tube), TNC, BF, R, (10° = 107), P, (0 — 1000), Hy (100 — 1000) Nu:f MSC
Fajraoui et al. [14] 2D (SC-HG), TNC, SPM R, (0=1000), 74 (0= 1), ¢ 1(0.1-1, 0.01-0.1), 0k, (0—=4) T field, q max, UPA (PCE)
Nu GSA (Sobol)
Shirvan et al. [52] 2D (inclined SC), TNC, SPM R, (10*=10), D, (1075 = 10%), 8 (0—90°), & (% - 1)) Nu GSA (RSM)
e(0-1)
Shahane et al., [48] 2D(SC-HG)/3D(cube), TNC, BF P.(GD(u=15,0=0.02p)), Nu, gand T UPA (PCE/DNN)
R,(GD (n=10° - 10°,6 = 0.024) , BT (GD) fields

2D: two-dimensional, 3D: three dimensional, SC: square cavity, HG: horizontal gradients

TNC: temperature-induced natural convection, BF: Bulk fluid, SPM: Saturated porous media

Dg: Darcy number, R,: Rayleigh number, P;: Prandtl number, BT: boundary temperatures, Hz: heat flux, k: permeability, ok, ,: Spatial rates of change in permeability, ry: permeability

anisotropy ratio, a;, 1: dispersion coefficients, ¢: inclination angles, 5: dimensionless porous substrate thickness, e: Emissivity, BSR: boundary surface roughness, e: porosity, p: pressure
GD: Gaussian distribution, Nu: mean Nusselt number, gnq,: maximum velocities, T: temperature, f: friction factors, q: velocity

PCE: Polynomial Chaos expansion, DNN: Deep Neural Network, RSM: response surface methodology, MCS: Monte Carlo Simulation, Sobol: Sobol sensitivity indices
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the topic of GSA in Fajraoui et al. [14], but for purely thermal natural
convection (without solute transport). To the author's knowledge, GSA
and UPA for DDC in porous enclosure have not been assessed in the lit-
erature.

DDC in porous enclosure has been investigated for a variety of enclo-
sure geometries (e.g. trapezoidal as in [35], circular tube as in [53]),
orientations [4], gradient directions [21,36] and boundary conditions
(e.g. [27]). Here we focus on the most widely adopted DDC benchmark
problem in the relevant literature. As demonstrated in Fig. 1, we con-
sider a square domain of length H [L] filled with a saturated porous
medium. It is assumed that the third dimension of the enclosure is large
enough so that the fluid flow and heat and mass transports are two-di-
mensional. We assume Dirichlet boundary conditions for temperature (T
[®]) and concentration (C [ML~3]) at the vertical walls, and thus have
constant values of T; and Cj on the left wall, and T and Cg on the right
wall. The left side wall has a higher temperature and a higher concen-
tration than the right wall, hence we have T; > Ty and C;, > Cg. The
top and bottom boundaries of the problem domain are thermally adi-
abatic and impermeable, and are represented by Neumann boundary

. oT _ oC . . . N .
conditions (5; = 37 = 0). Gravity acts in the negative y-direction which

dy

is orthogonal to the direction of the temperature/solute gradients. The
velocity components in x and y Cartesian coordinates are represented
with vy and v, [ML~']. Impervious boundary conditions are imposed on
all walls, so that we have v, = 0 on the vertical walls, and ¥, = 0 on the
horizontal surfaces. The porous media is assumed to possess isotropic
and homogenous thermo-physical properties, and is in local thermal and
compositional equilibrium with the saturating fluid. Viscous dissipation
and porous medium inertia are not considered, and the Soret and Dufour
effects are neglected. The fluid is assumed to be Newtonian and incom-
pressible, and its flow in the cavity is steady-state laminar and complies
with Darcy's law. The Boussinesq approximation is considered to facili-
tate the numerical solution procedure. Validity of this approach for nat-
ural convection in porous media is discussed in Fahs et al. (2019).

2.2. Mathematical model and Fourier series solution

The coupled fluid flow, mass and heat transfer can be written in the
following non-dimensional form [25, 49, 50]:

v oVt
X Y
+ =0
ox*  oy* @
op*
*—
Ve T ox* @
op* -
;=—§—Ra [NbC +T*] 3)
s 0T 0T (2T 0T _
X gx* y ay* ax*z ay*Z - (4)
L0C*  oC* 1 [0*C*  9*C*
+ -— =0
o T T (ax*2 a2 ®

where, T*, C*, x*, y*, p* Vi and Vy* are non-dimensional temperature, con-
centration, horizontal and vertical Cartesian coordinates, fluid pressure
and velocity components, respectively. The above system of equations
is governed by three dimensionless parameters, namely the porous ther-
mal Rayleigh number R, the solutal to thermal buoyancy ratio Nj, and
the Lewis number L,. These parameters are defined as follows [63]:

_ pogkHPrAT
R, = N W 4 (6)
BcAC
b= 5,AT (@]
a
Le = B (8)

where py [ML7] is reference fluid density, & [LT~?] is acceleration due
to gravity, k [L?] is permeability, 7 [©~'] and B¢ [M~'L?] are the ther-
mal and solute volumetric expansion coefficients respectively,

C=C( C =0Cy
T=T, /-t Saturated > T=Tg
v, =0 porous media b =0
F 3
.1.
»
—_
dy

> -

-

Fig. 1. Schematic diagram of the problem with description of boundary conditions.



