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1. Introduction 1 

Modeling of soil moisture dynamics is of key importance in characterizing the processes occurring 2 

in the vadose zone and the interaction of the vadose zone with the underlying groundwater and the 3 

overlaying land surface, vegetation and atmosphere. For instance, soil moisture simulations play 4 

an important role in the prediction of groundwater recharge, and the understanding of how 5 

contaminant from the land surface or shallow subsurface migrate to the groundwater. In hydrology 6 

and climatology, these simulations are used in predicting the partitioning of water and energy at 7 

the land surface, and in ecology and agriculture, such models are employed in forecasting the 8 

availability of water to the root zone. As a result, numerical models for soil moisture simulation 9 

have received increasing attention in the last several decades. 10 

The majority of currently available unsaturated flow models rely on the Richards’ equation in 11 

conjunction with the van Genuchten-Mualem model (van Genuchten, 1980) to describe soil 12 

moisture dynamics (Vereecken et al., 2008). It is well-known and well-documented that the ability 13 

of such models in providing realistic predictions is highly dependent on the accurate estimation of 14 

parameters related to the soil water retention curve and the hydraulic conductivity function (Li and 15 

Ren, 2011; Moret-Fernández et al., 2017; Younes et al., 2018). These parameters often exhibit 16 

high spatial variability, and their direct measurement is infeasible. Hence they are often either 17 

inferred from soil particle size distributions using pedotransfer functions (e.g. Schaap et al., 2001; 18 

Van Looy et al., 2017; Zhang and Schaap, 2017), or estimated through inverse modeling by 19 

employing soil moisture data. The latter has been the subject of numerous studies with some 20 

promising results. Because of the nonlinear relationship that exists between the inputs and outputs 21 

of soil moisture simulation models, and in the heterogeneous case, the high-dimensionality of their 22 

parameter space, certain inverse methods have been of particular interest in this context. These 23 



3 

 

include frequentist methods such as least square estimation (e.g. Abbaspour et al., 2001) and 24 

maximum likelihood estimation (e.g. Hollenbeck and Jensen, 1998); batch Bayesian methods such 25 

as Markov Chain Monte Carlo (Scharnagl et al., 2011); and sequential Bayesian methods, 26 

including most notably the extended Kalman filter (e.g. Lu et al., 2011), the ensemble Kalman 27 

filter (EnKF) (e.g. Zhu et al., 2017; Wang et al. 2018), and the particle filter (Montzka et al., 2011). 28 

The surge in the use of inverse modeling methods for the estimation of unsaturated soil hydraulic 29 

parameters is partly due to increasing availability of soil moisture data. During the past 30 years, 30 

there has been significant advances in the development of different soil moisture measurement 31 

techniques ranging from the point-scale to the continental-scale (Crow and Zhan, 2007). These 32 

include techniques based on dielectric characterization of the soil (e.g. time domain reflectometry 33 

and frequency domain reflectometry), hydro-geophysical methods (e.g. ground penetrating radars 34 

(GPR)), and air-borne/space-borne remote sensing (RS) methods (e.g. passive microwave, 35 

synthetic aperture radars and scatterometers) (Fang and Lakshmi, 2014; Su et al., 2014; Tran et 36 

al., 2014).  37 

Despite the abundance of measurement techniques, accurate and non-invasive characterization of 38 

the spatiotemporal variations of soil moisture is still considered challenging (Klotzsche et al., 39 

2018). In this respect, photographic imaging techniques offer some interesting potentials, enabling 40 

mapping of the water content at very fine resolutions in both space and time (Tidwell and Glass, 41 

1994). Examples of photographic imaging techniques for soil moisture mapping include the light 42 

transmission method (Hoa, 1981), the multispectral image analysis method (Kechavarzi et al., 43 

2000) and the light reflection method (Yoshimoto et al. 2011). All these methods incorporate some 44 

sort of image processing to convert the reflected or transmitted light intensities into soil moisture 45 

content. Tracers are commonly employed to improve visualization. Recently, Belfort et al (2017b) 46 



4 

 

and Belfort et al. (2019) proposed a novel imaging technique which combines the analysis of 47 

photographic images and direct measurements, to characterize a two-dimensional (2D) field 48 

without the need for a tracer. The wealth of soil moisture data provided by such photographic 49 

imaging techniques makes them particularly appealing for the estimation of distributed fields of 50 

unsaturated soil hydraulic parameters, especially in lab-scale experiments. 51 

This paper proposes a novel methodology for parameter estimation, in the context of variably 52 

saturated flow in porous media, which is based on an improved EnKF method and takes into 53 

account information obtained from a recent photographic technique in terms of water content. In 54 

the next two introductive sub-sections, these different aspects are put into context and our 55 

objectives are clearly stated. 56 

1.1. Estimating unsaturated flow parameters using photographic imaging 57 

A suitable method capable of estimating unsaturated flow parameters through the use of 58 

photographic imaging data must be able to incorporate finely discretized measurements provided 59 

by the images to gradually reduce parameter estimation uncertainty and distinguishably quantify 60 

individual components of uncertainty such as model structural uncertainties and imaging data 61 

uncertainties. The EnKF has both characteristics (Reichle et al., 2008; Rajabi et al., 2018), and is 62 

hence a natural choice for the estimation of unsaturated soil parameters using imaging data. 63 

Furthermore, the EnKF does not require storage of past data, which is a bonus with respect to the 64 

potentially high volume of data produced by imaging. The EnKF has been used in the state 65 

estimation context for assimilation of soil moisture data in numerous studies since the early 2000s 66 

(e.g. Reichle et al., 2002). Estimation of unsaturated flow parameters using the EnKF, often done 67 

in conjunction with state estimation, is more recent and sparse, and we provide a review of some 68 

key studies in Table 1. The majority of studies reviewed in this table deal with ‘hypothetical’ one-69 
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dimensional (1D) column or 2D rectangular problems, with a few other studies focusing on 1D 70 

