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Theoretical study of the impact 
of adaptation on cell‑fate 
heterogeneity and fractional killing
Julien Hurbain1,2, Darka Labavić1,2, Quentin Thommen1 & Benjamin Pfeuty1*

Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a 
wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical 
networks plays a fundamental role in shaping this probabilistic response and in reconciling 
requirements for heterogeneity and controllability of cell‑fate decisions. The stress‑induced fate 
choice between life and death depends on an early adaptation response which may contribute to 
fractional killing by amplifying small differences between cells. To test this hypothesis, we consider 
a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response 
curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin 
simulation, we show that adaptation dynamics enhances noise‑induced cell‑fate heterogeneity by 
shifting from a saddle‑node to a saddle‑collision transition scenario. The generality of this result is 
further assessed by a computational analysis of a detailed regulatory network model of apoptosis 
initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present 
study identifies a cooperative interplay between stochastic, adaptation and decision intracellular 
processes that could promote cell‑fate heterogeneity in many contexts.

In many adaptation and developmental contexts, isogenic cells make stochastic fate decisions to generate diver-
sified cell types and  subpopulations1. Cell-fate heterogeneity is indeed a key feature of microbial adaptation to 
adverse  environments2, of the development and homeostasis of tissues and  organs3 or of tumor resistance to drug 
 therapy4. The differential fate outcome of isogenic cells exposed to the same environmental stimuli involves the 
interplay of stochastic and deterministic  mechanisms5–7, where regulatory mechanisms can determine both the 
statistics and dynamics of stochastic events and the effect of those stochastic events on molecular trajectories 
dictating cell fate choices. Several experimental studies have shown that cell-fate decisions are often preceded 
by a highly fluctuating intracellular dynamics. Pulsatile or oscillatory activities have been observed in signaling 
pathways operating during the stochastic choice of various differentiation or proliferation  fates8–13. The profile 
characteristics of those dynamic signaling activities have been proposed to either direct decision outcomes or 
promote cell-fate  heterogeneity14,15. Transient dynamics occurring at epigenetics, transcriptome-wide or multi-
cellular  levels16–18 have also been proposed to regulate cell-fate heterogeneity and plasticity. All these examples 
support a key role of transient dynamics in orchestrating fate decisions from diverse signaling and stochastic cues.

An attractive case study is the stochastic fate decision between life and death, commonly termed fractional 
killing, for which the systematic measure of probabilistic dose-response curves coupled with single-cell analysis 
of stochastic and dynamical signatures are  possible19. On this issue, several modelling studies have been devoted 
to identify which sources of fluctuations and which parts of the apoptotic network could contribute the most to 
the variability of decision time and  outcomes20–23, while the impact of the transient dynamics has been seldomly 
 addressed24. Yet, singe-cell analysis of the temporal trajectories of caspase 8 activity in response to TRAIL has 
revealed a signature of adaptation dynamics whose transient kinetics determines whether a cell survives or 
 dies25. Caspase 8 is likely to be part of negative feedback regulation involving for instance the formation of 
inactive heterodimers of procaspase-826. The importance of transient dynamics of apoptotic inducers has been 
also emphasized in the case of cisplatin drug  exposure24,27. The proposed mechanism involves a competition 
between positive and negative regulation of caspase 8-dependent apoptosis, thereby defining an incoherent 
feedforward loop. More generally, environmental stressors are prone to upregulate both pro-survival and pro-
death  pathways28–31 through negative feedback or incoherent feedforward loop motifs which ultimately lead 
to a dynamical adaptation  response32–34. These stochastic and deterministic features associated with fractional 
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killing raise the more general question of the role of adaptation dynamics in shaping the timing and probabilities 
of stochastic fate decisions.

Diverse modelling approaches have proved useful to study stochastic switching in regulatory networks, 
ranging from the discrete chemical master equations and stochastic simulation algorithms to the continuous 
Fokker-Planck and Langevin equations. Those diverse tools and their refinements have been broadly used to 
study the interplay between noise properties and network topologies in shaping the steady-state bimodal dis-
tribution and transition rates associated with two phenotypic  states35–39. In the present study, we use the joint 
framework of chemical Langevin  equations40 and bifurcation theory to address the interplay of stochasticity, 
transient adaptation and bistable switching. The deterministic and stochastic analysis of a simple model combin-
ing adaptation and bistability deciphers how the adaptation overshoot dynamics modulate, concomitantly, the 
nonlinear decision-making properties and the probabilistic fate-response properties. The biological relevance 
of this behavior is assessed by simulating a more detailed model of programmed death pathways. Finally, the 
generality of the proposed noise-amplification mechanism is addressed within the theoretical framework of 
stochastic nonlinear dynamics.