4 M.M. Rajabi et al. / International Journal of Heat and Mass Transfer xxx (xxxx) 120291

AT =T, — T and AC = C; — C are the temperature and concentration
difference between the left and right walls, # [ML™'T~']is dynamic vis-
cosity and @ [L72T~'] and D [L72T~'] are the thermal and molecular
diffusivities

The porous thermal Rayleigh number (R,) is the ratio of buoyancy
and thermal diffusion forces; and high R, implies higher buoyancy com-
pared to viscous force. The buoyancy ratio (N}) represents the relative
strengths of the thermal and solute buoyancy forces. If N, > 0, both
thermal and solute gradient are cooperating each other; N, = 0 repre-
sents pure heat-driven flows, and N, < 0 shows opposing thermal and
solute buoyancy forces. For thermal and solute double diffusive convec-
tion (i.e. thermohaline) Ny should be negative (¢ > 0and ffr < 0). This
assumption is considered in this work. The Lewis number (Le) signifies
the relative importance of thermal to solute molecular diffusion. When
L, is less than unity, the mass transfer process is dominant. L, controls
the concentration and temperature fields, and these two fields are only
identical in case L. = 1 [11].

In UPA and GSA, the performance of the method used to solve the
governing equations is critical as repetitive simulations of the forward
problem are required. In this work, the governing equations are solved
using the series Fourier spectral method, as in Fahs et al. [13], [2016]
and Shao et al. [49]. Thus, the governing equations are reformulated us-
ing the stream function, and the temperature and concentration are as-
sumed as primary variables which are approximated by double Fourier
series that satisfy the boundary conditions. The spectral system is sim-
plified by expressing the spectral velocity field in terms of temperature
and concentration. The Fourier series coefficients of concentration and
temperature are calculated by solving the final nonlinear spectral sys-
tem using an advanced nonlinear solver from the IMSL library (more de-
tails can be found in [49]). The advantages of using the Fourier series
method are multiple. This method has a high convergence rate, allowing
the ability to provide high accurate solution with reduced number of de-
gree of freedom (Kopriva, 2009). The Fourier series method allows for
significant CPU-time saving, as the system is solved directly as steady
state. Finally, in standard numerical solutions (finite element or finite
difference), the evaluation of the metrics used for UPA and GSA requires
specific post-treatment of model output, which can introduce numerical
error. With the Fourier series method, all these metrics are evaluated
analytically without any approximation, using the Fourier series expan-
sions. The Fourier series code has been validated by comparison against
previously published works in Shao et al. [49].

3. Theoretical framework and methodology
3.1. Uncertainty propagation analysis (UPA)

UPA involves quantification of mode output uncertainty resulting
from the propagation of input uncertainties through the model [7].
Monte Carlo simulation (MCS) is the most popular method for UPA
in computational fluid dynamics [42]. MCS error is in the order of

<1/ ) ) where nyc is the number of Monte Carlo samples [8].

Hence achieving an acceptably small level of error often requires a large
number of deterministic model simulations, which may be computation-
ally difficult. A surrogate modeling approach based on PCE has been
adopted in the current study to alleviate the computational challenge of
performing MCS for UPA.

3.2. Polynomial chaos expansion (PCE)

Non-intrusive PCE is a kind of surrogate model that is known to be
ideal for problems with low to moderate number of uncertain inputs.
Details about PCE can be found in several papers including Le Maitre
and Knio, [33] and Xiu, [58]. Here we only provide a brief overview.

PCE characterizes the stochastic simulation output y as a series in the
form of the following equation [19]:

y= Yy ) ©)
i=0

Every element of this series is the product of a deterministic coeffi-
cient o; and a stochastic component y;({), where { is a random variable
with a certain probability distribution and y;(¢) is a polynomial function
of order i that satisfies the orthogonality condition. The optimal choice
of the polynomial type for y;({) depends on the probability distribution
for ¢, and this choice is often made using the Askey scheme [59]. The
Legendre polynomials are used in this study as the probability distrib-
utions characterizing the uncertain inputs are assumed to be uniform.
The deterministic PCE coefficients o; can be estimated by non-intrusive
methods which treat the physics of the system as a black-box, and use
the known input-output pairs as training dataset for the estimation of «;.
Hence, non-intrusive PCEs are known as data-driven meta-models [45].
One particularly popular non-intrusive method for the estimation of PCE
coefficients is the regression method. This method involves the follow-
ing steps: (1) choosing a set of n, regression points (each denoted by &)
from the probability space of the random input variable(s) using deter-
ministic or random sampling methods, (2) employing these regression
points to perform the same number of numerical simulations (we repre-
sent the model outputs for these n, simulations with y(gx)), and (3) es-
timating the PCE coefficients by solving the following least square opti-
mization problem [44]:

n,

miny, [y (&) - gaiwi (ek)] 10

k=1

Note that the PCE term in Eq. (10) is truncated to g terms in order
to make the computations practical. Estimation of each output Qol re-
quires a PCE meta-model, and hence in the case of multivariate outputs
(T*, C*, vy andv;), a PCE must be constructed for each points of the grid.
In this study, PCE meta-models are constructed using the python pack-
age ‘ChaosPy’ [15].