‘field experiments’ (e.g. Jiang et al., 2019). Previous studies have employed RS (Li et al., 2012), 71 

GPR (Tran et al., 2014) and contact-based, point-scale soil moisture data for the estimation of 72 

unsaturated flow parameters using the EnKF. However, to the author’s knowledge, no attempt has 73 

been previously made in using the EnKF for assimilation of photographic images in the 74 

unsaturated zone.  75 

Note that photographic imaging data have some unique characteristics compared to data obtained 76 

from contact-based, GPR or RS techniques, which affect the parameter estimation process. 77 

Contact-based techniques provide point-scale data whereas photographic imaging can be used to 78 

characterize the entire soil moisture distribution. GPR is considered more appropriate for 79 

intermittent rather than continuous measurement of the soil moisture profile (Vereecken et al., 80 

2008), and RS is suitable for low resolution measurements of surface soil moisture across large 81 

areas (Lu et al., 2011). GPR, which has been successfully applied under laboratory conditions, 82 

allows indirect visualization of water flow in two and three dimensions, but data analysis as well 83 

as the interpretation remain a challenging topic (Allroggen et al., 2015). Comparatively, 84 

photography provides detailed 2D structural and phenomenological information with high spatial 85 

and temporal resolutions, well suited for characterizing experiments at the lab-scale when sections 86 

of porous media are directly accessible. This feature is important because the estimation of 87 

heterogeneous fields of unsaturated soil parameters from sparse data obtained from other methods, 88 

results in highly underdetermined problems which are prone to ill-posedness and non-uniqueness. 89 

The affluence of data provided by photographic imaging has the potential to solve this problem. 90 

However, imaging data is highly susceptible to noise resulting from brightness fluctuations and 91 

reflections from the surroundings, and is also influenced by the color space used in the analysis 92 
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(Kashuk et al., 2014). Therefore, parameter estimation based on photographic imaging data is 93 

vulnerable to instability.  94 

Based on the above notion, this study tends to extend previous researches by: (1) proposing a novel 95 

framework for the estimation of unsaturated soil hydraulic parameters using photographic imaging 96 

data, (2) presenting a customized version of the EnKF capable of handling potentially noisy image 97 

data, and (3) validating the proposed methodology using lab-scale data. Data obtained from the 98 

novel imaging technique proposed by Belfort et al (2017b) is used as the basis for the validations. 99 

After accomplishing these objectives, we will try to answer a key question: how do the parameter 100 

estimation results obtained from using image data, compared with those acquired from using direct 101 

measurements of soil moisture? 102 

1.2. Developing relationship between light intensities and water content 103 

In photographic imaging, what is measured is the light intensities not the water content. Therefore, 104 

direct measurements of the water content are also required to develop or calibrate an equation that 105 

transforms light intensities to water content. This is a key component of almost every previous 106 

study on the use of photographic imaging techniques for soil moisture mapping, and previous 107 

studies often rely on statistical regression to develop such an equation. However, especially in lab-108 

scale experiments, the properties of the soil may be known in advance. Hence, a simulated version 109 

of the moisture content distribution can also be generated, which is expected to closely resemble 110 

that of the real distribution. This gives rise to a new question: can we use prior information about 111 

the unsaturated flow parameters of the soil to calibrate an equation that relates light intensities to 112 

water content, without the need for direct measurements of the water content? In this paper, we 113 

will try to address this question, by developing a customized version of the EnKF that employs 114 

numerical model outputs to estimate such a relationship. 115 
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2. Theoretical framework  121 

The main building blocks of the proposed approach for unsaturated flow parameter estimation are 122 

(1) a Richards’ equation type unsaturated flow model, (2) a carefully chosen instance of the EnKF, 123 

and (3) generalized polynomial chaos expansions (PCEs) which are used for accelerating the EnKF 124 

computations. The theoretical framework of these three building blocks are described in this 125 

section.  126 

2.1. Numerical simulation approach 127 

Assuming that the media is rigid, air remains at atmospheric pressure, and the flow velocity is 128 

consistent with the Darcy-Buckingham’s law; flow in a variably saturated porous media can be 129 

described using the mixed form of the Richards’ equation (Richards, 1931): 130 

 (1) 

Where  [T] is time,  [-] is volumetric soil water content, and  [L] and  [ ] are the hydraulic 131 

and pressure heads respectively, so that  (in which  [L] is depth taken positive 132 

upward). Furthermore,  [LT-1] is unsaturated hydraulic conductivity as a function of pressure 133 

head,  [T-1] is the sink/source term,  [L-1] is specific storage, and  [-] is relative saturation 134 

(where  in which  is the saturated water content). The relationships between  and 135 

 (called the water retention curve), and the function  can be characterized by the Mualem-136 

van Genuchten model (Mualem, 1976; Van Genuchten, 1980):    137 

 (2) 

 (3) 
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Where  is the residual water content,  [LT-1] is the saturated conductivity,  [L-1] and  [-] are 138 

empirical parameters related to the mean and uniformity of the pore size, respectively,  is related 139 

to  by the formula , and  [-] is the effective saturation defines as 140 

.  141 

In the context of variably saturated flows, the development of performant numerical tools for 142 

solving the Richards’ equation remains a challenging issue that also affects the development and 143 

application of efficient methodologies for parameter estimation and our knowledge of model-data 144 

interactions (Farthing and Ogden, 2017; Rajabi et al., 2018). In this study, the Richards’ equation 145 

is numerically solved using a combination of Lumped Mixed Hybrid Finite Element (LMHFE) 146 

and the Method of Lines (MOL) (see Fahs et al., 2009). This is done by employing the 2D-UWF 147 

code (Belfort et al., 2017a) developed at the Laboratoire d’Hydrologie et de Géochimie de 148 

