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In many adaptation and developmental contexts, isogenic cells make stochastic fate decisions to generate diver-
si�ed cell types and subpopulations1. Cell-fate heterogeneity is indeed a key feature of microbial adaptation to 
adverse environments2, of the development and homeostasis of tissues and organs3 or of tumor resistance to drug 
therapy4. �e di�erential fate outcome of isogenic cells exposed to the same environmental stimuli involves the 
interplay of stochastic and deterministic mechanisms5–7, where regulatory mechanisms can determine both the 
statistics and dynamics of stochastic events and the e�ect of those stochastic events on molecular trajectories 
dictating cell fate choices. Several experimental studies have shown that cell-fate decisions are o�en preceded 
by a highly �uctuating intracellular dynamics. Pulsatile or oscillatory activities have been observed in signaling 
pathways operating during the stochastic choice of various di�erentiation or proliferation fates8–13. �e pro�le 
characteristics of those dynamic signaling activities have been proposed to either direct decision outcomes or 
promote cell-fate heterogeneity14,15. Transient dynamics occurring at epigenetics, transcriptome-wide or multi-
cellular levels16–18 have also been proposed to regulate cell-fate heterogeneity and plasticity. All these examples 
support a key role of transient dynamics in orchestrating fate decisions from diverse signaling and stochastic cues.

An attractive case study is the stochastic fate decision between life and death, commonly termed fractional 
killing, for which the systematic measure of probabilistic dose-response curves coupled with single-cell analysis 
of stochastic and dynamical signatures are possible19. On this issue, several modelling studies have been devoted 
to identify which sources of �uctuations and which parts of the apoptotic network could contribute the most to 
the variability of decision time and outcomes20–23, while the impact of the transient dynamics has been seldomly 
addressed24. Yet, singe-cell analysis of the temporal trajectories of caspase 8 activity in response to TRAIL has 
revealed a signature of adaptation dynamics whose transient kinetics determines whether a cell survives or 
dies25. Caspase 8 is likely to be part of negative feedback regulation involving for instance the formation of 
inactive heterodimers of procaspase-826. �e importance of transient dynamics of apoptotic inducers has been 
also emphasized in the case of cisplatin drug exposure24,27. �e proposed mechanism involves a competition 
between positive and negative regulation of caspase 8-dependent apoptosis, thereby de�ning an incoherent 
feedforward loop. More generally, environmental stressors are prone to upregulate both pro-survival and pro-
death pathways28–31 through negative feedback or incoherent feedforward loop motifs which ultimately lead 
to a dynamical adaptation response32–34. �ese stochastic and deterministic features associated with fractional 
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killing raise the more general question of the role of adaptation dynamics in shaping the timing and probabilities 
of stochastic fate decisions.

Diverse modelling approaches have proved useful to study stochastic switching in regulatory networks, 
ranging from the discrete chemical master equations and stochastic simulation algorithms to the continuous 
Fokker-Planck and Langevin equations. �ose diverse tools and their re�nements have been broadly used to 
study the interplay between noise properties and network topologies in shaping the steady-state bimodal dis-
tribution and transition rates associated with two phenotypic states35–39. In the present study, we use the joint 
framework of chemical Langevin equations40 and bifurcation theory to address the interplay of stochasticity, 
transient adaptation and bistable switching. �e deterministic and stochastic analysis of a simple model combin-
ing adaptation and bistability deciphers how the adaptation overshoot dynamics modulate, concomitantly, the 
nonlinear decision-making properties and the probabilistic fate-response properties. �e biological relevance 
of this behavior is assessed by simulating a more detailed model of programmed death pathways. Finally, the 
generality of the proposed noise-ampli�cation mechanism is addressed within the theoretical framework of 
stochastic nonlinear dynamics.

���‡�•�—�Ž�–�•
���–�‘�…�Š�ƒ�•�–�‹�…���•�‘�†�‡�Ž�‹�•�‰���ˆ�”�ƒ�•�‡�™�‘�”�•���ˆ�‘�”���’�”�‘�„�ƒ�„�‹�Ž�‹�•�–�‹�…���ˆ�ƒ�–�‡���†�‡�…�‹�•�‹�‘�•�•�ä Fractional killing can be de�ned 
as the population-level property by which isogenic cells exposed to increasing doses of death-inducing stim-
uli will tend to display a fraction of surviving cells and dying cells, although with increasing probability of 
death. �is stochastic decision process can be studied in a general theoretical framework that applies to cases 
of fate decisions�other than survival and death. Probabilistic cell-fate response commonly involves the interplay 
between intracellular mechanisms of fate decision and intracellular sources of cell-to-cell variability. Without 
loss of generality, a possible framework to study such probabilistic fate response to a step stimulus consists in 
a Langevin di�erential equation description of the stochastic dynamics of a biochemical reaction network (see 
Table�1 for notations): 
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Table 1.   List of mathematical symbols and notations.