3.3. Global sensitivity analysis (GSA)

In this paper, we perform GSA using a variance-based method. The
most commonly used measures to quantify variance-based sensitivity are
Sobol indices [24]. Their popularity stems at least from two facts: (1)
they do not rely on any assumption regarding the linearity or monot-
onous behavior of the physical model and can hence be used for GSA
of complex models [5], and (2) their interpretation is relatively easy
[14]. The main notion of variance-based sensitivity analysis methods
(including Sobol indices) is to measure the contribution of an input or
a group of input variable to the output variance. We assume y = f (x)
to be a square-integrable function with mutually independent inputs
x= {xl, X, } The variance of y (denoted by V(y)) can be decomposed
to (Sobol, 2001):

n n n n n n
Vo= ZVI' + z Z Viip + 2 Z Z Viiiiy + Vi i, an
i=1

iy=liy=iy+1 iy =Liy=i +li3=ir +1

where V; represents the variance of y with respect to the individual effect
of each single input x;, and Vi...iy shows the variance of y with respect to
the interaction of {xl, ,xk}. Eq. (11) can be normalized through divi-
sion by V(y). By doing so, the first-order or main-effect Sobol sensitivity
index of an input x; is defined as [34]:

s} VIM

=1 = (12)
LT m Vo)
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where *-; indicates all model inputs expect for x; E() denotes the ex-
pected value, and S,-l is the sole contribution of x; to the variance of y ne-
glecting its interactions with other inputs. The rest of terms in Eq. (12),
divided by V(y), represent higher order indices measuring sensitivity to
interactions of inputs. The overall contribution of a parameter x; to the
output variance, which includes both its individual effect and its inter-
actions with the other input parameters, is described by the total-order
or total-effect Sobol sensitivity index. It is defined as:

Vo (B (52))
Vo)

The first-order and total sensitivity indices of Eqs. (12) and (13)
are typically estimated via Monte Carlo integration (see [41]), but the
process might become computationally impractical if a single model
evaluation is time-consuming. To solve this problem, Sobol sensitivity
indices can be computed from PCEs, either analytically from the expan-
sion coefficients (see Sudret, 2008), or by using PCE as a meta-model
in Monte Carlo integration. This study employs the second approach by
employing the python package ‘SALib’ [23].

sT=1- 13)

4, Results and discussions

We assume thatR,, L, and N are the uncertain input variables sub-
ject to UPA and GSA. As common in literature (e.g. [49, 50, 56, 28]),
we assume that the range of variability for R, is from 10 to 500, and L,
is from 1 to 5, using uniform probability distribution in both cases. Note
that these values are physically plausible. For Ny<— 1, the convective
flow is mostly solute-driven (termed as case ‘SD’) while N,> — 1 typifies
opposing flows that are largely heat-driven (called case ‘HD’). There is a
sharp discontinuity in the temperature and concentration fields as well
and in heat and mass fluxes between these cases. This discontinuity can-
not be easily captured with the surrogate model based on polynomial in-
terpolation. Thus, we split the rang of variability of Ny into two uniform
distributions (represented by unif (...)) separated by a point of disconti-
nuity at Ny = —1. These are unif[-5,—1) for *SD’ cases, and unif(—1,0]
for ‘HD’ cases. The uncertainties in these inputs can be attributed to
the imperfect characterization of the saturating fluid and the porous
domain (notably hydraulic conductivity, thermal conductivity of solid
grains and porosity), as well as the validity of the mathematical model
used to calculate the effective properties (average volume relation). Uni-
form distributions are often adopted to signify a general knowledge of
the expected range of input parameters, and are preferred unless rele-
vant information about parameters is available to justify other distrib-
ution types [16]. The uniform distribution is commonly used in sensi-
tivity analysis when the main objective is to understand model behav-
ior [39]. The assumption of uniform distributions is commonly used in
applications where uncertainties are related to porous media properties
([14] and reference therein)

We consider all three uncertain parameters as ‘independent’ random
variables. Other input variables (such as the size of the cavity H) are
considered to be deterministic. The output Qols in UPA and GSA are di-
mensionless temperature (T*) and concentration (C*); vertical and hor-
izontal dimensionless velocity components (V;andVy) and their respec-
tive maximum values (Vi maxand";, max); and average Nusselt (NM) and

Sherwood (Sh) numbers. The last two output Qols are defined as [50]:

1 3
— oT*
Nu = / -— dy* (14)
0 ox =0
= Yac
Sh= / ay*
A . (15)

Ny represents dimensionless thermal diffusive flux across the

higher temperature wall, and Si denotes the solute diffusive flux at the
higher concentration wall. Together these eight output variables provide
a full quantitative picture of the fluid circulation and the heat and mass
ﬂl& in the problem domain. In the subsequent sections, V;:,maxa V;,max
s Nu and S} are collectively called scalar output Qols. Spatial varia-
tions of T*, C*, V;andv_: provide information on the spatial variability of
model output uncertainties.

Three issues are discussed in the results section. As PCEs are used as
a meta-model to perform UPA and GSA, we first investigate their valid-
ity by comparing their results with those of the numerical model. Sec-
ondly, we present the outcome of UPA based on the results of the Qols
at mean values and the corresponding standard deviations. Finally, we
discuss and provide some physical explanations of the GSA results which
aims at identifying the key parameters affecting the Qols. We also em-
ploy PCEs to analyze marginal effects of model parameters on the output
Qols.

4.1. Validation of PCE results

In this study, PCE meta-models are constructed by employing a train-
ing dataset of sizeq = 150, which is consistent with similar previous
studies such as Fajraoui et al. [14]. An independent set of 50 sample
points is used for model validation. These samples are obtained by em-
ploying an optimized Latin hypercube sampling (OLHS) strategy based
on the centered Ly-discrepancy (CLD) criterion and the enhanced sto-
chastic evolutionary (ESE) optimization algorithm (see [42] for a brief
description). The design of experiment for selection of regression points
is performed using the R package “DiceDesign”.