Strasbourg (LHyGeS). The spatial discretization of Richards’ equation is based on MHFE method 149 

which approximates simultaneously both pressure head and velocity and can handle general 150 

irregular grids with highly heterogeneous permeability. Our 2D-UWF code embeds a lumped 151 

formulation to tackle difficulties of classical numerical schemes in satisfying the maximum 152 

principle, and LMHFE is then effective in avoiding unphysical oscillations in the solution. This 153 

approach is coupled with a sophisticated ordinary differential equation (ODE) solver for time 154 

integration (DLSODIS) that combines a high order adaptive time integration with an appropriate 155 

time-stepping management. Although this work includes efficient numerical methods and our 156 

main goal is not the resolution of the Richards’ equation, other 2D/3D codes based on finite 157 

element or finite volume methods and integrating unstructured meshes (see McBride et al, 2006; 158 

Paulus et al., 2013; Deng et al, 2017), can also be employed within the framework of our 159 
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methodology. In this study our focus will be on the estimation of and  as the uncertain input 160 

parameters.  161 

2.2. Ensemble Kalman filtering approach  162 

EnKF is a Monte Carlo-based variant of the Kalman filter (KF), which extends the KF to the case 163 

of nonlinear model systems. It was first introduced by Evensen (1994) and later modified by 164 

Burgers et al. (1998). Two formulations have been used in the literature for estimation of 165 

unsaturated flow parameters using the EnKF: (1) the joint or state augmentation approach (e.g. 166 

Wang et al. 2018), in which the states and parameters are simultaneously estimated as a single 167 

augmented vector; and (2) the dual estimation approach (e.g. Lu et al., 2011), which employs two 168 

interactive parallel filters: a filter for the parameters and another for the states, with the parameters 169 

undergoing an artificial evolution (or random walk) while waiting to be updated indirectly by the 170 

state variables (Rajabi et al., 2018). As indicated by Table 1, previous studies on the use of the 171 

EnKF for estimation of unsaturated flow parameters have mostly relied on the state augmentation 172 

approach. However, some (e.g. Moradkhani et al., 2005) have argued that this method is vulnerable 173 

to instability and intractability in highly nonlinear problems, and so the dual estimation approach 174 

is deemed superior in such circumstances. As Richards’s equation-type models are known to be 175 

highly nonlinear (Erdal et al., 2014), we adapt the dual estimation approach in the current study.  176 

As a type of Bayesians filtering, the EnKF considers the uncertain model parameters and states as 177 

random variables, and hence represents them with probability distributions. These probability 178 

distributions are numerically approximated by an ensemble of realizations, which are constructed 179 

by sampling from the known prior distribution of each random variable at the onset of calculations. 180 

Each of these realizations is then separately propagated through time by a two-stage 181 

prediction/update process to estimate the marginal posterior distributions (or filtering 182 
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distributions) based on the measurements available in each time step (i.e. discrete time intervals 183 

in which new measurements become available).  184 

The potentially noisy nature of imaging data means that in the update stage the parameters can be 185 

perturbed to unrealistic values to obtain a closer match with the defective instances of data. 186 

Unsurprisingly, artificial evolution in the prediction stage may also lead to parameter estimations 187 

that are beyond physically reasonable limits. So it is necessary to account for the physical bounds 188 

on the parameters while computing their estimates. Therefore a ‘constrained’ version of the dual 189 

EnKF, based on the works of Moradkhani et al. (2005), Bavdekar et al (2013), and Chen et al 190 

(2018), is developed in the current study. The sequential steps of the adapted EnKF approach are 191 

describe in the following and presented in Fig. 1:  192 

1. Algorithm initiation: the initial ensemble of parameter realizations is built by sampling 193 

from their respective prior distributions. These prior distributions characterize what is 194 

initially known about the possible range of variability for the model parameters, and the 195 

algorithm can often work well even if the prior distribution does not contain the correct 196 

values. The resulting ensemble of parameter realizations for the initial time step (denoted 197 

by ) is made of  vectors of the uncertain parameters: 198 

 (4) 

Each of these realizations is then separately propagated through time by an iterative two-199 

stage prediction/update process to estimate the marginal posterior distributions with respect 200 

to measurements available in each time step .  201 

2. Prediction: The input to the prediction stage is  for the time step , and the outcome of 202 

the previous update stage for the subsequent time steps  ( ). The latter is denoted by 203 

 where the superscripts  refers to the updated values. In the prediction step, first, an 204 
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artificial evolution (or random walk) of the parameter realizations is implemented by 205 

adding a normally distributed noise term ( ) (i.e. random walk term) with zero mean and 206 

a predefined covariance to each vector:  207 

 (5) 

In Eq. (5), the superscripts  refers to the forecasted values. Then, for each vector of the 208 

parameter realizations, a numerical simulation is performed to forecast the system state in 209 

the next observation time and produce the state ensemble .  210 

Given the strong dependence of soil moisture content on the model input parameters, the 211 

simulations are done from the initial time ( ) to obtain the updated state variables in each 212 

assimilation step, and hence the name restart EnKF (re-EnKF) is given to this algorithm 213 

(Xu and Gómez‐Hernández, 2016). As indicated by Song et al. (2014), using the restart 214 

version of the EnKF helps solve the inconsistency problem in which the updated 215 

parameters and state variables no longer follow the Richards’ equation. The resulting 216 

process of state updating can be formulated as: 217 

 +      (6) 

Where  is a function representing the nonlinear model of the unsaturated flow, 218 

denotes the state initial condition, and  is the stochastic model error vector often 219 

assumed to be Gaussian with zero mean and a predefined covariance representing 220 

structural uncertainty in model predictions. Here,  is a vector containing soil moisture 221 

content values in all nodes of the numerical grid, as there is an observation (i.e. set of pixel 222 

in the obtained images) for every numerical model element.  223 

3.  Update: In the update stage, a new set of measurements of the system state (denoted 224 

by ) is used to update the probability distributions obtained in the prediction stage by 225 
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applying Bayes rule. In our case, the system state (i.e. soil water content) is measured 226 

indirectly and hence measurement data are not of the same nature as the model output 227 

states. So a measurement model (or observation equation, denoted by ) is required to 228 

map the states to the specific type of data available from the images. In general, the 229 

measurement model can be formulated as (Liu et al., 2012): 230 

    (7) 