Results
Stochastic modeling framework for probabilistic fate decisions. Fractional killing can be defined 
as the population-level property by which isogenic cells exposed to increasing doses of death-inducing stim-
uli will tend to display a fraction of surviving cells and dying cells, although with increasing probability of 
death. This stochastic decision process can be studied in a general theoretical framework that applies to cases 
of fate decisions other than survival and death. Probabilistic cell-fate response commonly involves the interplay 
between intracellular mechanisms of fate decision and intracellular sources of cell-to-cell variability. Without 
loss of generality, a possible framework to study such probabilistic fate response to a step stimulus consists in 
a Langevin differential equation description of the stochastic dynamics of a biochemical reaction network (see 
Table 1 for notations): 

(1a)
dxli
dt

=
∑

j

νji a
l
j(t)+

∑

j

νji

√

alj(t) ξ
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j (t)

(1b)alj(t) = aj(�x
l , sl(t), �kl)

(1c)s(t) = s H(t)

Table 1.  List of mathematical symbols and notations.

Symbol Description Equations/Figures

xli , �xl Concentration of biochemical species i of cell l Eq. (1)

kli , �kl Biochemical network parameter i of cell l Eq. (1)

aj , νji Rate and stoichiometries of the biochemical reaction j Eq. (1)

ξ lj Langevin noise associated to reaction j in cell l Eq. (1)

σ Standard deviation of random variable Eq. (1)

sl Stimulus (e.g., stress) level of cell l Eq. (1)

ssn Stimulus level associated with saddle-node bifurcation Fig. 2

P(�x, t) Time-dependent probability distribution function in state space Eq. (2)

PD/Death Decision (e.g., death) probability Eq. (2)

s50 Stimulus level inducing 50% of fate probability Eq. (3)

t∗ Measurement time for PD Eq. (2)

η Fractionality index Eq. (3)

x1,2,3 Adaptive (e.g., damage/repair) and fate-decision (e.g., death) species Eq. (4)

β , τ Adaptation strength and timescale Eq. (4)

�xst1,2/sn/sad Stable/saddle-node/saddle fixed point associated with bistability Figs. 2, 3 and 4

W s/u(�x) Stable/unstable manifold of the fixed point �x Eqs. (2) and (9)

sc Critical stimulus level without noise sc = s50(σ = 0) Fig. 2

�xc(t, sc) Critical trajectory Fig. 2 and Eqs. (7–8)

�y(t) , yN Small deviations of �x(t) from �xc(t) Fig. 5 and Eqs. (7–9)

�(t, t′) Principal fundamental matrix Eq. (7)

U(x),�, rK Effective potential, barrier height and Kramers rate Fig. 5 and Eq. (10)
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 where H(t) and δ(t) are respectively the Heaviside and the Dirac delta functions. In this model, the cell-to-cell 
variability of stimulus-induced response trajectories �xl can originate either from noisy biochemical reactions 
involving stochastic processes ξ lj (t) or from heterogeneities in stimulus exposure/sensitivity sl or network param-
eters �kl from cell to cell. Although limited or inaccurate to describe some stochastic behaviors of biochemical 
 networks41, chemical Langevin equation approach is nevertheless convenient to study asymptotic cases of small 
noise, large size or separated timescales and, thus, to relate with noise-free dynamical  properties42.

For the deterministic part of the equation, the fate-decision behavior (e.g., death) can be minimally imple-
mented in the nonlinear dynamics of the biochemical network by the presence of a saddle-node bifurcation 
mechanism at a critical stimulus level ssn through which the (survival) steady state �xst1 is destabilized toward the 
other (death) steady state �xst2 , generally in an irreversible manner. Accordingly, near-identical cells exposed to 
the same stimulus may display divergent trajectories toward survival or death (Fig. 1a). The population dynamics 
of noisy or heterogeneous cells described by Eq. (1) can be statistically represented by a probability distribution 
P(�x, t) , which typically follows a Fokker-Planck equation. Stimulus-induced fate decision relates with the estab-
lishment of a bimodal distribution such that one can define the decision probability PD (Fig. 1b):

where t∗ is the typical measurement time and W s(�xst) is the fate attractor basin. It is to emphasize that we consider 
the typical case of an irreversible fate decision associated with a low or null probability to revert from the state 
�xst2 to �xst1 , which is typically the case for death, proliferation or terminal differentiation fate outcomes. From the 
dose-response curve PD(s) , one can define a fractionality index (Fig. 1c) which quantifies the derivative of this 
curve around the 50% fate probability ( PD(s50) = 0.5):

Based on this simple sensitivity measure of the stochastic fate response, systematic analysis of how η varies with 
noise strength σ and network parameters �k should provide key insights into the interplay of stochastic and non-
linear properties of networks in shaping probabilistic features of fate response.

Adaptation dynamics enforces a saddle‑collision mechanism for decision making. To evaluate 
the impact of adaptation dynamics on the probabilistic properties of stochastic fate decisions, the biochemical 
reaction model used in Eq. (1) must implement adaptation and switching behaviors. For the ease of mathemati-
cal and graphical analysis, we consider a low-dimensional biochemical reaction  network43, whose interactions 
between three coarse-grained variables implement a basic setting of a negative feedback-driven adaptation and 
a positive feedback-driven decision switch (Fig. 2a,b). Starting from a set of biochemical reactions associated 
with this architecture, a suitable factorization and normalization procedure (see "Methods" section) allows one 
to derive the following set of differential equation, 

(1d)�ξ lj (t) ξ
l′

j′ (t
′)� = σ 2 δ(t − t ′)δj,j′δl,l′ .

(2)PD =

∫

�x∈W s(�xst2)
P(�x, t∗)d�x .