Symbol Description Equations/Figures

� �
� , ��

� Concentration of biochemical species i of cell l Eq. (1)

� �
� , ��

� Biochemical network parameter i of cell l Eq. (1)

� � , � �� Rate and stoichiometries of the biochemical reaction j Eq. (1)

� �
� Langevin noise associated to reaction j in cell l Eq. (1)

� Standard deviation of random variable Eq. (1)

� � Stimulus (e.g., stress) level of cell l Eq. (1)

� �� Stimulus level associated with saddle-node bifurcation Fig.�2

� � �� � � � Time-dependent probability distribution function in state space Eq. (2)

� � � ����� Decision (e.g., death) probability Eq. (2)

� �� Stimulus level inducing ���  of fate probability Eq. (3)

� � Measurement time for � � Eq. (2)

� Fractionality index Eq. (3)

� ����� Adaptive (e.g., damage/repair) and fate-decision (e.g., death) speciesEq. (4)

� � � Adaptation strength and timescale Eq. (4)

�� �� ��� � �� � ��� Stable/saddle-node/saddle �xed point associated with bistability Figs.�2, 3 and 4

� � � � � �� � Stable/unstable manifold of the �xed point �� Eqs. (2) and (9)

� � Critical stimulus level without noise � � � � �� �� � �� Fig.�2

�� � �� � � � � Critical trajectory Fig.�2 and Eqs. (7–8)

�� �� � , � � Small deviations of �� �� � from �� � �� � Fig.�5 and�Eqs. (7–9)

�� � � � � � Principal fundamental matrix Eq. (7)

� �� �� � � � � E�ective potential, barrier height and Kramers rate Fig.�5 and�Eq. (10)
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 where H(t) and �� � � are respectively the Heaviside and the Dirac delta functions. In this model, the cell-to-cell 
variability of stimulus-induced response trajectories �� � can originate either from noisy biochemical reactions 
involving stochastic processes � �

� �� � or from heterogeneities in stimulus exposure/sensitivity � � or network param-
eters �� � from cell to cell. Although limited or inaccurate to describe some stochastic behaviors of biochemical 
networks41, chemical Langevin equation approach is nevertheless convenient to study asymptotic cases of small 
noise, large size or separated timescales and, thus, to relate with noise-free dynamical properties42.

For the deterministic part of the equation, the fate-decision behavior (e.g., death) can be minimally imple-
mented in the nonlinear dynamics of the biochemical network by the presence of a saddle-node bifurcation 
mechanism at a critical stimulus level � ��  through which the (survival) steady state �� �� �  is destabilized toward the 
other (death) steady state �� �� �  , generally in an irreversible manner. Accordingly, near-identical cells exposed to 
the same stimulus may display divergent trajectories toward survival or death (Fig.�1a). �e population dynamics 
of noisy or heterogeneous cells described by Eq. (1) can be statistically represented by a probability distribution 
� � �� � � � , which typically follows a Fokker-Planck equation. Stimulus-induced fate decision relates with the estab-
lishment of a bimodal distribution such that one can de�ne the decision probability � �  (Fig.�1b):

where � �  is the typical measurement time and � � � �� �� � is the fate attractor basin. It is to emphasize that we consider 
the typical case of an irreversible fate decision associated with a low or null probability to revert from the state 
�� �� �  to �� �� �  , which is typically the case for death, proliferation or terminal di�erentiation fate outcomes. From the 
dose-response curve � � �� � , one can de�ne a fractionality index (Fig.�1c) which quanti�es the derivative of this 
curve around the ���  fate probability ( � � �� �� � � ��� ):

Based on this simple sensitivity measure of the stochastic fate response, systematic analysis of how �  varies with 
noise strength �  and network parameters ��  should provide key insights into the interplay of stochastic and non-
linear properties of networks in shaping probabilistic features of fate response.