Where  is the prediction ensemble, and the stochastic term  represents observation 231 

error.  is assumed to have a Gaussian distribution with a mean value representing 232 

systematic bias and a covariance that signifies the observation data uncertainty. For , we 233 

assume that the mean is zero (no bias) and the covariance to have a predefined value 234 

denoted by . The update of the parameter and state realizations includes the 235 

estimation of two Kalman gains for the parameters and states, represented by and 236 

 respectively: 237 

   (8) 

     (9) 

Where is the cross-covariance of the parameter and prediction ensembles,  238 

is the forecast error covariance matrix of the prediction,  is the cross covariance of 239 

state and prediction ensembles. Updating the state and parameter ensembles are 240 

subsequently done according to the standard KF equation: 241 

 (10) 

 (11) 
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In drawing random samples for algorithm initiation and the prediction and update stages, if any of 242 

the realizations of the parameters violates its constraints, it is projected to the boundary of the 243 

constrained space (similar to Bavdekar et al., 2013). Apart from the reasons previously mentioned, 244 

another key purpose of applying a constraint version of the EnKF is to prevent unsuccessful model 245 

runs when employing the numerical model in EnKF computations. The sequential 246 

prediction/update continues until the last measurement time step.  247 

We call the above described algorithm, the constrained restart dual EnKF (CRD-EnKF), and in the 248 

subsequent sections of the paper, we intend to employ it for estimation of unsaturated flow 249 

parameters using photographic imaging data.  250 

2.3. Polynomial chaos expansion (PCE) 251 

A key challenge in the implementation of EnKF methods is the computational burden imposed by 252 

the requirement to perform a model simulation for each member of the ensemble in each time step. 253 

Large ensembles (often ≥1,000) are required to obtain consistent results when the EnKF is repeated 254 

(Erdal et al., 2014). However, since numerical models of unsaturated flow are computationally 255 

demanding, using such large ensembles becomes computationally intractable. To tackle this 256 

computational challenge, we employ PCEs. The notion is to train PCEs for each model output 257 

quantity of interest (QoIs) using a set of numerical model input-output pairs, and then use the 258 

resulting PCEs as meta-models in EnKF computations. Details about PCE can be found in e.g. Le 259 

Maître and Knio (2010), Rajabi et al., (2015) and Rajabi (2019). Here we only give a brief 260 

overview.  261 
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 262 

Fig. 1. Algorithm flowchart for estimation of soil moisture and unsaturated flow parameters with the 263 

CRD-EnKF 264 

We consider  to be the vector of the input variables (here, consisting of  and ), and  the 265 

set of model output QoIs (e.g. soil moisture values).  is assumed to be affected by uncertainty, 266 

and is hence represented by a random vector  with a particular probability density function 267 
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(PDF). Due to the uncertainty in model inputs, the output QoIs are also random variables denoted 268 

by . Assuming that the input random variables in  are independent,  can be expanded 269 

onto an orthogonal polynomial basis as follows (Ghanem, 1998; Li and Zhang, 2007): 270 

 (12) 

Where the series in Eq. (12) converges in the sense of the L2-norm. Every element of this series is 271 

the product of a deterministic coefficient  and a stochastic multivariate polynomial . The 272 

optimal choice of the polynomial type for  depends on the probability distribution for . 273 

This is often done using the Askey family of hypergeometric polynomials (Askey and Wilson, 274 

1985). The series in Eq. (12) is commonly referred to as PCE. For computational purposes, Eq. 275 

(12) is truncated after a number of terms (donated by ) (Blatman and Sudret, 2011): 276 

 (13) 

Where  and  gather the PCE coefficients and basis polynomials respectively.   277 

The deterministic PCE coefficients  must be estimated for every QoI and this can be done using 278 

non-intrusive methods (such as the regression method) which treat the physics of the system as a 279 

black-box and use a training dataset for the estimation of  (Rajabi et al., 2015; Rajabi, 2019). 280 

The training dataset consists of a set of  realizations of the input random vector generated by e.g. 281 

Monte Carlo sampling, which we denote by , and the corresponding model 282 

outputs which are represented by . In the regression method, the set 283 

of PCE coefficients ( ) are estimated by (Sudret, 2008; Blatman and Sudret, 2011): 284 



17 

 

 (14) 

2.4. Extending EnKF for conversion of light intensities to water contents 285 

The proposed CRD-EnKF can also be applied to calibrate an equation that transforms light 286 

intensities to water content, without resorting to statistical regression based on data from direct 287 

measurements of the water content. As previous indicated, this can be done on the condition that 288 

the properties of the soil are known in advance. Using CRD-EnKF for conversion of light 289 

intensities to soil water contents requires modification to the algorithm described in sub-section 290 

2.2, and in the following we describe the sequential steps of the algorithm modified for this 291 

purpose: 292 

1. Algorithm initiation: For the sake of simplicity, we assume that a particular functional form 293 

(e.g. linear function) is chosen in prior for the equation that relates light intensities to water 294 

contents (which we call the ‘conversion function’), and the CRD-EnKF algorithm is meant 295 

to calibrate this equation by estimating it`s coefficients ( ). Hence the vector of uncertain 296 

parameters in Eq. (4) becomes . As described in sub-section 2.2, the 297 

initial ensemble of parameter realizations is constructed by sampling from the respective 298 

prior distributions of the coefficients, and then each realization is separately propagated 299 

through time by an iterative two-stage prediction/update process.   300 

2. Prediction: In the random walk process described by Eq. (5), a normally distributed noise 301 

term is added to the most recent values of the coefficients , and then for each 302 

vector of the parameter realizations, the soil moisture content is forecasted based on the 303 

photographic imaging data of the next observation time. To estimate the 304 
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coefficients , the  function in Eq. (6) is no longer the Richards’ equation-305 

type numerical simulator or its PCE surrogate, and is instead the conversion function that 306 

relates light intensities to soil water contents (with the latest values of its coefficient). Pre-307 

processed light intensities for all points in the problem domain are stored in a database, and 308 

the ones pertaining to the desired time step are fed into the conversion function in the 309 

prediction stage of the EnKF. 310 

3. Update: The data used for updating the unknown coefficients of the conversion function in 311 

each assimilation step (i.e. ), is the output of the numerical model at the same time 312 

step and in every point in the numerical grid, assuming that the input parameters of the 313 

numerical model (e.g.  and ) are known. The numerical simulation (single one 314 

required) is done before initiation of the CRD-EnKF algorithm, and the relevant model 315 

outputs are stored for use by the EnKF. In the update stage, the numerical model outputs 316 

are used to update the probability distributions obtained in the prediction stage by applying 317 