(3)η =

(

d ln P

d ln s
(s50)

)−1

(4a)τ1
dx1

dt
= 1− k1 + k1 s(t)− x2 x1 ,

(4b)τ
dx2

dt
= 1− β + βx1 − x2 ,

Figure 1.  Dynamical and probabilistic schemes of cell-fate decisions. (a) State-space trajectories diverging 
toward distinct cellular phenotypic states. (b) Establishment of a bimodal probability density function. (c) Fate 
probability curves whose slope is quantified by a fractionality index ( η).
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 The reaction rates ai of the corresponding Langevin equations are detailed in "Methods" section. Most parameter 
values are fixed within a range consistent with some biological assumptions. First, self-activation parameters 
k3 = 1 and k4 = 0.2 implement a positive feedback that is strong enough to produce an irreversible transition 
to death fate. Second, the parameters k1 = 0.9 and τ1 = 0.1 < 1 < τ implement a significant and fast stimulus-
induced response of x1 , which gives rise to a marked overshoot dynamics through negative feedback with x2 . 
Third, the synthesis rate parameters 1− β , 1− k1 and k2 = 0.056 satisfy the normalization condition that saddle-
node bifurcation occurs for x1 = x2 = s = 1 whatever the values of the other model parameters ( ki , β , τ).

(4c)
dx3

dt
= k2 x1 + k3

x23
k4 + x23

− x3 .

Figure 2.  Adaptation alters the nonlinear mechanism of decision making. (a) Coarse grained model combining 
a negative feedback loop (NFL) between x1 and x2 species and self-activation positive feedback loop (PFL) of 
x3 species. (b) Typical adaptation and switching dynamics in response to a stimulus step. Color code relates 
to that of panel (a) and model parameters are β = 1 and τ = 10 . (c) Effect of adaptation parameters β and τ 
on the linear response regime (upper panel) and the overshoot profile of the adaptation response of x1(t) (left 
and right bottom panel). (d) Plot of ssn − sc as a function of β and τ where two distinct transition regimes 
( sc = ssn and sc < ssn ) are separated by the white boundary. (e) Single-cell trajectories plotted in the {x1, x3} 
space for increasing level of stimulus s (blue for s < sc and green for s > sc ): Upper panel (red square: β = 1 and 
τ = 10 ) shows a saddle collision for s = sc and bottom panel (grey circle: β = 0.3 ; τ = 3 ) shows a saddle-node 
bifurcation. Black full and gray dashed lines represent the steady state branches �xst1(s) and �xsad(s).



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17429  | https://doi.org/10.1038/s41598-020-74238-y

www.nature.com/scientificreports/

In this way, the parameters β ( ∈ [0 : 1] ) and τ can be systematically varied to modulate the overshoot char-
acteristics of adaptation with limited impact on steady-state properties. Indeed, the steady state of x1 depends 
on the stimulus according to:

which satisfies x1(s = 1) = 1 for any β and k1 values. Furthermore, stability analysis of this steady state establishes 
the following criteria for the existence of an overdamped overshoot response to the step stimulus s = 1:

Accordingly, the adaptation parameters β ∈ [0 : 1] and τ > 1 control the amplitude and timescale of the over-
shoot response without changing the steady-state value for s = 1 (Fig. 2c). More details regarding the relation 
between the negative-feedback parameters and the adaptation behavior can be found in a previous modeling 
 study43.

Before considering a source of variability, we first need to investigate the main effect of transient adaptation 
dynamics on the fate decision properties. In this case, probabilistic response and fractional killing do not occur, 
and the system response to a step stimulus is essentially determined by a threshold sc : a stress amplitude s greater 
(resp. lower) than sc leads to a fate decision toward death (resp., survival). For an adiabatically-slow increase of 
the stimulus, the system follows the steady-state branch �xst1(s) of low x3 values before escaping from it for s > ssn 
through a saddle-node bifurcation. This is not necessarily the case for a step increase of the stimulus, for which 
transition to death can occur for a stimulus level s < ssn so that ssn − sc > 0 . The plot of ssn − sc as function 
of adaptation parameters in Fig. 2d shows that sc = ssn for weak enough or fast enough adaptation, while sc is 
below ssn for large enough values of both β and τ . These two qualitative regimes manifest, in fact, the existence of 
distinct instability mechanisms (Fig. 2e). For low values of β or τ and thus a small or no overshoot, the threshold 
property s = sc = ssn relates with a dynamical trajectory that is destabilized in the vicinity of a saddle-node 
instability (lower panel of Fig. 2e). In this scenario, x3 species trigger the fate decision depending on the steady-
state value of the adaptive species x1 , which carries out the role of a bifurcation parameter. In sharp contrast, for 
high enough value of both β and τ and thus for a significant overshoot response of x1 , the threshold property 
s = sc < ssn relates with a dynamical trajectory that collides with a saddle instability (upper panel of Fig. 2e).

In summary, while varying β and τ leads to gradual changes of the amplitude and the timescale of the over-
shoot adaptation profile, we could identify a threshold boundary in the {β , τ } space which separates between a 
saddle-node and a saddle-collision instability scenario. In the saddle-collision scenario, the threshold value sc 
becomes very sensitive to the transient characteristics of the overshoot profile, which suggests that fate decision 
may also become more sensitive to the sources of cell-to-cell variability that impact transient dynamics.