���†�ƒ�’�–�ƒ�–�‹�‘�•���†�›�•�ƒ�•�‹�…�•���‡�•�ˆ�‘�”�…�‡�•���ƒ���•�ƒ�†�†�Ž�‡�æ�…�‘�Ž�Ž�‹�•�‹�‘�•���•�‡�…�Š�ƒ�•�‹�•�•���ˆ�‘�”���†�‡�…�‹�•�‹�‘�•���•�ƒ�•�‹�•�‰�ä To evaluate 
the impact of adaptation dynamics on the probabilistic properties of stochastic fate decisions, the biochemical 
reaction model used in Eq. (1) must implement adaptation and switching behaviors. For the ease of mathemati-
cal and graphical analysis, we consider a low-dimensional biochemical reaction network43, whose interactions 
between three coarse-grained variables implement a basic setting of a negative feedback-driven adaptation and 
a positive feedback-driven decision switch (Fig.�2a,b). Starting from a set of biochemical reactions associated 
with this architecture, a suitable factorization and normalization procedure (see "Methods" section) allows one 
to derive the following set of di�erential equation, 
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Figure�1.   Dynamical and probabilistic schemes of cell-fate decisions. (a) State-space trajectories diverging 
toward distinct cellular phenotypic states. (b) Establishment of a bimodal probability density function. (c) Fate 
probability curves whose slope is quanti�ed by a fractionality index ( � ).
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 �e reaction rates � � of the corresponding Langevin equations are detailed in "Methods" section. Most parameter 
values are �xed within a range consistent with some biological assumptions. First, self-activation parameters 
� � � �  and � � � ���  implement a positive feedback that is strong enough to produce an irreversible transition 
to death fate. Second, the parameters � � � ���  and � � � ��� � � � �  implement a signi�cant and fast stimulus-
induced response of � �  , which gives rise to a marked overshoot dynamics through negative feedback with � �  . 
�ird, the synthesis rate parameters � � �  , � � � �  and � � � �����  satisfy the normalization condition that saddle-
node bifurcation occurs for � � � � � � � � �  whatever the values of the other model parameters ( � � , �  , � ).
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Figure�2.   Adaptation alters the nonlinear mechanism of decision making. (a) Coarse grained model combining 
a negative feedback loop (NFL) between � �  and � �  species and self-activation positive feedback loop (PFL) of 
� �  species. (b) Typical adaptation and switching dynamics in response to a stimulus step. Color code relates 
to that of panel (a) and model parameters are � � �  and � � ��  . (c) E�ect of adaptation parameters �  and �  
on the linear response regime (upper panel) and the overshoot pro�le of the adaptation response of � � �� � (le� 
and right bottom panel). (d) Plot of � �� � � �  as a function of �  and �  where two distinct transition regimes 
( � � � � ��  and � � � � ��  ) are separated by the white boundary. (e) Single-cell trajectories plotted in the �� � � � � � 
space for increasing level of stimulus s (blue for � � � �  and green for � � � �  ): Upper panel (red square: � � �  and 
� � ��  ) shows a saddle collision for � � � �  and bottom panel (grey circle: � � ���  ; � � �  ) shows a saddle-node 
bifurcation. Black full and gray dashed lines represent the steady state branches �� �� � �� � and �� ��� �� �.
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In this way, the parameters �  ( � � � � ��  ) and �  can be systematically varied to modulate the overshoot char-
acteristics of adaptation with limited impact on steady-state properties. Indeed, the steady state of � �  depends 
on the stimulus according to:

which satis�es � � �� � �� � �  for any �  and � �  values. Furthermore, stability analysis of this steady state establishes 
the following criteria for the existence of an overdamped overshoot response to the step stimulus � � � :

Accordingly, the adaptation parameters � � � � � ��  and � � �  control the amplitude and timescale of the over-
shoot response without changing the steady-state value for � � �  (Fig.�2c). More details regarding the relation 
between the negative-feedback parameters and the adaptation behavior can be found in a previous modeling 
study43.

Before considering a source of variability, we �rst need to investigate the main e�ect of transient adaptation 
dynamics on the fate decision properties. In this case, probabilistic response and fractional killing do not occur, 
and the system response to a step�stimulus is essentially determined by a threshold � �  : a stress amplitude s greater 
(resp. lower) than � �  leads to a fate decision toward death (resp., survival). For an adiabatically-slow increase of 
the stimulus, the system follows the steady-state branch �� �� � �� � of low � �  values before escaping from it for � � � ��  
through a saddle-node bifurcation. �is is not necessarily the case for a step increase of the stimulus, for which 
transition to death can occur for a stimulus level � � � ��  so that � �� � � � � �  . �e plot of � �� � � �  as function 
of adaptation parameters in Fig.�2d shows that � � � � ��  for weak enough or fast enough adaptation, while � �  is 
below � ��  for large enough values of both �  and �  . �ese two qualitative regimes manifest, in fact, the existence of 
distinct instability mechanisms (Fig.�2e). For low values of �  or �  and thus a small or no overshoot, the threshold 
property � � � � � � ��  relates with a dynamical trajectory that is destabilized in the vicinity of a saddle-node 
instability (lower panel of Fig.�2e). In this scenario, � �  species trigger the fate decision depending on the steady-
state value of the adaptive species � �  , which carries out the role of a�bifurcation parameter. In sharp contrast, for 
high enough value of both �  and �  and thus for a signi�cant overshoot response of � �  , the threshold property 
� � � � � � ��  relates with a dynamical trajectory that collides with a saddle instability (upper panel of Fig.�2e).

In summary, while varying �  and �  leads to gradual changes of the amplitude and the timescale of the over-
shoot adaptation pro�le, we could identify a threshold boundary in the �� � � � space which separates between a 
saddle-node and a saddle-collision instability scenario. In the saddle-collision scenario, the threshold value � �  
becomes very sensitive to the transient characteristics of the overshoot pro�le, which suggests that fate decision 
may also become more sensitive to the sources of cell-to-cell variability that impact transient dynamics.