Different orders of the polynomials are used for different output Qol.
For each Qol, the order of polynomial (Op) is chosen by comparing PCEs
of different orders from O, =0 to 7, and the PCE order with the low-
est normalized root mean square error (NRMSE) value for the validation
dataset is chosen. Here, seven is the maximum value of O, in which the

o, +
number of PCE coefficients (which equals to( r n n"), wheren, is the
y

number of variables [55]) remains below the number of training points
(n, = 150),

In order to pave the way for the use of PCE meta-models in UPA
and GSA, the performance of the constructed PCEs has been assessed
through the use of both statistical diagnostics and graphical methods.
Table 2 presents NRMSE for the estimation of various scalar Qols.
NRMSE is estimates as follows:

\/ T (B () ~Espci ()’

s (16)
max (Esmtm (yl)) — min (Esnum (y1>)

NRMSE =

where Espm(y;) is the numerical model outputs for a specific Qol (de-
noted byy;), Espce(y;) is the respective PCE estimation, and ng is the
number of sample points. The NRMSE values in Table 2 are relatively
low, indicating that the PCE meta-models provide satisfactorily accurate
estimations of the input-output relationships. Furthermore, Fig. 2a-d
shows scatter plots of Esp,, versus Espcg for the validation dataset. Re-
sults shown in these figures pertain to the average Nusselt and Sher-

Table 2
PCE NRMSE error for the estimation of scalar Qols.

Case Nu Sh Vx, max Vy, max

SD 0.082 0.129 0.031 0.010
HD 0.090 0.134 0.019 0.001
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represents the solute-driven case (N, €[5, —1)) and ‘HD’ represents the heat driven case (N, €(—1, 0]).

wood numbers for cases ‘SD’ (N, < — 1) and "HD’ (N, > — 1). The clouds
in all four sub-figures clearly look aligned with the bisector and are
hence satisfactory. These scatter plots are presented as examples, and
plots of other output Qol demonstrate similar behavior.

4.2. Uncertainty propagation analysis results

The verified PCE meta-models are subsequently used in MCS (with
myc =1,000 based on convergence analysis) to estimate the mean
(upce), standard deviation (opcg) and probability distribution function
(PDF) of the output Qols. The spatial distribution of mean temperature,
concentration and velocity components are presented as Fig. S1 in the
Supplementary Material. The results of mean values reflect the gen-
eral behavior of double diffusive heat and mass transfer in a square
porous cavity [20,49]. For temperature, they are in full agreement with
the results obtained from stochastic simulations of Fajraoui et al. [14].
This further confirms the accuracy of our PCE meta-models. The PDFs
of T*, C*, vy arﬂ in three exemplary observation points as well as for

s

Vi max? V;f,mx, Nu and ) are presented in Figs. S2 and S3 of the Sup-

plementary Material. Some PDFs resemble a normal distribution and
this is mostly the case in areas of the domain with low standard devia-
tions of the output Qols. But others are skewed to the right or left. None
of the PDFs have multiple peaks, and they are all unimodal.

We present the results of the UPA analysis in two sub-sections.
InSection 4.2.1, the standard deviations resulting from UPA are ana-
lyzed, and then in Section 4.2.2 the outcome of UPA is compared with
those of deterministic simulations.

4.2.1. Standard deviations of the Qols: spatial maps spatial maps of T*, C*,
4y andd,

Fig. 3a and b shows the spatial distribution of standard deviation for
dimensionless temperature estimates in the ‘SD’ and ‘HD’ cases, respec-
tively. For both cases, we observe symmetry around the center point,
with the lowest standard deviations pertaining to the thermal bound-
ary layers at the side walls. The thermal boundary layer is a region
where the fluid temperature is directly subjected to heating or cool-
ing from the boundary wall, and the low standard deviations in this
region are due to the assumption of constant (deterministic) tempera-
ture in the side walls. We also observe a zone with low standard de-
viation at the center of the flow eddy where fluid rotates at a rela-
tively slow pace. As convective flow and thermal gradient are weak in
this zone, heat transfer processes are insignificant. Thus, the tempera-
ture distribution is insensitive to model parameters. For the ‘SD’ case,
the largest standard deviations are located around the top-left and bot-
tom-right corners. In these zones, the convective flow and the thermal
gradient exhibit their highest amplitudes (see Fig. S1 in Supplementary
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Fig. 3. Spatial distribution of the standard deviation for dimensionless temperature.

Material). Hence, uncertainties on model parameters can considerably
affect the temperature distribution in these zones. Following the same
logic, we can understand why the largest standard deviations are lo-
cated around the bottom-left and top-right in the ‘HD’ case (Fig. 3b).
The zone of high temperature variability is more spread in the ‘HD’ case
than ‘SD’ case. As thermal conduction is more powerful than solute mol-
ecular diffusion, the solute-driven convective flow is more intense than
thermal-driven flow. The results of the ‘HD’ case concerning the stan-
dard deviation of the temperature are in agreement with Fajraoui et al.
[14]. When the convective flow is more intense, the thermal solute lay-
ers shrink and become more confined to the walls. This could explain
the difference in the extent of high variability zones between the ‘HD’
and ‘SD’ cases.

All observations reported on the variability of the temperature are
valid for the concentration distribution (Fig. 4a and b). This concerns
the spatial distribution of the zones of high and low variability as well
as the difference between the spatial distribution of the ‘SD’ and ‘HD’
cases. However, despite the similarities, the spatial distribution of stan-
dard deviations for concentration and temperature do not entirely co-
incide. Fig. 4b shows that in the ‘HD’ case, the zone of low concen-
tration variability is mostly limited to the boundary layer toward the
vertical walls, and contrary to temperature (Fig. 3b) the zone of low
concentration variability at the center of the domain is relatively small.
This indicates that in the ‘HD’ case, except for the boundary layers

around the vertical walls, the uncertainties on parameters affect the con-
centration distribution everywhere in the domain, but of course not at
the same magnitude.

