Marc Bouissou
email: marc.bouissou@edf.fr

Lena Buffoni
email: lena.buffoni@liu.se

Lena Buffoni Generic

Generic method to transform a Modelica simulation

Keywords: Modelica, dynamic reliability, random failure, Monte Carlo simulation I

teaching and research institutions in France or abroad, or from public or private research centers.

INTRODUCTION

The Modelica modeling language was designed to represent algebraic and differential equations. The great advantage of Modelica for creating simulation models of complex dynamic systems is that it makes it possible to write libraries of components containing physical equations in a modular form; this enables a rapid construction of system models by assembling components taken in a library. Modelica is a so-called "acausal" language. This means that the user does not need to manually order the equations according to a causal chain: the tools can do it automatically.

During its participation in the European MODRIO project [1], EDF showed the feasibility of solving a problem called "dynamic reliability", i.e. calculating dependability quantities for a hybrid stochastic system, using the tool Dymola based on Modelica. Dymola provides features that are somewhat ahead of standard Modelica language processing [START_REF] Elmqvist | Modelica extensions for multimode DAE systems[END_REF]. And so the work carried out during the MODRIO project could not spread in the industry because it was ultimately only the resolution of a few specific cases as a demonstration and relied on features not standardized by the Modelica specification [START_REF] Bouissou | From Modelica models to dependability analysis[END_REF].

Résumé-Dans cet article, nous expliquons comment les modèles déterministes de simulation Modelica, construits pour la conception de systèmes, peuvent être enrichis par quelques éléments d'une bibliothèque générique afin de les transformer en modèles stochastiques. Les modèles enrichis décrivent, en plus du comportement nominal, des pannes aléatoires (et éventuellement des réparations) et leurs effets sur le système et peuvent être exploités via la simulation de Monte Carlo.

The objective of this article is to explain in detail how to complement a simulation model initially built to perform the simulation of the normal operation of a system, to turn it into a hybrid stochastic model in which component failures and possibly repairs can happen randomly. Once this model has been obtained, it can be used in the context of a Monte Carlo simulation to deduce dependability attributes: reliability, availability, productivity, etc.

The paper is organized as follows: section II is a state of the art on how random numbers can be generated and used in Modelica models, particularly for solving dynamic reliability problems. It recalls the definition of the "heated tank" benchmark, and the results of its solution based on Dymola. This example is used in the rest of the paper as an illustration. Section III describes our method for adding random failures and repairs to a deterministic simulation model. Section IV shows the application of this method to two very different examples: the heated tank and a telecom network. Finally, section V explains how Monte Carlo simulation can be performed on the enriched models and gives results and performances obtained for the "heated tank" with the free, open source tool OpenModelica.

II. STATE OF THE ART: RANDOMNESS IN MODELICA

A. Random number generators in Modelica

The Math package of the Modelica Standard Library (MSL) offers an implementation of the highly efficient xorshift number generator suite. It is thus possible to seamlessly insert calls to this library in Modelica models.

Another approach to modeling random numbers in Modelica is using graphical blocks from the Noise package also included in the MSL. This package was developed by the DLR and provides an implementation of a sampled noise generator. The Noise blocks are also built on the implementation of random number generators in the Math package.

B. Solving dynamic reliability models in Modelica

Article [START_REF] Bouissou | Efficient Monte Carlo simulation of stochastic hybrid systems[END_REF] contains the theory making it possible to optimize the Monte-Carlo simulation based on a Modelica model. The key point is to reduce to the minimum achievable the number of random number draws to be carried out to simulate a system in which the failure rates of the components can vary according to physical variables such as temperature, pressure etc. In this article, we present a Modelica library containing easy-to-use components that encapsulate all the intricate details of this theory. As a preamble, the following two sections describe a dynamic reliability benchmark and how it was solved using some specific features of the tool Dymola.