Adaptation dynamics promotes heterogeneous cell‑fate decisions. Based on our comprehensive 
analysis of the deterministic decision dynamics in the coarse-grained model combining adaptation and bista-
bility, we aim to investigate how adaptation influences cell-fate heterogeneity in a population of noisy cells. We 
therefore apply the general stochastic modeling framework to this biochemical network model (see "Methods" 
section) and perform a systematic analysis of the probabilistic properties in the {β , τ } parameter space and for 
several noise sources and levels (Fig. 3).

To begin with, we consider the case of cell-to-cell variability arising from molecular noise solely ( sl = s 
and �kl = �k ) and focus on the two archetypical parameter sets depicted in Fig. 2 that are associated with weak/
fast adaptation ( β = 0.3 and τ = 3 ) and strong/slow adaptation ( β = 1 and τ = 10 ), respectively. Simulation 
of Langevin equations for 2000 trials shows that, for the same level of noise, strong/slow adaptation leads to 
probabilistic response associated with a much larger stimulus range and a much smaller derivative at P = 0.5 
(Fig. 3a). These differences are quantified by the fractionality index η that is about four-fold larger for strong 
adaptation ( η ≈ 0.05 ) as compared to weak adaptation ( η ≈ 0.012 ). To illustrate how adaptation may amplify 
noise to generate more heterogeneous fate response, we plot the noisy single-cell trajectories in the two scenarios 
associated with the noise level and the same relative change of stimulus level. When adaptation is strong and 
slow enough, noisy trajectories remain within some neighborhood of the noise-free trajectory until diverging 
from it toward different fates when approaching the saddle fixed point, with a slight change of respective fate 
probability when the stimulus increases (Fig. 3b). This is in sharp contrast with the case of weak (or no) adapta-
tion for which noisy trajectories reach first the neighborhood of a stable fixed point, before eventually escaping 
over the saddle fixed point toward the other fate when the stimulus slightly increases (Fig. 3c). The qualitative 
difference between these two stochastic decision scenario is confirmed by the distinct scaling laws η ∝ σ b , where 
b = 1 for strong/slow adaptation and b ≈ 1.2 for weak/fast adaptation (Fig. 3d). This body of evidences strongly 
suggest that adaptation dynamics promotes cell-fate heterogeneity, mostly by changing the underlying nonlinear 
mechanism of decision-making. This is confirmed by the plot η = f (β , τ) (Fig. 3e), which unambiguously shows 
a qualitative increase of fractionality index η specifically in the parameter domain where the saddle-collision 
scenario occurs (above the white boundary).

Besides molecular noise, other sources of cell-to-cell variability have been tested, such as stimulus exposure 
or sensitivity sl (Fig. 3f) or initial conditions �xl(t0) (Fig. 3g). Again, a qualitative increase of η is observed in the 
parameter region associated with a saddle-collision scenario (above the white boundary), though the extent of 
such increase is much more important for the case of variable initial conditions. This is because variability of 
initial conditions impacts only transient dynamics, not steady state, while variability of sl impacts steady-state 

(5)x1(s) =
β − 1+

√

(1− β)2 + 4(1− k1 + k1s) β

2β
,

(6)τ/τ1 > (1+ 2β)+
√

4β(β + 1) .
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properties. Adaptation dynamics can promote cell-fate heterogeneity in a qualitative manner, but to varying 
extent depending on the source of variability and the time profile of the overshoot.

Adaptation dynamics contributes to fractional killing in an apoptosis model. The nonlinear 
nature of the adaptation-related amplification of noise effect suggests that this mechanism could be effective 
regardless the complexity of the network model. In other words, we expect to observe a similar noise amplifi-
cation behavior in more detailed regulatory network model of stress-induced death fate decision as far as the 
adaptation dynamics leads to a collision to a saddle instability in the state-space of any dimensions. To check 
this conjecture, we need to replace the effective one-dimensional model of fate decision by a more realistic 
high-dimensional model of death fate decision. Fractional killing is commonly observed following many types 
of stress or death ligands, which may trigger death through different  pathways44,45 depending on the involved 
multi-protein signaling complexes, transcriptional factors and other signaling and metabolic cues (left of 
Fig. 4a). Among these many possibilities, we consider the canonical case where the stress signal and damage 
species mainly impact the intrinsic mitochondrial pathway of apoptosis through the control of the Bh3 member 
of Bcl-2  family46. An alternative possibility could have been to consider the case of TRAIL-induced apoptosis 
involving caspase 8-dependent activation of both extrinsic and mitochondrial  pathways20.