Concerning the horizontal velocity component (Vy), as shown in Fig.
5a and b, the zones of high standard deviation are located along the hor-
izontal walls. The highest variability can be observed at the top-left and
bottom-right corners for the ‘SD’ case and at the opposite corners for
the ‘HD’ case. This is understandable as horizontal flow occurs mainly
along the horizontal walls. For the ‘SD’ case, the convective flow is up-
ward along the left wall. Due to the boundary conditions and mass con-
servation, V; is well correlated with the upward convective flow which
is considerably sensitive to the input parameters. In the same manner,
we can explain the high variability of (¥}) at the bottom-right corner. It
is also worth mentioning, that as for concentration and temperature, the
zone of high variability of vy is more spread in the ‘HD’ case than in ‘SD’
case. As explained in the previous sub-section, this is related to the dif-
ference between molecular diffusion and thermal conduction that yields
a solute-driven convective flow that is more intense than the heat-driven
flow. Same observations can be reported for the variability of the verti-
cal velocity component (V) along the vertical walls (Fig. 6a and b).

1
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Fig. 4. Spatial distribution of the standard deviation for dimensionless concentration.
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4.2.2. Comparison of deterministic and stochastic outputs

For a deeper understanding of uncertainty propagation, we employ
a similar approach as in Shahane et al. [48] to investigate the differ-
ence between deterministic model outputs and the stochastic mean esti-
mates (Dpcp (y,-) — HpcE (y,- )). This difference is termed as DDSM (differ-
ence between deterministic output and stochastic mean). It is calculated
based on two independent estimates of the same output (Qol), both ob-
tained using PCEs. For the deterministic case, PCEs are used to obtain
single estimates of the Qols using the deterministic values of the inputs
(R, =255L,=3 and N, = -3 for the 'SD’ case and Ny = —0.5 for the
‘HD’ case). For the stochastic mean, PCEs are employed in the frame-
work of MCS as previously described. Hence, DDSM is meant to provide
an estimate of the bias introduced as a result of assuming deterministic
values for parameters that are inherently uncertain.

Spatial maps of DDSM are given in Fig. 7. As demonstrated, re-
gions of highest DDSM coincide with regions of highest standard devi-
ation for all four variables T*, C*, vViand V;; which makes sense as these
zones are considerably affected by the uncertainties in parameters. It is
observed that the DDSM values are on the same order, but generally
less than the respective stochastic standard deviations. The general pat-
terns of spatial variability for DDSM in our study are in agreement with

those for natural convection in bulk fluids developed by Shahane et al.
[48].

While standard deviation distribution indicates the zones of high
variability, DDSM distribution allows for identifying where a Qol can
be overestimated (positive values in Fig. 7) or underestimated (nega-
tive values in Fig. 7) in a deterministic approach. For example, Fig. 7a
shows that the use of deterministic values without considering the un-
certainties on parameters leads to an underestimation of the tempera-
ture at the top part of the domain and overestimation in the bottom part,
in the ‘SD’ case. The opposite is true in the ‘HD’ case (Fig. 7b), but the
corresponding zones are shaped diagonally. The same can be observed
for concentration (Fig. 7c and d). More complex DDSM distributions
can be seen for viand V; (Fig. 7e-h).

Table 3 presents the mean and standard deviations of the scalar
Qols, along with their respective deterministic simulation outputs. Com-
parison of mean values resulting from UPA with the deterministic out-
puts, shows that a deterministic approach creates 4% to 16% bias
in the estimation of the scalar Qols. The table also shows relatively
high standard deviations for the Qols, with coefficients of variation (
= |o/ul x 100) equal to 50-85%. With the deterministic parameters, the
model would overestimate heat and mass fluxes, as respectively esti-

mated by NI/{’ Sh, as well as the maximum horizontal velocity (v;

max

in both ‘SD’ and ‘HD’ cases. However, by neglecting uncertainties, the
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Table 3

Comparison of deterministic and stochastic outputs.
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Nu

Sh Vx, max Vy, max
stoch det Stoch det Stoch det Stoch det
Case M c u c u c u c
SD 5.12 3.87 5.81 14.00 7.46 15.9 95.93 57.35 102.47 269.86 191.68 289.72
HD 4.13 2.09 4.32 7.19 4.63 8.31 50.68 32.54 54.56 82.14 70.07 70.68

stoch: stochastic model outputs.
det: deterministic model outputs.

model overestimates the maximum vertical velocity (V;,max) in the ‘SD’
case and underestimate it in the HD ‘case’.

4.3. Sensitivity analysis results

In this sub-section, we present and analyze the results of GSA with
the intention of understanding how the uncertainty in the outputs of the
model can be allocated to different sources of uncertainty in model in-
puts.

4.3.1. What are the most influential parameters that affect T*, C*, Viand vy
?

Fig. 8 shows the boxplots of first-order and total Sobol indices
for T*, C*, viand V; with respect to Ry, L, and Np. In these boxplots, the
central mark indicates the median value of Sobol indices for all model
elements, and the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most ex-
treme values of the Sobol indices. Based on the median value and the
interquartile range (IQR) of the first-order and total Sobol indices in Fig.
8a and b, the most influential parameter on temperature is Nj, and tem-
perature is clearly more sensitive to R, than L, in both the ‘SD’ and ‘HD’
cases. In both cases, N}, is also the top contributing parameter to the con-
centration field (see Fig. 8c and d). For the ‘SD’ case, the concentration
distribution is more sensitive to R, than L,. For the ‘HD’ case, as shown
in Fig. 8d, the total Sobol indices show that L, is more important than
R, while the first-order Sobol indices for the two parameters are similar.
This means that for the ‘HD’ case, the high sensitivity to L, is related
to interactions with other parameters. For horizontal velocity (V) in the
‘SD’ case (Fig. 8e), Nj is the most influential parameter, followed by R,
and then L,. But in the ‘HD’ case, horizontal velocities are most sensi-
tive to R,, followed by N and L, (Fig. 8f). Vertical velocities are highly
sensitive to both Nj and L, in the ‘SD’ case, and in contrast to horizon-
tal velocity, V;is more sensitive to L, than R,. For the ‘HD’ case, N and
Rgare the most important parameter influencingVy (Fig. 8h).