C. A solution for the Heated tank benchmark

The heated tank benchmark is a typical dynamic reliability problem. The problem definition was first published in [START_REF] Aldemir | Computer-Assisted Markov Failure Modeling of Process Control Systems[END_REF]. Since then, it has been used as a demonstration example for many different approaches, both in modeling and in computation algorithms. Due to space limitations, we only give the main features of this benchmark. Numerical parameters can be found in [START_REF] Zhang | Dynamic reliability by using Simulink and Stateflow[END_REF] and several other references. The main component of the system is a tank containing a fluid (Fig. 1). Two pumps (components 1 and 2) can add fluid in the tank. A valve (component 3) can remove fluid from the tank. The pumps and the valve can each be either ON or OFF; they are controlled by level sensors. The pumps and the valve can fail in two different ways: STUCK_ON or STUCK_OFF (Fig. 2). The times to apparitions of these failures are governed by the integration of the failure rates, according to the following formula, where T is the (random) time to failure: 0 Pr(T) 1 exp(((u)))

(1)

t t du      
The failure rates λ(θ) vary with the temperature of the fluid.

A heating device heats the fluid in the tank. The fluid level h(t) and the fluid temperature θ(t) are two continuous variables. They satisfy the following differential equations:

dℎ d𝑡 ⁄ = (v 1 + v 2 -v 3)F/A ℎ d𝜃 d𝑡 ⁄ = (v 1 + v 2)F(T p -𝜃)/A + Q/A with v c = { 0 if c is OFF or STUCK_OFF 1 if c is ON or STUCK_ON , c ∈ {1,2,3}
F, T p , A, and Q are constants

We consider the system to be failed if it reaches either of the following situations: drought (h<4m), overflow (h>10m) or boiling (θ>100°C). We are interested in the probabilities of these events occurring before time t.

Article [START_REF] Bouissou | From Modelica models to dependability analysis[END_REF] contains the resolution of the heated tank benchmark using a specific feature offered by Dymola: continuous time state machines. Using this model in Dymola, plus some Modelica code to implement a Monte Carlo simulation based on this model, we were able to reproduce the results obtained by other approaches on this benchmark. It required one hour to simulate on a PC 10 5 sample stories, each one running for a time between 0 and 1000h.

As we said in the introduction, we wanted to make the modeling of random failures more accessible, by creating a library that will work in any tool implementing the Modelica standard semantics. The following section explains how this is possible.

III. HOW TO MODEL FAILURE MODES IN MODELICA

The generic principle of modifying a Modelica simulation model to transform it into a model that can be used for a Monte Carlo simulation consists of two stages:

-Addition, done graphically, of blocks whose output is a Boolean variable indicating the presence of a failure, to the components of the library to be modified, -Addition of equations modifying the parameters of the components as a function of the failure variables to represent the effects of these failures. For example, a broken resistor could be modeled by a very large value of its resistance parameter. The definition of failure and repair rates of the failure blocks is also done at this stage. Failure rates can depend on physical variables like temperature.

A. A generic block modeling a failure mode

The main idea of our modeling scheme is to have a small library containing a random number generator, and a block with a Boolean output that will represent the presence of a failure. The random number generator must be unique for the whole model. It would be easier to have "local" random generators contained in each block modeling a failure, but then it would be impossible to ensure that the various random generators are not correlated because of a bad choice of their seeds. This unique random generator must have two options: either its initial seed is chosen by the user, or it is automatically generated: in that case, each new simulation will be different from previous ones.

Here is the Modelica code for initializing the random number generator: In this code, the two parameters, chosen by the user, are there to offer the choice between imposing a seed equal to userDefinedSeed, or letting the program choose one. In conjunction with the definition of the model MyGlobalSeed, we need also a function getRandom that uses the seed as input and generates a random number at each call. Here is the code of this function: Note that this function is a so-called "impure" function. In Modelica, standard functions always return the same output for a given input. The code described above is just a sort of "wrapper" making easier the use of routines of the standard Modelica library presented in section II. Now, here is the failure block. It is graphically represented as this: The Modelica code of this failure block is given in appendix. It is an implementation of the theory described in [START_REF] Bouissou | Efficient Monte Carlo simulation of stochastic hybrid systems[END_REF]. This code is difficult to read, this is why we recall the theory it implements. What is nice is that it can be used very simply because it is completely encapsulated in the failure block.

We will first recall the definition of the hazard rate, associated to the distribution of any random variable such as the time to a failure or a repair then explain the method able to find in one run, without any backtrack, the date of the first event in the system, whatever its nature (random or deterministic boundary crossing).