Bayes rule (see Eqs. 8, 9, 10, 11).  318 

The whole process of using the CRD-EnKF for conversion of light intensities to water contents 319 

has a key challenging. In the algorithm described in the sub-section 2-2, it`s conceptually easy to 320 

define physically plausible prior distributions and constraints for the unsaturated flow parameter 321 

based on previous knowledge of soil characteristics. But the coefficients of the conversion function 322 

have no physical limits (i.e. can very on the interval ), and there is no readily 323 

understandable relation between these coefficients and soil characteristics or other physical traits 324 

of the unsaturated flow system to be exploited for the definition of priors and constraints. We can 325 

solve this problem by noting that for any combination of these coefficients, the conversion function 326 

should produce physically reasonable moisture content values for all the available pre-processed 327 
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light intensities. Hence the outcome of the conversion function (not the individual coefficients) 328 

can have meaningful constraints. Algorithm initiation may be conducted with a very broad (i.e. 329 

uninformative) prior distribution. Then each sample drawn from the prior is checked for this 330 

constraint and only the ones that satisfy this constraint makeup the initial ensemble. This constraint 331 

is also imposed in the prediction and update stages of the CRD-EnKF algorithm. The CRD-EnKF 332 

algorithm for conversion of light intensities to water contents is depicted in Fig. S1 of the 333 

Supplementary Material. 334 

3. Application 335 

Data obtained from the imaging technique proposed by Belfort et al (2017b) is used as the basis 336 

for validation of the proposed methodology. The experimental setup and procedure is explained in 337 

sufficient detail in Belfort et al. (2017b), and so here we provide a brief description.  338 

3.1. Experimental setup 339 

The experiment setup included a Plexiglas tank of 40 cm × 14 cm × 6 cm inner dimensions. The 340 

walls of the tank were transparent, hence allowing visual observation of water content variations. 341 

The tank was filled with monodisperse quartz sand. A Nikon digital camera D80, was placed on a 342 

fixed metal tripod at a distance of 2 m from the tank to capture linear images from the tank in the 343 

12-bit RAW format. In these linear images, the value at every pixel was directly related to the 344 

amount of light received from the tank during the exposure. 345 

To improve visualization, a light device was placed at the bottom front of the tank, and a black 346 

curtain was arranged around the tank and camera. White or black paper strips placed along the 347 

side, bottom and top edge of the tank were intended to capture the maximum and minimum light 348 

intensities for the normalization of data. A Theta probe (Type ML2x, made by Delta-T Devices 349 
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Ltd.) was also placed vertically in the middle of the tank surface (covering an area of 4 cm × 6 cm) 350 

to provide contact-based direct measurement of the water content. This apparatus had an accuracy 351 

of ±0.01 m3.m-3 for measurements between 0.05 and 0.6 m3.m-3. The accumulated mass of water 352 

entering and leaving the flow tank was additionally measured. A schematic representation of the 353 

experimental setup is shown in Fig. 2.  354 

 355 

 356 

Fig. 2. The non-invasive imaging technique: (a) photograph of the experimental setup, (b) its schematic 357 

representation, and (c) image of the flow tank. (1: Sartorius digital balance; 2: peristaltic Cole-Parmer 358 

pump; 3: floodlight (400 W); 4: Theta probe ML2x connected to data logger; 5: pipes between tank - 359 

balance - overflow outlet; 6: overflow outlet (can be moved along the vertical axis); 7: Plexiglas flow tank 360 

(40 cm x 14 cm x 6 cm); 8: NIKON digital camera D80; 9: black curtain (all around the experiment); 10: 361 

Norcan metallic structure) 362 

3.2. Experimental procedure 363 

We tend to estimate unsaturated soil parameters using images obtained from a single 364 

drainage/imbibition cycle as described in Belfort et al. (2017b). As shown in Fig. 3, successive 365 
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drainage and imbibition steps are achieved by moving an overflow outlet connected to the bottom 366 

of the flow chamber. The entire cycle takes 122,400 seconds, and images are taken every 1,800 367 

seconds during the experiment, except for the first 3 images which are taken with 600 second 368 

intervals. This results in a total of 70 images, from which the first 69 images are used for the data 369 

assimilation process. The Raw images are pre-processed before they are employed in the parameter 370 

estimation process. The pre-processing includes the following successive steps: (1) RAW images 371 

are first converted to 16-bit tiff images, (2) the resulting tiff images are transformed into the RGB 372 

color space, (3) normalization is done on the light intensities using the minimum and maximum 373 

intensities obtained from the black and white paper strips, and (4) the value of the background 374 

intensity is subtracted from the resulting normalized intensities, pixel by pixel, to obtain the 375 

corrected intensities which we denote by .  376 

3.3. Numerical modeling 377 

A numerical model of the sandbox experiment was also developed using the 2D-UWF code. The 378 

sandbox was modeled as a 2D system, where the top and lateral boundaries were assumed to be 379 

impermeable, and a varying pressure head corresponding to the outlet overflow displacements, 380 

was assumed at the bottom boundary. The domain was discretized to 560 irregular triangular 381 

elements, each having an area of about 1 cm2 (see Fig. 3). As the model initial condition, the 382 

domain was assumed to be fully saturated. Further details about the numerical model, and its 383 

validation through comparison with the real observed data can be found in Belfort et al. (2017b).  384 
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 385 