���†�ƒ�’�–�ƒ�–�‹�‘�•���†�›�•�ƒ�•�‹�…�•���’�”�‘�•�‘�–�‡�•���Š�‡�–�‡�”�‘�‰�‡�•�‡�‘�—�•���…�‡�Ž�Ž�æ�ˆ�ƒ�–�‡���†�‡�…�‹�•�‹�‘�•�•�ä Based on our comprehensive 
analysis of the deterministic decision dynamics in the coarse-grained model combining adaptation and bista-
bility, we aim to investigate how adaptation in�uences�cell-fate heterogeneity in a population of noisy cells. We 
therefore apply the general stochastic modeling framework to this biochemical network model (see "Methods" 
section) and perform a systematic analysis of the probabilistic properties in the �� � � � parameter space and for 
several noise sources and levels (Fig.�3).

To begin with, we consider the case of cell-to-cell variability arising from molecular noise solely ( � � � � 
and �� � � ��  ) and focus on the two archetypical parameter sets depicted in Fig.�2 that are associated with weak/
fast adaptation ( � � ���  and � � �  ) and strong/slow adaptation ( � � �  and � � ��  ), respectively. Simulation 
of Langevin equations for 2000 trials shows that, for the same level of noise, strong/slow adaptation leads to 
probabilistic response associated with a much larger stimulus range and a much smaller derivative at � � ���  
(Fig.�3a). �ese di�erences are quanti�ed by the fractionality index �  that is about four-fold larger for strong 
adaptation ( � � ����  ) as compared to weak adaptation ( � � �����  ). To illustrate how adaptation may amplify 
noise to generate more heterogeneous fate response, we plot the noisy single-cell trajectories in the two scenarios 
associated with the noise level and the same relative change of stimulus level. When adaptation is strong and 
slow enough, noisy trajectories remain within some neighborhood of the noise-free trajectory until diverging 
from it toward di�erent fates when approaching the saddle �xed point, with a slight change of respective fate 
probability when the stimulus increases (Fig.�3b). �is is in sharp contrast with the case of weak (or no) adapta-
tion for which noisy trajectories reach �rst the neighborhood of a stable �xed point, before eventually escaping 
over the saddle �xed point toward the other fate when the stimulus slightly increases (Fig.�3c). �e qualitative 
di�erence between these two stochastic decision scenario is con�rmed by the distinct scaling laws � � � �  , where 
� � �  for strong/slow adaptation and � � ���  for weak/fast adaptation (Fig.�3d). �is body of evidences strongly 
suggest that adaptation dynamics promotes cell-fate heterogeneity, mostly by changing the underlying nonlinear 
mechanism of decision-making. �is is con�rmed by the plot � � � �� � � �  (Fig.�3e), which unambiguously shows 
a qualitative increase of fractionality index �  speci�cally in the parameter domain where the saddle-collision 
scenario occurs (above the white boundary).

Besides molecular noise, other sources of cell-to-cell variability have been tested, such as stimulus exposure 
or sensitivity � � (Fig.�3f) or initial conditions �� � �� � � (Fig.�3g). Again, a qualitative increase of �  is observed in the 
parameter region associated with a saddle-collision scenario (above the white boundary), though the extent of 
such increase is much more important for the case of variable initial conditions. �is is because variability of 
initial conditions impacts only transient dynamics, not steady state, while variability of � � impacts steady-state 
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properties. Adaptation dynamics can promote cell-fate heterogeneity in a qualitative manner, but to varying 
extent depending on the source of variability and the time pro�le of the overshoot.

���†�ƒ�’�–�ƒ�–�‹�‘�•�� �†�›�•�ƒ�•�‹�…�•�� �…�‘�•�–�”�‹�„�—�–�‡�•�� �–�‘�� �ˆ�”�ƒ�…�–�‹�‘�•�ƒ�Ž�� �•�‹�Ž�Ž�‹�•�‰�� �‹�•�� �ƒ�•�� �ƒ�’�‘�’�–�‘�•�‹�•�� �•�‘�†�‡�Ž�ä �e nonlinear 
nature of the adaptation-related ampli�cation of noise e�ect suggests that this mechanism could be e�ective 
regardless the�complexity of the network model. In other words, we expect to observe a similar noise ampli�-
cation behavior in more detailed regulatory network model of stress-induced death fate decision as far as the 
adaptation dynamics leads to a collision to a saddle instability in the state-space of any dimensions. To check 
this conjecture, we need to replace the e�ective one-dimensional model of fate decision by a more realistic 
high-dimensional model of death fate decision. Fractional killing is commonly observed following many types 
of stress or death ligands, which may trigger death through di�erent pathways44,45 depending on the involved 
multi-protein signaling complexes, transcriptional factors and other signaling and metabolic cues (le� of 
Fig.�4a). Among these many possibilities, we consider the canonical case where the stress signal and damage 
species mainly impact the intrinsic mitochondrial pathway of apoptosis through the control of the Bh3 member 
of Bcl-2 family46. An alternative possibility could have been to consider the case of TRAIL-induced apoptosis 
involving caspase 8-dependent activation of both extrinsic and mitochondrial pathways20.