4.3.2. The spatial distribution of sensitivity indices

For the sake of brevity, we only present the maps of the total Sobol
indices in the paper, and the respective maps of the first-order indices
are provided in the Supplementary Material.

Figs. 9 and 10 show the spatial maps of total Sobol indices with
respect to uncertainty inR, L, and N for temperature (T*) and con-
centration (C*) estimations, respectively. For the ‘SD’ case, the zones
of high sensitivity of T* to Nj are located near the top-right and bot-
tom-left corners (Fig. 9e). In these zones the locations of the isotherms
are highly affected by the convective flow which is mainly governed by
Np. At the opposite corners (top-left and bottom-right), the isotherms are
close to each other and their locations are impacted by the boundary
conditions. The zones of high sensitivity of T* to R, and L, have lemnis-
cate shapes located at the center of the domain (Fig. 9a and c). Along

the vertical walls, the heat transfer by convection is upward, thus the
horizontal penetration of isotherms is mainly related to thermal diffu-
sion which is represented by R, and L,. As for the temperature field, the
zones of high sensitivity of C* to Nj are located at the top-right and
bottom-left corners where the positions of the concertation contours are
mainly controlled by the convective flow (Fig. 10e). However, for the
concentration field, a lemniscate-shaped zone of high sensitivity appears
at the center of the domain. High sensitivity of C* to R, and L, are ob-
served in the corners and in lemniscate-shaped zones at the center (Fig.
10a and c).

For the ‘HD’ case, the zones of high sensitivity of T* to L, and Nj are
the horizontal reverse of those for the ‘SD’ case (Fig. 9d and f), which
makes sense due to the reversal of the flow direction. For the sensitiv-
ity of T* toR,, the spatial pattern in the ‘HD’ case are completely dif-
ferent from the ‘SD’ case and the zones of high sensitivity appear along
the vertical walls relatively far from the corners (Fig. 9b). For C*, the
zones of high sensitivity to Nj are the horizontally reverse of those for
the ‘SD’ case due to flow reversal from counter-clockwise to clockwise
(Fig. 10f). Sensitivity maps of C* to R, and L, have different patterns
from those in the ‘SD’ case (Fig. 10a and d).

It's noteworthy that the spatial distribution of the Sobol indices for
T* with respect to R, for the ‘HD’ case of DDC are not similar to the
ones for pure thermal convective. Comparison of Fig. 9b with the cor-
responding results in Fajraoui et al. [14] demonstrates that the zones
of high sensitivity do not coincide. This shows that even if convective
processes are dominated by heat gradient, temperature distribution is
still impacted by the mass transport processes.

Figs. 11 and 12 illustrate the maps of total Sobol indices for the
horizontal and vertical components of the velocity field. For V; and in
the ‘SD’ case, significant sensitivity to Nj can be observed along the top
and bottom surfaces, which is logical, as the velocity is mainly horizon-
tal in these parts of the domain (Fig. 11e). However, the zone of highest
sensitivity of Vito Nj is shaped like a lemniscate at the center of the do-
main away from the boundary layer, where the flow is vertical. In the
‘HD’ case, highest sensitivity of Vito Nj, is observed around the top-left
and bottom-right corners (Fig. 11f), and a sharp zone of significant sen-
sitivity expands along to the first bisector. In both the ‘SD’ and ‘HD’
cases, the sensitivity maps of v} to R, and Nj, are complementary with
each other. Sensitive of Vito L, is limited to the center of the domain in
the ‘HD’ case (Fig. 11d).

For V}, the zone of highest sensitivity to Nj is observed at the center
of the domain, while significant sensitivity can also be observed along
the vertical walls. This is true for both the ‘SD” and ‘HD’ cases (Fig. 12e

and f). In the ‘SD’ case, the highest values of S, LTE (v;) are expanded along
the vertical walls outside the vertical boundary layers (Figs 11c and d).
High sensitivity of Vto R, can be observed near the vertical walls. But
the highest zone of sensitivity to R, is shaped like a lemniscate expanded
along the diagonal.
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4.3.3. First-order vs. total sobol indices maps is found for the sensitivity of C*to R,. While the highest total Sobol
Maps of the first-order Sobol indices (presented in the Supplemen- indices (Sga (C*) are located within a lemniscate zone at center of the
tary Material) and those of the total Sobol indices show very similar domain, the highest first-order Sobol indices (Sg, (C*)) are located near
patterns in the majority of cases. Some discrepancy between the two the top-left and bottom-right corners. There are also discrepancies be-

tween the two maps for the sensitivity of v} and V;to L. in the
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Fig. 9. Spatial distribution of total Sobol sensitivity indices for temperature.