The choice of Bh3-dependent mitochondrial apoptosis is motivated by a previous biochemical model of 
apoptosis  initiation24, which exhibited several interesting features for our study. First, the model focuses on the 

Figure 3.  The critical impact of adaptation on cell-fate heterogeneity. Fate decision probability is studied in 
presence of molecular noise level (a–e) or other sources of cell-cell variability (f–g). (a) Fate probability curves 
as function of relative stimulus for the cases of strong/slow adaptation (red squares) and weak/fast adaptation 
(gray circles). (b–c) Sample of noisy single-cell trajectories associated with a ±2% change of stimulus level 
around s = s50 (dashed line of panel a), which are plotted in the {x1, x3} state space where steady-state branches 
�x(s) are also represented. (d) Fractionality index η as function of noise with their asymptotic scaling exponents. 
(e) Fractionality index η as a function of adaptation parameters τ and β for molecular noise level σ = 0.01 . 
White line delimits the parameter domains of saddle-collision and saddle-node transition scenario (redrawn 
from Fig. 2c). Red squares ( β = 1 and τ = 10 ) and grey circles ( β = 0.3 and τ = 3 ) correspond to the two 
archetypical parameter sets associated to each scenario, which are compared in panels a–d. (f–g) Fractionality 
index η as function of β and τ for two sources of cell-cell variability: (f) a uniform distribution of stimulus 
exposure sl with �δslδsl′ � = 0.01δl,l′ ; (g) a uniform distribution of initial conditions �xst1(s = 0)+ �δx with 
�δxliδx

l′

j � = 0.1δi,jδl,l′.
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initial stage of intrinsic mitochondrial apoptosis, providing a simple picture of the decision-making process by 
leaving aside the further stages of effector caspase activation and related apoptosis events as well as the complex 
crosstalk with other programmed death pathways. Second, the topology and parameters of the model are deter-
mined in close relation with biological hypothesis and experimental data in a context of chemical stress response. 
Last, the topological and dynamical properties of the model are featured with a single positive feedback and a 
bistable behavior which are fully consistent with the minimal set of ingredients that is needed to implement our 
adaptation-dependent noise-amplification mechanism. In particular, prior knowledge about the bifurcation 
properties is very helpful to compare sc and ssn thresholds and make the connection between the low-dimensional 
and high-dimensional models.

Therefore, the structure of the detailed model merely consists on the coupling between our above adaptation 
model (Eq. 4a, b) and the published model of mitochondrial apoptosis  initiation24 (right of Fig. 4a). Specifically, 
the adaptive species x1 upregulates the synthesis of a pro-apoptotic BH3-only proteins (e.g., Bad, Bim, Bid), 
keeping in mind that intracellular stress-signaling pathways impacts the mitochondrial apoptosis pathway at 
various  places45,46. Regarding the published apoptosis initiation model, the postranslational interactions between 
the pro-apoptotic Bh3 and Bax proteins and the anti-apoptotic Bcl-2 proteins implement a positive feedback 
mechanism. Pro-apoptotic signals are prone to increase the level of free Bh3 proteins with respect to the level 
of Bh3 proteins bound to Bcl-2. Free Bh3 proteins directly interact with inactive cytosolic Bax proteins, thereby 
inducing conformational change that leads to their activation and mitochondrial translocation. In turn, the 
activated mitochondria-localized form of Bax can also bind to Bcl-2, resulting in the release of additional free 
Bh3 proteins from Bh3-Bcl complexes. For a critical synthesis rate of Bh3 proteins, this positive feedback loop 
produces a bistable switching behavior via a saddle-node bifurcation from low to high levels of free mitochon-
drial Bax ( Baxm)24. Then, high enough levels of Baxm would typically induce the release of cytochrome C and 
mitochondrial outer membrane permeabilization (MOMP) followed by the formation and activation of the 
apoptosome and the execution of apoptosis.

Figure 4.  Adaptation-dependent fractional killing in an apoptosis model. (a) Some mammalian cell-death 
pathways associated with fractional killing including the stress-induced mitochondrial pathway of apoptosis 
(left panel). The detailed model of this study couples the coarse-grained model of stress-induced adaptation 
module (Eqs. 4a, b) and a published model of the mitochondrial apoptosis initiation  module24 (right panel). 
(b) Death probability as function of the relative stimulus level s/s50 obtained through numerical simulation of 
Eq. (1) with σ = 0.002 , where η is about four-fold higher with adaptation ( β = 1 ) compared to without ( β = 0 ). 
(c–d) Temporal trajectories of x1 and Baxm in the presence or the absence of adaptation (c: β = 1 ; d: β = 0 ). 
Adaptation timescale is set to τ = 1.25hr to match with the timescale of the apoptotic switch (time unit is hour). 
Right panels show a 2D state-space projection of the high-dimensional dynamics with respect to the stable and 
saddle fixed points (brown and white circles) of the deterministic system.
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The stochastic dynamics of this regulatory network coupling an adaptation module and an apoptosis module 
is simulated using again the Langevin formalism of Eq. (1) (see "Methods" section) with fixed σ . Death initiation 
event is assumed to occur when Baxm reaches the neighborhood of the high-level steady-state branch. For large 
number of simulation trials, death probability can be measured as a function of the stress stimulus level, s, for 
distinct adaptation profiles, here with β = 0 or 1 (Fig. 4b). Simulation results reveal that the presence of adapta-
tion leads to a probabilistic response for a broader range of stimulus, which manifests itself by a lower value of 
the derivative of Pdeath with respect to s/s50 associated to a four-fold higher value of η . Such significant difference 
in noise-sensitivity η correlates to well distinct types of dynamical trajectories associated with survival-death fate 
decisions (Fig. 4c–d). For β = 1 , the overshoot response of x1 species leads to a transient increase of Baxm during 
which trajectories finally diverge from each other toward the survival or death attractor (Fig. 4c). This decision 
is made when approaching the unstable saddle equilibria along its stable manifold (right panel of Fig. 4c). For 
β = 0 , the level of Baxm reaches and fluctuates around a steady state of low values, before an eventual noise-
induced switch toward the death state by escaping over the saddle instability along its unstable manifold (Fig. 4d).