�e choice of Bh3-dependent mitochondrial apoptosis is motivated by a previous biochemical model of 
apoptosis initiation24, which exhibited several interesting features for our study. First, the model focuses on the 

Figure�3.   �e critical impact of adaptation on cell-fate heterogeneity. Fate decision probability is studied in 
presence of molecular noise level (a–e) or other sources of cell-cell variability (f–g). (a) Fate probability curves 
as function of relative stimulus for the cases of strong/slow adaptation (red squares) and weak/fast adaptation 
(gray circles). (b–c) Sample of noisy single-cell trajectories associated with a ���  change of stimulus level 
around � � � ��  (dashed line of panel a), which are plotted in the �� � � � � � state space where steady-state branches 
�� �� � are also represented. (d) Fractionality index �  as function of noise with their asymptotic scaling exponents. 
(e) Fractionality index �  as a function of adaptation parameters �  and �  for molecular noise level � � ����  . 
White line delimits the parameter domains of saddle-collision and saddle-node transition scenario (redrawn 
from Fig.�2c). Red squares ( � � �  and � � ��  ) and grey circles ( � � ���  and � � �  ) correspond to the two 
archetypical parameter sets associated to each scenario, which are compared in panels a–d. (f–g) Fractionality 
index �  as function of �  and �  for two sources of cell-cell variability: (f) a uniform distribution of stimulus 
exposure � � with � � � � � � �� � � ����� ���� ; (g) a uniform distribution of initial conditions �� �� � �� � � � � �� �  with 
� � � �

� � � ��
� � � ���� ��� � ����.
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initial stage of intrinsic mitochondrial apoptosis, providing a simple picture of the decision-making process by 
leaving aside the further stages of e�ector caspase activation and related apoptosis events as well as the complex 
crosstalk with other programmed death pathways. Second, the topology and parameters of the model are deter-
mined in close relation with biological hypothesis and experimental data in a context of chemical stress response. 
Last, the topological and dynamical properties of the model are featured with a single positive feedback and a 
bistable behavior which are fully consistent with the minimal set of ingredients that is needed to implement our 
adaptation-dependent noise-ampli�cation mechanism. In particular, prior knowledge about the bifurcation 
properties is very helpful to compare � �  and � ��  thresholds and make the connection between the low-dimensional 
and high-dimensional models.

�erefore, the structure of the detailed model merely consists on the coupling between our above adaptation 
model (Eq.�4a, b) and the�published model of mitochondrial apoptosis initiation24 (right of Fig.�4a). Speci�cally, 
the adaptive species � �  upregulates the synthesis of a pro-apoptotic BH3-only proteins (e.g., Bad, Bim, Bid), 
keeping in mind that intracellular stress-signaling pathways impacts the mitochondrial apoptosis pathway at 
various places45,46. Regarding the published apoptosis initiation model, the postranslational interactions between 
the pro-apoptotic Bh3 and Bax proteins and the anti-apoptotic Bcl-2 proteins implement a positive feedback 
mechanism. Pro-apoptotic signals are�prone to increase the level of free Bh3 proteins with respect to the level 
of Bh3 proteins bound to Bcl-2. Free Bh3 proteins directly interact with inactive cytosolic Bax proteins, thereby 
inducing conformational change that leads to their activation and mitochondrial translocation. In turn, the 
activated mitochondria-localized form of Bax can also bind to Bcl-2, resulting in the release of additional free 
Bh3 proteins from Bh3-Bcl complexes. For a critical synthesis rate of Bh3 proteins, this positive feedback loop 
produces a bistable switching behavior via a saddle-node bifurcation from low to high levels of free mitochon-
drial Bax ( ��� � )24. �en, high enough levels of ��� �  would typically induce the release of cytochrome C and 
mitochondrial outer membrane permeabilization (MOMP) followed by the formation and activation of the 
apoptosome and the execution of apoptosis.