Fig. 3. Conceptual model of the 2D flow tank and its numerical grid.  386 

We tend to employ the proposed CRD-EnKF approach to estimate and , and hence these 387 

three parameters are represented by independent random variables. The sand used in the present 388 

setup has been characterized by other column experiments subject to parameter estimation by 389 

classical 1D inverse modeling. Combined with the results of the study dealing with the photometric 390 

imaging technique (i.e. Belfort et al., 2017b), values of these parameters can be fixed in advance 391 

(see Table 2), and these target values serve as a benchmark for evaluation of the CRD-EnKF 392 

results. Other input parameters of the model were considered to be deterministic, so  393 

and  (both in cm3/cm3) in all model simulations.  394 

Table 2. Target values of the parameters to be estimated by the CRD-EnKF  395 

Parameter Target values Unit 

 2.74×10-2 cm.s-1 

 0.054 cm-1 

 7.37 -- 
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3.4. PCE meta-model development 396 

850 realizations of the input random vector  are generated by Monte Carlo sampling, and 397 

are then used as the basis for the same number of numerical model simulations. For each model 398 

run, soil moisture values at the 560 model elements, in addition to the estimate of mass entering 399 

or leaving the flow domain, are extracted from the model outputs files for each of the 69 time steps 400 

described in sub-section 3.2. 750 input-output pairs are used for PCE training, 50 for validation 401 

and the last 50 for testing. One PCE meta-model is required for each QoI, and hence 402 

 PCEs are developed by applying the regression method to the described training 403 

dataset. For each QoI, the order of polynomial ( ) is chosen by comparing PCEs of different 404 

orders from  to , and the PCE order with the lowest normalized root mean square error 405 

(NRMSE) value with respect to the validation dataset is chosen.  406 

4. Results and discussion 407 

4.1. Evaluation of PCE results 408 

In this sub-section we validate and assess the performance of the developed surrogate PCE meta-409 

models. A scatterplot of numerical model vs. PCE meta-model soil moisture estimations is 410 

presented in Fig. 4. The plot is based on an arbitrarily chosen instance of the test dataset and shows 411 

the associated values for all 560 soil moisture estimations. Three additional straight lines are also 412 

depicted in the figure. The diagonal line indicates perfect calibration, and the two dashed lines 413 

bound an area in which the numerical model and PCE meta-model results differ by less than a 414 

factor of two. As shown, the points in this scatter plot fall close to the one-one line, and so no 415 

systematic bias is observed for PCE estimations. Scatterplots based on the rest of the test dataset 416 

are very similar to what is shown in Fig. 4. 417 
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 418 

Fig. 4. Scatter plot of PCE vs. numerical model soil moisture ( ) estimations for an instance of the test 419 

dataset. Red dashed lines indicate a ± 100% difference between the original model and its surrogate. 420 

Additional statistical diagnostics for the constructed PCE meta-models are presented in Table 3 421 

along with their ideal and acceptable range of values. The table is based on the calculation of the 422 

following four diagnostics using the test dataset: (1) normalized mean square error (NMSE), (2) 423 

fractional bias (FB), (3) Pearson correlation coefficient (R), and (4) fraction of the PCE results 424 

located within a factor of two of the numerical model results (FAC2). As shown in table, the range 425 

of values for the 560 QoIs fall within the acceptable intervals and lie close to the ideal values. The 426 

outputs are free from bias, since both FB and NMSE are close to zero and FAC2 is one. A high 427 

degree of correlation exists between the numerical model and PCE meta-model outputs as R is 428 

close to one.  429 

 430 

 431 

 432 
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Table 3. Summary of statistical diagnostics for PCE performance assessment 433 

Statistics FAC2 NMSE FB R 

Aim a 
1 0 0 1 

Acceptable Range a 
> 0.5 (-0.3, +0.3) < 1.5 > 0.8 

Range of results 
1 (6.78×10-5, 7.05×10-4) (-4.19×10-4, 1.58×10-4) (0.96, 0.99) 

a Based on Chang and Hanna (2005) and Moonen and Allegrini (2015). 434 

 435 

4.2. State and parameter estimation using photographic imaging data 436 

After testing the constructed PCE meta-models, we employ them in the framework of the CRD-437 

EnKF algorithm. Several crucial filter parameter must be decide before the algorithm can be 438 

initiated, this includes characteristics of the initial ensemble, as well as ensemble size and 439 

parameter variation range in the constraints.  440 

In general, the initial ensemble mean should be chosen so as to represent the initial guess for the 441 

model parameter values, and the spread of the ensemble must indicate the uncertainty of that initial 442 

guess (Evensen, 2003). But in our study the target values of model parameters are known. So the 443 

initial values of and  are obtained by shifting from their target values, and are assumed to 444 

be equal to 0.005 cm.s-1, 0.035 cm-1 and 4.5 respectively. We use an ensemble size of 10,000. Such 445 

a large ensemble size is only made possible by using the PCE meta-models. Other filter parameter 446 

values are chosen as follows: the covariance of the artificial evolution term  is equal 447 

to , model error ( ) covariance equals , and observation error ( ) 448 

covariance equals . In the proposed PCE-based CRD-EnKF approach, the stochastic model 449 

error ( ) reflects the cumulative, inseparable effect of numerical model structural uncertainty and 450 

uncertainty due to surrogate modeling. 451 
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The parameter variation range can be constrained according to prior knowledge (Carsel and 452 