The results obtained with a detailed model of apoptosis are thus consistent with those obtained with the model 
Eq. (4) involving a minimal decision module (Fig. 4b similar to Figs. 3a and 4c–d similar to Fig. 3b–c). To obtain 
a similar behavior, it should be noted that (i) adaptation and decision timescales had to be adjusted to each other 
in the detailed model such that the decrease of x1 during the overshoot profile occurs before Baxm reaches its 
upper-branch steady state, and that (ii) the molecular noise impacts more the death species than the adaptive 
species (compare molecular noise of Baxm and x1 in Fig. 4c, d). A further step would thus be to check whether 
these two conditions are fullfiled in the detailed modeling of both the specific signaling pathways producing 
adaptation at the level of damage-repair  pathways47, stress-response  patwhays24 or death-ligand  pathways25,26, 
and of the specific death-regulatory pathways that are triggered by these diverse death-inducing stimuli. In these 
various cases, adaptation and fate decision processes are prone to be implemented by slightly different regulatory 
network topologies which may modulate the timescale and stochastic characteristics of the dynamical response 
and influence the extent of the adaptation-dependent fractional killing.

Theoretical description of stochastic decision properties. We have shown that the sensitivity of 
cell-fate decision to molecular noise depends on the state-space paths taken to reach a saddle instability, along, 
either, its stable manifold or its unstable manifold (Fig. 5a). In order to get further insights into the stochastic 
nonlinear dynamics involved in this process, we develop a perturbation approach in the limit of small noise and 
small stimulus changes for which specific scaling laws η = aσ b have been obtained (Fig. 3d). Scaling analysis 
near instabilities is a common approach to characterize qualitative dynamical behaviors as function of noise, 
timescales and bifurcation parameters (see  textbook42 or some case  study48,49).

In the case of a saddle-collision scenario, perturbed trajectories evolve in the neighborhood of the deter-
ministic trajectory �xc(t, sc) that connects the initial condition �xc(t = 0) = �xst1(s = 0) and the saddle fixed point 
�xc(t → ∞) = �xsad(sc) (Figs. 2d and 3d) and, thus, live on the stable manifold of this saddle W s(�xsad) that 
separates the different fate attractors. Along this singular deterministic trajectory, some local Lyapunov stability 
exponents (i.e., time-dependent eigenvalues of the Jacobian matrix J(�xc(t)) ) become positive such as to amplify 
transverse perturbations due to molecular noise or heterogeneous initial conditions. Mathematically speak-
ing, linearization of Eq. (1a) about �xc(t) defines a class of Langevin equations for the perturbed trajectories 
�y(t) = �x(t, sc + δs, σ)− �xc(t) whose solution can be decomposed as �y(t) = δs �yδs(t)+ σ �yσ (t) where

�(t, t′) is the principal fundamental matrix and �bδs/σ are the normalized stimuli and noise perturbation vectors 
given by: 

(7)�yδs/σ (t) =

∫ t

0
�(t, t′) �bδs/σ (t

′)dt′ .

Figure 5.  From deterministic to stochastic properties of two distinct cell-fate decision scenarios. (a) 
Deterministic decision mechanims in the space of adaptation parameters. (b–c) Corresponding stochastic 
decision mechanisms. (d) Qualitative change of fractionality index.
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 To compute the fractionality index η , the key statement is that fate decisions (resp., probability) are determined by 
the deviation (resp., distribution) of trajectories onto the normal direction yN of the (N − 1)-dimensional stable 
manifold of the saddle. The mean and variance of the normal distribution P(yN , t) evolves in time until the deci-
sion time t∗ at which the distribution splits and many trajectories leave the neighborhood of �xc(t) (Fig. 5b). Rewrit-
ing Eq. (2) as PD =

∫

R+ P(yN , t
∗)dyN and decomposing dPDds = ( dPD

d�yN �
)(

d�yN �
ds ) = (2πσ 2�y2N ,σ �)

−1/2(�yN ,δs�) , we 
can derive the following expression for η:

This formula shows an asymptotic scaling law η ∝ σ (Figs. 3d and 5d) while the prefactor depends in a sophisti-
cated manner on the local stability properties (via � ) and sensitivity properties (via �b ) of the transient trajectory. 
A similar derivation in the 1D case has been previously performed to show that this scaling law also depends on 
the speed of the trajectory toward the saddle  instability48.