Figure�4.   Adaptation-dependent fractional killing in an apoptosis model. (a) Some mammalian cell-death 
pathways associated with fractional killing including the stress-induced mitochondrial pathway of apoptosis 
(le� panel). �e detailed model of this study couples the coarse-grained model of stress-induced adaptation 
module (Eqs.�4a, b) and a published model of the mitochondrial apoptosis initiation module24 (right panel). 
(b) Death probability as function of the relative stimulus level � �� ��  obtained through numerical simulation of 
Eq.�(1) with � � �����  , where �  is about four-fold higher with adaptation ( � � �  ) compared to without ( � � �  ). 
(c–d) Temporal trajectories of � �  and ��� �  in the presence or the absence of adaptation (c: � � �  ; d: � � �  ). 
Adaptation timescale is set to � � ������  to match with the timescale of the apoptotic switch (time unit is hour). 
Right panels show a 2D state-space projection of the high-dimensional dynamics with respect to the stable and 
saddle �xed points (brown and white circles) of the deterministic system.
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�e stochastic dynamics of this regulatory network coupling an adaptation module and an apoptosis module 
is simulated using again the Langevin formalism of Eq.�(1) (see "Methods" section) with �xed �  . Death initiation 
event is assumed to occur when ��� �  reaches the neighborhood of the high-level steady-state branch. For large 
number of simulation trials, death probability can be measured as a function of the stress stimulus level, s, for 
distinct adaptation pro�les, here with � � �  or 1 (Fig.�4b). Simulation results reveal that the presence of adapta-
tion leads to a probabilistic response for a broader range of stimulus, which manifests itself by a lower value of 
the derivative of � �����  with respect to � �� ��  associated to a four-fold higher value of �  . Such signi�cant di�erence 
in noise-sensitivity �  correlates to well distinct types of dynamical trajectories associated with survival-death fate 
decisions (Fig.�4c–d). For � � �  , the overshoot response of � �  species leads to a transient increase of ��� �  during 
which trajectories �nally diverge from each other toward the survival or death attractor (Fig.�4c). �is decision 
is made when approaching the unstable saddle equilibria along its stable manifold (right panel of Fig.�4c). For 
� � �  , the level of ��� �  reaches and �uctuates around a steady state of low values, before an eventual noise-
induced switch toward the death state by escaping over the saddle instability along its unstable manifold (Fig.�4d).

�e results obtained with a detailed model of apoptosis are thus consistent with those obtained with the model 
Eq. (4) involving a minimal decision module (Fig.�4b similar to Figs.�3a and 4c–d similar to Fig.�3b–c). To obtain 
a similar behavior, it should be noted that (i) adaptation and decision timescales had to be adjusted to each other 
in the detailed model such that the decrease of � �  during the overshoot pro�le occurs before ��� �  reaches its 
upper-branch steady state, and that (ii) the molecular noise impacts more the death species than the adaptive 
species (compare molecular noise of ��� �  and � �  in Fig.�4c, d). A further step would thus be to check whether 
these two conditions are full�led in the detailed modeling of both the speci�c signaling pathways producing 
adaptation at the level of damage-repair pathways47, stress-response patwhays24 or death-ligand pathways25,26, 
and of the speci�c death-regulatory pathways that are triggered by these diverse death-inducing stimuli. In these 
various cases, adaptation and fate decision processes are prone to be implemented by slightly di�erent regulatory 
network topologies which may modulate the timescale and stochastic characteristics of the dynamical response 
and in�uence the extent of the adaptation-dependent fractional killing.

���Š�‡�‘�”�‡�–�‹�…�ƒ�Ž�� �†�‡�•�…�”�‹�’�–�‹�‘�•�� �‘�ˆ�� �•�–�‘�…�Š�ƒ�•�–�‹�…�� �†�‡�…�‹�•�‹�‘�•�� �’�”�‘�’�‡�”�–�‹�‡�•�ä We have shown that the sensitivity of 
cell-fate decision to molecular noise depends on the state-space paths taken to reach a saddle instability, along, 
either, its stable manifold or its unstable manifold (Fig.�5a). In order to get further insights into the stochastic 
nonlinear dynamics involved in this process, we develop a perturbation approach in the limit of small noise and 
small stimulus changes for which speci�c scaling laws � � � � �  have been obtained (Fig.�3d). Scaling analysis 
near instabilities is a common approach to characterize qualitative dynamical behaviors as function of noise, 
timescales and bifurcation parameters (see textbook42 or some case study48,49).

In the case of a saddle-collision scenario, perturbed trajectories evolve in the neighborhood of the deter-
ministic trajectory �� � �� � � � � that connects the initial condition �� � �� � �� � � � �� � �� � ��  and the saddle �xed point 
�� � �� � � � � � � ��� �� � � (Figs.�2d and 3d) and, thus, live on the stable manifold of this saddle � � � �� ��� � that 
separates the di�erent fate attractors. Along this singular deterministic trajectory, some local Lyapunov stability 
exponents (i.e., time-dependent eigenvalues of the Jacobian matrix � � �� � �� ��  ) become positive such as to amplify 
transverse perturbations due to molecular noise or heterogeneous initial conditions. Mathematically speak-
ing, linearization of Eq. (1a) about �� � �� � de�nes a class of Langevin equations for the perturbed trajectories 
�� �� � � � � �� � � � � � � � � � � � � � �� � whose solution can be decomposed as �� �� � � � � �� � � �� � � � �� � �� � where

�� � � � �� is the principal fundamental matrix and �� � � ��  are the normalized stimuli and noise perturbation vectors 
given by: 

(7)�� � � �� �� � �
� �

�
�� � � � � � �� � � �� �� � ��� � �

Figure�5.   From deterministic to stochastic properties of two distinct cell-fate decision scenarios. (a) 
Deterministic decision mechanims in the space of adaptation parameters. (b–c) Corresponding stochastic 
decision mechanisms. (d) Qualitative change of fractionality index.
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 To compute the fractionality index �  , the key statement is that fate decisions (resp., probability) are determined by 
the deviation (resp., distribution) of trajectories onto the normal direction � �  of the �� � �� -dimensional stable 
manifold of the saddle. �e mean and variance of the normal distribution � �� � � � � evolves in time until the deci-
sion time � �  at which the distribution splits and many trajectories leave the neighborhood of �� � �� � (Fig.�5b). Rewrit-
ing Eq. (2) as � � �

�
� � � � � � � � � � �� �  and decomposing �� �

�� � � �� �
� � � � � �� � �� � �

�� � � ��� � � �� �
� �� �� ��� � ��� � �� � � � , we 

can derive the following expression for � :

�is formula shows an asymptotic scaling law � � �  (Figs.�3d and 5d) while the prefactor depends in a sophisti-
cated manner on the local stability properties (via �  ) and sensitivity properties (via ��  ) of the transient trajectory. 
A similar derivation in the 1D case has been previously performed to show that this scaling law also depends on 
the speed of the trajectory toward the saddle instability48.

�e sensitivity to noise is very di�erent in the other scenario of noise-induced escape from a stable state ( �� �� �  ) 
over a saddle barrier ( �� ���  ), which is a very common behavior associated with the escape from metastability49,50. 
For this decision-making regime, an e�ective potential U, a potential barrier �� � � � � � �� ��� �� �� � � � �� �� � �� ��  
and a Kramers escape rate � � �� � � ��� ���� � ��� � � can be usually de�ned, even for multi-dimensional systems 
and multiplicative noise51 (Fig.�5c). Given a fate-decision probability � � �� � � � � ��� ��� � � � , the fractionality 
index can be derived and approximated as :

For the one-dimensional model of bistability used in Eq.�(4c), the particular scaling relation � �� � � � � � ���  (as 
the threshold � ��  depends on �  ) leads to the scaling law � � � ���  obtained in Fig.�3d.

To conclude, these very distinct formulas for �  highlight that the conversion of intracellular �uctuations into 
heterogeneous cellular fate response sharply di�er depending on the transition scenario. �e saddle-collision 
scenario is characterized with the ampli�cation of small perturbations due to the local instability of trajectories 
when approaching the saddle state during the overshoot of decision variables (e.g., � �  or ��� �  ). In contrast, the 
more common scenario of a noise-induced escape from a metastable state does not display this ampli�cation 
mechanism, while the transition rate � �  is very sensitive to stimulus level due to the exponential-like dependency 
on the saddle barrier height.

���‹�•�…�—�•�•�‹�‘�•
�e present modeling study deciphers the role of adaptation dynamics in promoting cell-fate heterogeneity 
associated for instance with the fractional killing behavior. A common property of adaptation is the transient 
overshoot of some cellular variables above its steady state value, which can be implemented by diverse circuit 
topologies32 and which is subjected to tradeo�s associated with homeostatic or sensory process33,34,52,53. In addi-
tion, we propose that this transient overshoot dynamics can also signi�cantly impact fate-switching behaviors, 
so as to extend the stimulus range of fate heterogeneity and to allow for tunable fate probability. �is adaptation-
dependent fate stochasticity relies on the manner how the overshoot of some intracellular species drive cell state 
in the neighborhoohd of a saddle instability, rather than a saddle-node instability, along a path where molecular 
noise are more prone to promote divergent decisions. �is noise-ampli�cation behavior illustrates how molecu-
lar noise and instability mechanisms can cooperate to shape cellular dynamics, like genetic timers54, boundary 
formation55 or versatile sensory processing56.

�e biological relevance of the proposed mechanism is most likely in a context of fractional killing for which 
the choice between life and death depends on adaptation processes. �e timescales of those adaptation responses 
range from half an�hour to few hours depending on stress type and regulatory mechanisms47,57,58 which is of the 
range of magnitude of the initiator caspase rise time and death onset timing. Moreover, noise-induced fate het-
erogeneity is the most e�ective when �uctuating variables are those involved in the positive feedback that triggers 
death initiation. �is requirement is consistent with modeling evidences that variability in diverse regulatory 
molecules can contribute in very di�erent ways to variability in cell death outcomes20 and that the main contri-
butions seem to occur in the initial decision commitement phase, whether it is at the level of the �uctuations of 
short-lived antiapoptotic proteins22 or the stochastic assembly of DISC/RIPoptosome platform23. �e manner 
how cell fate is determined by the impact of these �uctuations at the level of concentration trajectories has been 
also investigated24,25,27. In relation to these studies, our study presents a broad and comprehensive view of this 
cooperative process and, thus, provides strategies, by monitoring transient characteristics, to either increase or 
reduce fractional killing.