Parrish, 1988). It’s recommended that a broad range of variation be used to prevent excessive 453 

external interference in the assimilation process (Li and Ren, 2011). Here, we define the constraints 454 

as follows:  cm.s-1,  cm-1, and . Such constraints 455 

ensure that the CRD-EnKF results in parameter values that are physically plausible and in harmony 456 

with prior knowledge.  457 

After choosing the hyper-parameter values, we assimilate the photographic imaging data to 458 

simultaneously update the state of the soil moisture content and the hydraulic parameters. Our 459 

photographic imaging data includes light intensity values at 1 by 1 cm pixels in a 14  40 cm 460 

domain, resulting in a total of 560 light intensity values being assimilated at each time step. This 461 

is the same as the number of model elements, but since the triangular shape of model elements do 462 

not coincide with the square shape of image pixels, a code was written to match every model 463 

element with the image pixel that has the maximum overlap with it.  464 

Apart from photographic imaging data, we also apply the CRD-EnKF to data obtained from direct 465 

measurement of soil moisture content (using the Theta probe) at a single location (one data point 466 

per time step). Fig. 5 shows the evolution of the estimated parameter values (i.e. ensemble mean) 467 

across assimilation steps for both datasets.  468 

As demonstrated, the CRD-EnKF algorithm is able to significantly improve the wrong initial 469 

values of model parameters using both types of data. Estimates obtained from photographic 470 

imaging data are in better agreement with the target values of  and  compared to the ones 471 

acquired from the use of direct measurement of soil moisture content, while the reserve is true 472 

for .  473 
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 474 

Fig. 5. Estimation of unsaturated flow parameters using different data. Plots show the time series of mean 475 

values of the ensembles.  476 

One of the reasons why the parameter estimates obtained from photographic imaging data do not 477 

seem to lived up to the expectation (at least for α) is the presence of spatial variability in the 478 

experimental setup, which is captured by the images and not accounted for by the numerical model. 479 
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Despite all the precautions taken when filling the tank, sand compaction is not uniform and it 480 

creates different air penetration pathways and therefore a different distribution of water content. 481 

The intrinsic differences between the experimental reality captured by the images and the 482 

simplifying and unifying vision of the numerical model is illustrated in the exemplary Fig. 6a, 483 

which shows the soil moisture content distribution obtained from the image taken in the 25th time 484 

step (41,400 seconds after initiation of the experiment). Fig. 6b demonstrates the soil moisture 485 

content distribution acquired through numerical modeling (with the target parameter values) at the 486 

same time step. Comparison of the two figures clearly shows the existence of compaction 487 

heterogeneities with a significant orientation in specific regions of the domain in the photographic 488 

image (also see figure 7 in Belfort et al, 2017b for similar maps pertaining to other time steps). 489 

Image noise, which by nature could also be anisotropic due to disturbances such as lighting, have 490 

been reduced by making average of the intensity over squares of 1cm2. Nevertheless, both image 491 

noise and non-uniform compaction may affect parameter estimates. 492 

As one way to reduce the effect of image noise and non-uniform compaction, we employ the 493 

‘lateral average’ of light intensities obtained from photographic imaging as the basis for parameter 494 

estimations. So instead of a 2D field, we employ a vertical profile, and as a result, we have 40 495 

values per assimilation time step instead of the previous 560. Parameter estimates obtained from 496 

applying these averaged values are shown with red curves in Fig. 5. The curves show that the 497 

target values of  and are reproduced closely with the averaged values of light intensity, while 498 

the estimate of  has moved farther from the target value. For all three parameters ( ,  and ) 499 

the ensemble means have less fluctuation in the evolution process if averaged values are used 500 

instead of the entire 2D field.  501 

 502 
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 503 

Fig. 6. Comparison of soil moisture distributions obtained form: (a) photographic image, and (b) 504 

numerical model, for the 25th time step (41400 seconds after initiation of the experiment) 505 

Table 4 demonstrates the standard deviations (σ) of the final ensembles as a measure of estimation 506 

uncertainties (the associated cumulative density functions (CDF) are presented in Fig. S2 of the 507 

Supplicatory Material). The figures show that estimates obtained from using the entire 508 

photographic imaging dataset have the lowest σ and hence the narrowest spreads of the ensembles, 509 

for all three parameters ( ,  and ). Parameter estimates based on averaged light intensities have 510 

the second lowest σ values, while estimates acquired through the use of direct measurements of 511 

water content have the highest σ values. The difference in σ values for the three datasets are more 512 

significant for  and  compared to . The difference in the ensemble spread and the associated 513 

σ values for the three datasets is related to the ‘volume of data’ provided by each. When using the 514 

entire photographic imaging dataset, 560 data points are provided in each time step, whereas 515 
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averaged light intensities include 40 data points, and direct measurement a single data point per 516 

unit time step.   517 

Table 4. Comparison of the standard deviations of the unsaturated flow parameters at the last time step 518 

obtained using different types of data. 519 

Data type used in parameter 

estimations 
   

Based on: 

light intensities 0.0165 0.0164 2.328 

averaged light intensities 0.0249 0.0214 2.412 

direct measurements of 

water content 
0.0374 0.0222 2.547 

 520 

To analyze the performance of the proposed algorithm in state estimations, we focus on the case 521 

in which averaged light intensities are used as input data to the assimilation process. In Fig. 7a, 522 

the solid red line marks the mean of the ensemble for soil moisture content at the location of the 523 

measurement probe. In this figure, the dashed green line shows the true moisture content 524 

(measured by the Theta probe) as a function of time. As demonstrated, the soil moisture values 525 

estimated by assimilating the imaging data are close to the values obtained from direct 526 

measurements of water content, and both follow the same pattern imposed by the 527 

drainage/imbibition cycle. Furthermore, Fig. 7b shows the evolution of the cumulative mass 528 

entering and leaving the flow tank. Again, the associated ensemble mean values obtained from 529 

applying the photographic imaging data to the CRD-EnKF algorithm (the solid red line) match 530 

rather well with the true values acquired through direct mass measurements.  531 
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 532 