Given a random time T whose cumulative distribution function (cdf) F is defined as

𝐹(𝑡) = Pr (𝑇 < 𝑡) (2)
the corresponding hazard rate, λ(t), is defined as:

0 Pr(|) () lim t T t t T t t t         (3)
The hazard rate can then be expressed as

𝜆(𝑡) = 𝐹′(𝑡) 1 -𝐹(𝑡) (4)
that is

𝑑𝐹(𝑡) 𝑑𝑡 = (1 -𝐹(𝑡))𝜆(𝑡) (5)
During a Monte Carlo simulation, when a realization of T is needed, it is determined by drawing a random number r uniformly distributed in [0,1], and solving: 𝐹(𝑇) = 𝑟.

When λ is constant (this is often the case), the solution to the differential equation (5) is:

𝐹(𝑡) = 1 -𝑒 -𝜆𝑡 and 𝑇 = - ln (1 -𝑟) 𝜆 (6
)
This approach is visualized in Fig. 5. tstart is the instant when the random number r is drawn, and tfire is the instant of the stochastic event, so T = tfiretstart; the blue curve is the cumulative distribution function F.

When the hazard rate of a transition depends on continuous variables x, so, 𝜆(𝑡, 𝑥(𝑡)) , the cumulative distribution function F can be obtained by integration of eq. (5) and is equal to: 𝐹(𝑡) = 1 -𝑒 -∫ 𝜆(𝑢)𝑑𝑢 𝑡 0 [START_REF] Lair | Processus markoviens déterministes par morceaux et quantification déterministe avec un schéma de volumes finis : un cas d'étude. Lambda-mu 17[END_REF] The method that was given in [START_REF] Bouissou | Efficient Monte Carlo simulation of stochastic hybrid systems[END_REF] utilizes the fact that F is monotonically increasing and the zero crossing solver for events available in modern integration routines can be used to find the instant when F(t) reaches r, the random number that was drawn at tstart, the beginning of the period of length T. Fig. 5: The "inverse cdf" technique for drawing a random number according to a given distribution The method summarized above is implemented in the Modelica code given in appendix, both for determining times to failure and times to repair. The variables in the code have the same names as those used in this section.

B. Use of this failure block in a model

A failure block can be added (usually graphically by drag and drop from the palette) at any detail level of a model. It is generally quite easy to determine the most relevant place: it only depends on how the output of the failure block will be connected to the rest of the model in order to simulate the effects of a failure. The only thing that may be a bit cumbersome is to ensure that the seed of the random number generator is shared by all instances of failure blocks. This is done via consistent declarations of this variable at each detail level from the top level down to the one containing the failure blocks.

Once the failure blocks are added to the model, it is time to make them interact with the rest of the model via a few additional equations (or modifications of existing equations). It is impossible to give general instructions for this part of the modeling process; this is why we give two significantly different examples in the next section.

IV. TWO APPLICATION EXAMPLES

The generic principle described in the previous section is illustrated on two examples: a network of resistances and the "Heated Tank" benchmark.

A. Electrical network of resistances

This example will probably seem a bit artificial: this is due to the fact that we started from the abstract representation in Fig. 6 to derive the physical model of Fig. 7 while on real systems it is the other way round! But we chose that example because it is simple enough to be explained in an article.

In a telecommunication network such as the one represented in Fig. 6, the classical so-called S-T connectivity problem consists in calculating the probability that a given target (a blue node) is connected to at least one source of information (a green node).

Here, we make the simplest possible assumptions on the failure and repair processes of components: failure and repair times are all exponentially distributed, and components are all independent. Both nodes and links can fail. A possible analog model of such a network in Modelica is the electrical circuit of Fig. 7 (built using the Modelica. Electrical.Analog library) where links are represented by resistors and source nodes by generators; the other nodes are represented by pins (components without behavior that just serve as "hubs" for connections). Since we want to detect the propagation of the continuous tension generated by the source, three auxiliary resistors of 1 Ohm are needed (at the bottom of Fig. 7).