The sensitivity to noise is very different in the other scenario of noise-induced escape from a stable state ( �xst1 ) 
over a saddle barrier ( �xsad ), which is a very common behavior associated with the escape from  metastability49,50. 
For this decision-making regime, an effective potential U, a potential barrier �(s) = U(�xsad(s))− U(�xst1(s)) 
and a Kramers escape rate rK (s) ∝ exp (2�(s)/σ 2) can be usually defined, even for multi-dimensional systems 
and multiplicative  noise51 (Fig. 5c). Given a fate-decision probability PD(t) ≈ 1− exp (−rK t) , the fractionality 
index can be derived and approximated as :

For the one-dimensional model of bistability used in Eq. (4c), the particular scaling relation s50 ∂s� ∼ σ 0.8 (as 
the threshold s50 depends on σ ) leads to the scaling law η ∝ σ 1.2 obtained in Fig. 3d.

To conclude, these very distinct formulas for η highlight that the conversion of intracellular fluctuations into 
heterogeneous cellular fate response sharply differ depending on the transition scenario. The saddle-collision 
scenario is characterized with the amplification of small perturbations due to the local instability of trajectories 
when approaching the saddle state during the overshoot of decision variables (e.g., x3 or Baxm ). In contrast, the 
more common scenario of a noise-induced escape from a metastable state does not display this amplification 
mechanism, while the transition rate rK is very sensitive to stimulus level due to the exponential-like dependency 
on the saddle barrier height.

Discussion
The present modeling study deciphers the role of adaptation dynamics in promoting cell-fate heterogeneity 
associated for instance with the fractional killing behavior. A common property of adaptation is the transient 
overshoot of some cellular variables above its steady state value, which can be implemented by diverse circuit 
 topologies32 and which is subjected to tradeoffs associated with homeostatic or sensory  process33,34,52,53. In addi-
tion, we propose that this transient overshoot dynamics can also significantly impact fate-switching behaviors, 
so as to extend the stimulus range of fate heterogeneity and to allow for tunable fate probability. This adaptation-
dependent fate stochasticity relies on the manner how the overshoot of some intracellular species drive cell state 
in the neighborhoohd of a saddle instability, rather than a saddle-node instability, along a path where molecular 
noise are more prone to promote divergent decisions. This noise-amplification behavior illustrates how molecu-
lar noise and instability mechanisms can cooperate to shape cellular dynamics, like genetic  timers54, boundary 
 formation55 or versatile sensory  processing56.

The biological relevance of the proposed mechanism is most likely in a context of fractional killing for which 
the choice between life and death depends on adaptation processes. The timescales of those adaptation responses 
range from half an hour to few hours depending on stress type and regulatory  mechanisms47,57,58 which is of the 
range of magnitude of the initiator caspase rise time and death onset timing. Moreover, noise-induced fate het-
erogeneity is the most effective when fluctuating variables are those involved in the positive feedback that triggers 
death initiation. This requirement is consistent with modeling evidences that variability in diverse regulatory 
molecules can contribute in very different ways to variability in cell death  outcomes20 and that the main contri-
butions seem to occur in the initial decision commitement phase, whether it is at the level of the fluctuations of 
short-lived antiapoptotic  proteins22 or the stochastic assembly of DISC/RIPoptosome  platform23. The manner 
how cell fate is determined by the impact of these fluctuations at the level of concentration trajectories has been 
also  investigated24,25,27. In relation to these studies, our study presents a broad and comprehensive view of this 
cooperative process and, thus, provides strategies, by monitoring transient characteristics, to either increase or 
reduce fractional killing.

The profile characteristics of adaptation dynamics, such as the ratio between its maximal and steady-state val-
ues, are highly sensitive to the temporal profile of the stimulus. Ramp increase of a stimulus or a preconditioning 

(8a)bδs,i(t) =
∑

j

νji
∂aj

∂s
(�xc(t))

(8b)bσ ,i(t) =
∑

j

νji

√

aj(�xc(t))ξ̃j(t) .

(9)η =

√

π

2

√

�yN ,σ (t∗)2�

s50�yN ,δs(t∗)�
σ .

(10)η =

(

s50 ln 2

rK

drK

ds

)−1

≈
σ 2

(2 ln 2) s50 ∂s�
.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17429  | https://doi.org/10.1038/s41598-020-74238-y

www.nature.com/scientificreports/

stimuli are known to reduce the transient overshoot behavior. This feature has been exploited to test the role 
of adaptation in oxidative stress response of  yeast59, the osmotic stress response of  yeast60 or ethanol stress in 
 Bacillus61. In case of stress-induced fate response, monitoring the stress stimulus profile would therefore be 
expected to modulate not only threshold stimulus level ( s50 ), but also the degree of heterogeneity of the response 
( η ). This provides a practical mean to test the role of adaptation for cell-fate heterogeneity, and to design dose 
delivery protocols of treatment to cope with fractional killing of cancer cells or microbial organisms.