Fig. 7. Evolution of (a) soil moisture content at the direct measurement location ( ), and (b) cumulative 533 

mass entering and leaving the flow tank. 534 

4.3. Comparison of PCE-based vs. numerical model-based CRD-EnKF  535 

The logic behind the use of PCEs in the proposed algorithm can be explained using Fig. 8. This 536 

exemplary figure shows estimation of the shape parameter α obtained from two PCE-based and 537 

two numerical model-based repetitions of the CRD-EnKF. The ensemble size is 10,000 for PCE-538 

based, and 12 for numerical model-based algorithms. Note that an ensemble size of 12 results in a 539 

total of 828 simulation for the 69 time steps, which is close to the number of numerical model runs 540 

previously used for PCE meta-model development (i.e. 850). The four repetitions of the CRD-541 

EnKF are based on different initial values of α, but all other filtering parameters are the same. 542 

A close look at Fig. 8 reveals two basic differences between PCE-based and numerical model-543 

based CRD-EnKF results. First the PCE-based results are less affected by the initial ensemble, as 544 
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the two repetitions converge to nearly identical values. But the same cannot be implied for the 545 

numerical model-based result, as the two repetition converge to values that are somewhat different.  546 

Second, the PCE-based evolution curve is smoother than its numerical model-based counterpart, 547 

the latter having significant random fluctuations before converging to a specific value. 548 

Fig. 8 is a representative figure, and the same traits are observed for the other input parameters (  549 

and ) and different initial ensembles. Both of the above described distinctions are the result of 550 

the fact that, for nearly the same computational time, PCE allows for ensemble sizes that are 551 

several orders of magnitude larger than the case in which numerical models are directly 552 

incorporated into EnKF algorithms.  553 

 554 

Fig. 8. PCE vs numerical model-based EnKF results: comparison of five iterations with different prior 555 

distributions.  556 

4.4. Using the EnKF for developing relationship between light intensities and water content 557 

We now apply the algorithm described in sub-section 2.4 to estimate the conversion function that 558 

relates light intensities to soil water content without the use of direct measurements of the soil 559 

water content. We assume a linear conversion function of the following form: 560 
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 (15) 

In this experiment, a fully saturated soil has , and from the images we know that the 561 

saturated soil has an  equal to zero. Hence  is also equal to , and the CRD-EnKF 562 

algorithm is left with the task of estimating . Belfort et al (2017b) employed direct measurement 563 

of water content to estimate , and their estimated value can serve as a benchmark for evaluation 564 

of the CRD-EnKF results. A numerical simulation is done before initiation of the algorithm with 565 

the target values of ,  and  (see Table 2) as inputs. The soil moisture content values in all 566 

model elements are extracted for the 69 time steps, and are stored for use by the CRD-EnKF. The 567 

ensemble size is chosen to be 1,000 and the ensemble members are constrained so that the 568 

conversion function always produces a value of .  569 

Fig. 9 illustrates the evolution of the ensemble mean (as the best estimate) for  with the progress 570 

of assimilation steps. At the 32nd step, the  value estimated by the CRD-EnKF algorithm is 571 

within a range of  deviation from the value estimated by Belfort et al (2017b) (i.e.572 

), and remains within this range until the end of the assimilation process. Hence the figure 573 

clearly demonstrates convergence to the true value of . This implies that the proposed algorithm 574 

is able to estimate the coefficient of the conversion function without the need for direct 575 

measurements of water content, on the condition that an accurate numerical model of the system 576 

is available.  577 
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 578 

Fig. 9. Evolution of the ensemble mean for coefficient used in the conversion of light intensity to soil 579 

moisture content 580 

5. Conclusion 581 

In this study, a sequential data assimilation approach was developed to simultaneously update soil 582 

moisture content and soil hydraulic parameters using photographic imaging data as input. For this 583 

purpose, the study combines numerical modeling, PCEs, restart and constrained EnKF and the 584 

dual estimation approach to formulate a novel version of the EnKF.  585 

We validated the proposed methodology by using lab-scale data obtained from images of a 2D 586 

Plexiglas flow tank in a drainage/imbibition cycle. The results indicated that the proposed method 587 

is able to significantly improve the wrong initial values of saturated conductivity ( ) and 588 

empirical shape parameters  and . Estimates obtained from assimilating photographic imaging 589 

data show better agreement with target values of  and , compared to estimates obtained from 590 

employing sparse direct measurement of soil moisture content ( ). The ensemble spread, which 591 

represents uncertainty in estimation, was also significantly smaller for all the three estimated 592 

parameters ( ,  and ) when employing imaging data instead of direct measurement of . To 593 
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reduce the effect of image noise and non-uniform compaction on the estimation, we also employed 594 

the lateral average of light intensities obtained from photographic imaging as the basis for 595 

parameter estimations. This resulted in better estimations of  and . The soil hydraulic 596 

parameters were homogeneous in our problem domain, but the results obtained by this study show 597 

an encouraging way to estimate ‘distributed’ fields of unsaturated soil hydraulic parameters in 598 

heterogeneous soils, as photographic imaging data allows for cheap, non-invasive characterization 599 

of soil moisture content at very fine resolutions. This could be a topic for future research.  600 

In this paper, we also propose an EnKF approach to estimate the coefficients of the conversion 601 

function that relates light intensities to soil moisture content. The approach uses numerical model 602 

outputs instead of direct measurements, and can be useful only when a good estimate of model 603 

input parameters is already available. Here we assumed a linear conversion function, but the 604 

method can be similarly applied to other form of conversion functions in future research. 605 

The photographic approach requires access to the soil section, which is more easily achievable in 606 

laboratory experiments. The CRD-EnKF approach allows to exploit a large part of 2D structural 607 

mapped information to improve the parameterization of hydrodynamic models. The validation of 608 

this approach thus makes it possible to envisage its use both under other experimental conditions 609 

(e.g. employing more cohesive soils or testing heterogeneous porous media), and by relying on 610 

data from other sources, with significant work to be carried out on the effect of resolution and 611 

noise. 612 
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Fig. S1. Algorithm flowchart for estimation of conversion function parameters with the CRD-EnKF 

algorithm  
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Fig. S2. Comparison of the cumulative distribution functions of the unsaturated flow parameters at the 

last time step obtained using different types of data.  