‘HD’ case. In these instances, interactions between parameters do not af-
fect only the magnitude of sensitivity, but also its spatial distribution.
As expected, the absolute values of the total indices are higher than
those of the first order indices, indicating significant interaction effects
between parameters. Table 4 shows the percent increase in the spa-
tial average of total Sobol indices, compared to the associated first-or-
der Sobol indices. As demonstrated, the differences between the two in-

dices is generally more pronounced in the ‘HD’ case. We observe the
biggest differences for Sobol indices of L, in both the ‘SD’ and ‘HD’
cases, except for C* and vy in ‘SD’ where the biggest differences pertain
to R, and Nj respectively.
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4.3.4. Sensitivity indices for the scalar QoI

Fig. 13 illustrates the total and first-order Sobol indices for the
scalar Qol as bar-plots. Fig. 13a shows that the variability of the Nus-
selt number is mainly related to R, and then to Ny, for both the ‘SD’
and ‘HD’ cases. However, in contrast to temperature distribution, R, is
more influential than Nj. For the ‘SD’ case, the results in Fig. 13a are

consistent with the previous results regarding the spatial maps of the
Sobol indices (Fig. 9a) and standard deviation (Fig. 3c). In fact, Nu

represents the diffusive heat flux at the hot wall. Thus, it is related to
the temperature distribution near this wall. As shown in Fig. 9a, the
zones in the vicinity of the hot wall, where the temperature field is
highly sensitive to Nj and L., are located in the bottom part of the do-
main where the variability of temperature field is insignificant. How-
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ever, the zone of high sensitivity to R,, toward the hot wall, is located in
the upper part of the domain where temperature exhibits high variabil-
ity. This explains the high sensitivity of /7, to R,. The same logic can
be followed to explain the variation of the Sobol indices in the ‘HD’ case
(Fig. 13b) using Figs. 9b and 3d. Fig. 13a shows slight interactions be-
tween parameters as first-order and total Sobol indices are almost close.

For%, the most influential parameter is N}, followed by R, and L.

This is also in full agreement with the sensitivity analysis of the con-
centration distribution and its standard deviation as in Figs. 10a and
4c (for the ‘SD’ case) and Figs. 10b and 4d (for the ‘HD’ case). Fig.

13 shows that Nu is more sensitive to R, than S; while the latter is

more sensitive to Nj, than Nu Interactions between parameters for Sj
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Fig. 12. Spatial distribution of total Sobol sensitivity indices for vertical velocity.

is smaller than Nu The maximum velocity components (v;mxand
V;,max) behave in a similar fashion regarding parameters (Fig. 13e-h).
For both Y}, andVy ., the most important parameters are R, and
then Np, which makes sense as these parameters control the convective
flow. L is almost a non-influential parameter. More interactions be-
tween parameters can be observed for V;,m,lx andV;,m,,x than Nu and

Sh.

4.3.5. The marginal effects

We investigate the marginal effects to understand the impacts of
each input parameter on the scalar Qols. The marginal effects are cal-
culated using the PCEs, by varying each input parameter within its
range of uncertainty in a stepwise manner while keeping the other two
parameters constant at their deterministic values. The results are de-
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Table 4
Percent increase in the spatial average of total Sobol indices, compared to the associated
first-order Sobol indices.

Qol Solute-driven flow (‘SD’ case) Heat-driven flow (‘HD’ case)
Rq L, Np Rq L, Ny

T 27.9 35.6 13.4 67.2 664.9 45.5

Cc* 73.8 69.5 22.5 211.7 263.5 56.9

vy 32.3 105.7 44.0 31.2 300.1 48.6

vy 97.6 84.0 135.0 81.1 628.7 109.5

<

Biggest increase in each case.

picted in Fig. 14. Each sub-plot of Fig. 14 is based on 1000 PCE sim-
ulations. Evident similarities can be observed in the behavior of Nu
and S with respect to R, (Fig. 14a and b). But it is clear that Sj is
higher thanny, which is expected as thermal conduction is larger than
molecular diffusion (L, > 1). Increasing variations of m and Sj with

respect to R, are expected (for both ‘SD’” and ‘HD’ cases), as the increase
of this parameter is accompanied by the intensification of the convective
flow. In consequence, the thicknesses of the thermal and solute bound-
ary layers reduce and the temperature and concentration gradients near
the vertical walls increase which lead to higher rates of heat and mass
transfer. The intensification of the convective flow also explains the in-
creasing variation of V;max andV;,,,,ax with increasing R, (Fig. 14c and d).
Different behaviors are observed in the ‘SD’ and ‘HD’ cases for the mar-
ginal effects of the Qols due to variation of L, which measures the rela-
tive importance of mass to thermal diffusion. For the ‘SD’ case, Fig. 14e
shows that Ny, decreases with the increase of L,. To explain this behavior,
we interpret the increase of L, as an increase of the thermal diffusivity.
This would improve the heat transfer by diffusion and decreases Nu:

When L, is high enough, heat transfer occurs mainly by diffusion, thus
NM becomes constant. Fig. 14e indicates that, in the ‘HD’ case, Nu
is slightly increasing as L. is increased. In both ‘SD’ and ‘HD’ cases, in-
creasing variation of S} with respect to L, can be seen in Fig. 14f. The
increase of L, can be interpreted as a decrease of the molecular diffu-
sion coefficient. The mass transfer flux becomes convection dominated,
which explains the increase ofSh.Fig 14e and 1f shows that, unlike the
mass flux, heat flux to the cavity does not increase as L, is increased. It
is clear from these figures that atL, = 1, m and S} are equal, given
the similarity of thermal and solute diffusion processes. In general, the
behaviors of NM and S due to the variation of L, are in line with the
results reported in Al-Amiri and Khanafer [1] and Sankar et al. [47].
Fig. 14g confirms that V} ., decreases with the increase of L, in the
‘SD’ case, and decreases in the ‘HD’ case. V;,max is almost insensitive to
L, (Fig. 14f). .