�e pro�le characteristics of adaptation dynamics, such as the ratio between its maximal and steady-state val-
ues, are�highly sensitive to the temporal pro�le of the stimulus. Ramp increase of a stimulus or a preconditioning 
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stimuli are known to reduce the transient overshoot behavior. �is feature has been exploited to test the role 
of adaptation in oxidative stress response of yeast59, the osmotic stress response of yeast60 or ethanol stress in 
Bacillus61. In case of stress-induced fate response, monitoring the stress stimulus pro�le would therefore be 
expected to modulate not only threshold stimulus level ( � ��  ), but also the degree of heterogeneity of the response 
( �  ). �is provides a practical mean to test the role of adaptation for cell-fate heterogeneity, and to design dose 
delivery protocols of treatment to cope with fractional killing of cancer cells or microbial organisms.

It is tempting to extrapolate the biological relevance of such adaptation-dependent mechanism beyond the 
scope of fractional killing and transient adaptation dynamics. �e mechanism itself only requires a regulatory 
network featured with an upsteam overshoot response and a downstream switching response, which could be 
implemented by diverse network topologies and in diverse cell-fate contexts. For instance, overshoot dynamics 
can also occur in regulatory systems comprising incoherent feedforward loops32, but also in excitable or pulsatile 
systems combining negative and positive feedback loops. For the latter case, numerous signaling pathways, such 
as P53, Erk or NF-�  B, display a versatile pulsatile dynamics, which has been proposed to expand signal-pro-
cessing capabilities and determine cell fate accordingly14,15. In relation to our result, the transient and stochastic 
characteristics of these signaling dynamics may also suggest a role for promoting cell-fate heterogeneity. �is 
is supported by some experimental evidences that have mapped the cell-cell variability of the pulsing dynam-
ics of Erk10,11, p5362,63, � -catenin13 and NF-� B12 with the heterogeneity of cell-fate outcomes. Data-driven and 
�ne-grained modeling of speci�c dynamic signaling and fate-regulatory pathways11,20,62,64 are de�nitively the 
step further to evaluate on a case-by-case basis to which extent transient adaptation�or pulsing dynamics may 
contribute, fortuitously or functionally, to cell-fate heterogeneity.

���‡�–�Š�‘�†�•
���‘�ƒ�”�•�‡�æ�‰�”�ƒ�‹�•�‡�†���•�‘�†�‡�Ž�ä �e set of regulatory reactions depicted in Fig.�3a consists in the following basal/
regulated synthesis terms and basal/regulated degradation terms: 

 which can be translated into a system of di�erential equations using the law of mass action : 

 To obtain the set of Eq. (4), we perform a nondimenzionalization procedure to reduce the number of parameters 
and to de�ne e�ective parameters that control separately di�erent features of the dynamics such as response 
timescales, transient nonlinear response and steady states. Accordingly, we have introduced dimensionless time 
��  , concentration � � and stimulus s and de�ned rescaling variables ( � ���  , � �  ) and aggregate parameters ( � � , �  and 
� � ), as the following: 

 �ese changes of variables and parameters simplify Eq.�(12) into Eq. (4) where dimensionless time ��  is noted t 
again for simplicity. �e chemical Langevin equation associated to Eq. (4) is also characterised with a rescaled 
noise � � ��� � � � � ��� �  where �  is the system size and � ��� � � � ��  . Finally, reaction rates and stoichiometry 
matrices are given by:

where � � � ���  , � � � �����  , � � � �  , � � � ���  , � � � ���  , while �  and �  are varied.

���‡�–�ƒ�‹�Ž�‡�†���•�‘�†�‡�Ž�ä Equations and parameters of the biochemical reaction model of apoptosis initiation have 
been taken from24. From the original model, the equations for CIAP, p53 and Mdm2 have been removed and the 
equation for Bh3T has been changed to incorporate activation by � �  and to display a slower response:
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�e corresponding Langevin equation (Eq.�1) considers the following state vectors, reaction rate vectors and 
stoichiometry matrix:

where � ��� � � �����  , � � � � ����  � � � � � ��� � � ����  , � �� � � ����  , � �� � � ���  , � � � � �  , � � � � ���  , � � � �  , 
� ���� � ����  , � ���� � ����  , � ���� � ����  , � ���� � ����  , ����� � � �  and ����� � � ���� .

���—�•�‡�”�‹�…�ƒ�Ž�� �•�‹�•�—�Ž�ƒ�–�‹�‘�•�� �ƒ�•�†�� �†�›�•�ƒ�•�‹�…�ƒ�Ž�� �ƒ�•�ƒ�Ž�›�•�‹�•�ä For both models, numerical integation of Langevin 
equations are performed with 4th-order Runge-Kutta method and probability distribution � � �� � are plotted 
with a statistics of 2000 trials with a measurement time of � � � ���  . �  is computed by interpolating � � �� � and 
approximating � � � � �� �� � � ���

� �� �� ��
 where � � �� � � � � ����  . State-space trajectories are represented in some rel-

evant subspace of the state space where the steady states �� �� � ��� � ��  satisfying � � �� � � �  are represented by the con-
ventional �lled/empty/half-empty circles. �e steady-state branches �� �� � ��� �� � are also represented for the sake 
of comparison for di�erent parameter values. �e set of mathematical notations used are given in the Table�1.
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