It is tempting to extrapolate the biological relevance of such adaptation-dependent mechanism beyond the 
scope of fractional killing and transient adaptation dynamics. The mechanism itself only requires a regulatory 
network featured with an upsteam overshoot response and a downstream switching response, which could be 
implemented by diverse network topologies and in diverse cell-fate contexts. For instance, overshoot dynamics 
can also occur in regulatory systems comprising incoherent feedforward  loops32, but also in excitable or pulsatile 
systems combining negative and positive feedback loops. For the latter case, numerous signaling pathways, such 
as P53, Erk or NF-κ B, display a versatile pulsatile dynamics, which has been proposed to expand signal-pro-
cessing capabilities and determine cell fate  accordingly14,15. In relation to our result, the transient and stochastic 
characteristics of these signaling dynamics may also suggest a role for promoting cell-fate heterogeneity. This 
is supported by some experimental evidences that have mapped the cell-cell variability of the pulsing dynam-
ics of  Erk10,11,  p5362,63, β-catenin13 and NF-κB12 with the heterogeneity of cell-fate outcomes. Data-driven and 
fine-grained modeling of specific dynamic signaling and fate-regulatory  pathways11,20,62,64 are definitively the 
step further to evaluate on a case-by-case basis to which extent transient adaptation or pulsing dynamics may 
contribute, fortuitously or functionally, to cell-fate heterogeneity.

Methods
Coarse‑grained model. The set of regulatory reactions depicted in Fig. 3a consists in the following basal/
regulated synthesis terms and basal/regulated degradation terms: 

 which can be translated into a system of differential equations using the law of mass action : 

 To obtain the set of Eq. (4), we perform a nondimenzionalization procedure to reduce the number of parameters 
and to define effective parameters that control separately different features of the dynamics such as response 
timescales, transient nonlinear response and steady states. Accordingly, we have introduced dimensionless time 
t̃ , concentration xi and stimulus s and defined rescaling variables ( Xi,0 , S0 ) and aggregate parameters ( τi , β and 
ki ), as the following: 

 These changes of variables and parameters simplify Eq. (12) into Eq. (4) where dimensionless time t̃ is noted t 
again for simplicity. The chemical Langevin equation associated to Eq. (4) is also characterised with a rescaled 
noise σ = (�d3X0)

−1/2 where � is the system size and Xi,0 ≡ X0 ∀i . Finally, reaction rates and stoichiometry 
matrices are given by:

where k1 = 0.9 , k2 = 0.056 , k3 = 1 , k4 = 0.2 , τ1 = 0.1 , while β and τ are varied.

Detailed model. Equations and parameters of the biochemical reaction model of apoptosis initiation have 
been taken  from24. From the original model, the equations for CIAP, p53 and Mdm2 have been removed and the 
equation for Bh3T has been changed to incorporate activation by x1 and to display a slower response:

(11a)b1
→ X1 ;

bS1S
→ X1 ;

b2
→ X2 ; X1

b12
→ X2 + X1 ; X1

b13
→ X3 + X1 ;

b33fh(X3,K3)
−−−−−−−→ X3

(11b)X1 + X2
d1
→ X2 ; X2

d2
→ ⊘ ; X3

d3
→ ⊘ ,

(12a)Ẋ1 = b1 + bS1S − d1X2X1 ,

(12b)Ẋ2 = b2 + b12X1 − d2R ,

(12c)Ẋ3 = b13X1 + b33
X2
3

K3 + X2
3

− d3X3 .

(13a)t̃ = t d3 ; xi = Xi/Xi,0 ; s = S/S0

(13b)X1,0 =
k2d3X3,0

b13
; X2,0 =

b12X1,0 + b2

d2
; X3,0 =

b33

d3
; S0 =

d1X1,0X2,0 − b1

bS1

(13c)τ =
d3

d2
; τ1 =

d3

d1X2,0
; k1 = 1−

b1

d1X1,0X2,0
; β =

b12X1,0

d2X2,0
; k3 =

K3

X2
3,0

.

(14)

�a =

[

1− k1

τ1
,
k1s

τ1
,
x1x2

τ1
,
1− β

τ
,
βx1

τ
,
x2

τ
, k2x1,

k3x
2
3

k4 + x23
, x3

]T

; ν =

[

1 1 − 1 0 0 0 0 0 0
0 0 0 1 1 − 1 0 0 0
0 0 0 0 0 0 1 1 − 1

]
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The corresponding Langevin equation (Eq. 1) considers the following state vectors, reaction rate vectors and 
stoichiometry matrix:

where ksBH3 = 0.025 , ks2 = 0.02 ks3 = kdBH3 = 0.25 , kaC8 = 0.03 , kiC8 = 0.1 , kf 1 = 1 , kf 2 = 300 , kb = 2 , 
kasXC = 9000 , kdsXC = 0.05 , kasHC = 1000 , kdsXC = 0.01 , [BaxT] = 1 and [BclT] = 0.85.

Numerical simulation and dynamical analysis. For both models, numerical integation of Langevin 
equations are performed with 4th-order Runge-Kutta method and probability distribution PD(s) are plotted 
with a statistics of 2000 trials with a measurement time of t∗ = 500 . η is computed by interpolating PD(s) and 
approximating ∂sPD(s50) ≈ 0.4

s70−s30
 where PD(sx) = x/100 . State-space trajectories are represented in some rel-

evant subspace of the state space where the steady states �xst/sad/sn satisfying f (�x) = 0 are represented by the con-
ventional filled/empty/half-empty circles. The steady-state branches �xst/sad(s) are also represented for the sake 
of comparison for different parameter values. The set of mathematical notations used are given in the Table 1.
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