Fig. 14i depicts the marginal effect of N on Ny o the ‘HD’

case, Nudecreases as Nj is increased. The increase of N, intensifies
the solute convective flow which occurs in the opposite direction of
the main thermally-driven convective flow. This weakens the overall
convective flow and decreases the rate of heat transfer to the domain.
For the ‘SD’ case, the intensification of the solute-dominated convec-
tive flow increases the rate of heat transfer. This explains the increase
of Nuwith Np. Similar behavior can be depicted for Sk (Fig. 14j). The
same logic can be used to explain the variation of V;,m(,‘rand‘{;max with
respect to N (Fig. 14k and 1). Unlike the ‘SD’ case, in the ‘HD’ case,
these figures indicate flow deceleration related to the enhancement of
the solute-driven flow that opposes the main flow.

5. Summary and conclusions

We consider DDC in a porous square cavity and we investigate the
effects of uncertainties related to physical parameters on model outputs
characterizing flow and heat and mass transfer processes. Darcy's law is
used to describe fluid flow in the porous media. The hydrodynamics and
thermo-physical parameters can be regrouped in three dimensionless pa-
rameters which are the thermal Rayleigh number (R,), the buoyancy ra-
tio (Np) and the Lewis number (L.). These parameters are assumed to be
uncertain, and UPA and GSA are performed to understand how these un-
certainties would propagate through the model and affect temperature,
concentration and velocity field, as well as maximum velocity compo-
nents and heat and mass fluxes as represented by the average Nusselt
and Sherwood numbers, respectively.

Knowing that DDC simulations are computationally expensive and
that UPA and GSA require a large number of simulations, an appropriate
strategy is developed to perform UPA and GSA in an efficient manner.
The problem of DDC in porous square cavity is simulated using an ef-
ficient and accurate simulator based on the Fourier series method that
allows for highly accurate solutions with a reduced number of degree of
freedom. Numerical simulations are used to train meta-models based on
PCEs. The accuracy of the PCE surrogate models is investigated by com-
paring their results with those of the numerical model based on a set
of simulations independent from the ones used to train the meta-model.
Monte Carlo-based UPA is performed using the PCE meta-model to deal
with high computational cost of DDC numerical simulations. GSA is per-
formed using a variance-based technique via the Sobol indices using the
PCE meta-models. Due to its efficiency, the developed strategy allows
for investigating UPA and GSA not only for scalar average metrics but
also for the spatially variable model output uncertainties and sensitivity
indices.

The results of the UPA show that temperature and concentration
fields are slightly impacted by uncertainties within the thermal and
solute boundary layers. The zones of high temperature and concentra-
tion variability are located in the regions where the flow is mainly dri-
ven by the buoyancy effects. The zones where both temperature and
concentration are highly affected by uncertainties are more spread in
the thermally driven case (‘HD’) than the solute driven case (‘SD’). The
uncertainties in the parameters lead to high variability of the velocity
fields in the vicinity of the walls. Vertical and horizontal velocity com-
ponents are particularly affected by uncertainties in the vicinity of the
vertical and horizontal walls respectively.

We estimated the bias introduced by replacing uncertain parameters
by deterministic values, and presented them as spatial maps of the dif-
ference between deterministic outputs and stochastic means. The results
show that the use of deterministic values leads to different zones where
the temperature, concentration and velocity fields can be either overes-
timated or underestimated. For instance, in the ‘SD’ case, the tempera-
ture field is underestimated in the upper part of the domain close to the
hot wall and overestimated in the lower part close to the cold wall. The
opposite is true for the ‘HD’ case. The same behavior is observed for the
concentration field. With the deterministic parameters, the model over-
estimates the maximum horizontal velocity and the average heat and
mass fluxes into the domain. It overestimates the maximum vertical ve-
locity in the ‘SD’ case and underestimates it in the ‘HD’ case.

GSA is used to identify the key parameters responsible for uncer-
tainty in a certain model output. It is also employed to rank parame-
ters according to their significance. It is clear that N is the most influ-
ential parameter affecting the temperature field. Nj is followed respec-
tively by R, and L. N is also the most important parameter controlling
the concentration field. As for temperature, it is followed by R, and L,
in the ‘SD’ case. For the ‘HD’ case, L, is more important than R,. The
zones where the temperature field is highly sensitivity to Nj are located
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Fig. 13. First and total order Sobol sensitivity indices for the scalar output Qols.

in top and bottom corners toward the cold and hot walls, respectively.
For the concentration field, the zone of high sensitivity expands to cover
a lemniscate-shaped zone at the center of the domain. The horizontal
velocity component is almost equally influenced by N, and R, in the
‘SD’ case. For the ‘HD’ case, R, is the most significant parameter fol-
lowed respectively by Nj, and L.. The variability of the vertical veloc-
ity is mainly attributed to Nj and L, in the ‘SD’ case and N} and R, in
the ‘HD’ case. The average heat flux to the domain is mainly controlled
first by R, and then N and it is slightly sensitive to L.. The top con-

tributing parameter to the average mass flux is Nj and the most influen-
tial parameters for the maximum velocity components is R,,.

The conclusions drawn in this work are based on the problem of
DDC in porous square cavity but are likely to be helpful in different
applications involving DDC in porous enclosures leading to convective
circulation cells. The results point out the capacity of the methodology
based on the PCE in addressing highly nonlinear problem such as DDC.
They highlight the benefits of GSA and UPA that could be helpful in
risk assessment studies and safe designing procedures. The results are
also helpful in domain characterization from the measurement of state
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Fig. 14. Marginal effects of the input parameters on the scalar output Qols.

variables as it is usually done in applications involving natural porous
media. Further extension of this work could be the evaluation of the ca-
pacities of the proposed methodology in dealing with unstable config-
urations at high Rayleigh involving highly fingered states and several
convective cells, and in addressing applications at large scale such as
in geothermal reservoirs. For such applications, addressing uncertain-
ties related to geological heterogeneity, temperature and concentration
boundary conditions and fracture characteristics would be helpful for
theoretical and practical purposes.
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