Each link is represented by a resistor. Its normal behavior is represented by a value of 10 Ohms, whereas its failure is represented by a value of 10,000 Ohms. It is also possible to simulate the failure of a node of the telecom network by setting the corresponding auxiliary resistor to 0, which creates a short circuit to the ground potential, but for simplicity we will not do it, because it would require to duplicate some of the operations given below for links. During a simulation with random failures and repairs, at a given instant, depending on the failed components, there will be a significant remaining potential at the target node (in absolute value), or it will be very small compared to its nominal value. This is illustrated in Fig. 8. Fig. 8 gives an example of simulation of the modified model: depending on the number of failed links at a given time and their location in the circuit, the potential of Target can take different values. This is a direct representation of the degradation level of the system.

B. The Heated tank benchmark

Fig. 9 shows the general layout of the model in the OpenModelica tool. This model has three detail levels.

The top level is built on components; it also contains an instance of the MyGlobalSeed class, used to define the seed for all failure blocks. The tank contains the differential equations for the level and temperature of the water. The level is used as input for the two control components which are simply hysteresis. There are two of them because in the initial state, one of the pumps is functioning and the other is stopped; the valve is open, and since it has the same flow as one pump, the level is constant. The initial state is steady: both the level and temperature will remain constant until a first failure destroys this equilibrium. Fig. 12 shows the results calculated from 100000 simulations run for 1000 hours each. The probability for each type of failure over time is plotted. The relative difference between these results and those obtained in [START_REF] Lair | Processus markoviens déterministes par morceaux et quantification déterministe avec un schéma de volumes finis : un cas d'étude. Lambda-mu 17[END_REF] with a deterministic numerical method is less than 0.4% for the two upper curves, and less than 1.5% for the lower one. The method depicted in [START_REF] Lair | Processus markoviens déterministes par morceaux et quantification déterministe avec un schéma de volumes finis : un cas d'étude. Lambda-mu 17[END_REF] is quick and precise, but it is not scalable, contrarily to ours.

The execution time for 100000 runs is about 90 minutes when run on a single core of a laptop. This is about 50% more than the time needed with Dymola in [START_REF] Bouissou | Efficient Monte Carlo simulation of stochastic hybrid systems[END_REF], but 15 times less than the resolution with Simulink/Stateflow in [START_REF] Zhang | Dynamic reliability by using Simulink and Stateflow[END_REF]. It could be further reduced by running simulations in parallel on several cores and aggregating the results as each simulation is independent.

VI. CONCLUSION

The proposed method and library make it possible to quickly and easily extend a classical system simulation model written in Modelica so as to describe the behavior of failures whose failure rates may depend on physical variables. The library will be offered among the open source Modelica libraries, accompanied by a script automating the repetitive launch of the model to allow a Monte Carlo simulation. The next step, in order to increase the interoperability of this approach, is to replace the tool and use case specific script we used for this work by a more generic implementation, encompassing the definition of generic variable monitors in our library.

The dissemination of this approach will allow the improvement of the reliability of systems further upstream in their design cycle.

Fig. 1 .

 1 Fig. 1. The "heated tank" system.

Fig. 2 .

 2 Fig. 2. States and failure transitions of the components.

Fig. 3 .

 3 Fig. 3. Continuous-time state-machine model for the two pumps and the valve.

Fig. 3

 3 Fig.3shows the use of such machines for modeling the pumps and valve. Transitions between states can happen at

 Modelica.Math.Random.Utilities.impureRandom (id = s); end getRandom;

Fig. 4 .

 4 Fig. 4. Graphical representation of a failure block.The output is a Boolean corresponding to the presence of a failure. The input-output pink connector is there to allow the mutual exclusion of two different failure modes of a component (see §IV B for an example). It can also be used as a guard in order to allow the failure only in given conditions. In addition, this block must have access to the seed of the global random number generator. It would create cluttered graphics to transmit the seed via a graphical connection: instead, we use the inner and outer keywords of Modelica to have a single variable seed, visible both from inside and outside the block (only one level up in the hierarchy of breakdown levels). The examples below will show how this is managed.

Fig. 6 .

 6 Fig. 6. Telecom network.

Fig. 7 .

 7 Fig. 7. Analog model of a telecom network: electrical circuit.

Fig. 9 .

 9 Fig. 9. The Heated tank model in OpenModelica. The pumps and the valve are the only components containing failure modes. They are instances of the same class, called Hydrodevice. Starting from the simulation model describing the deterministic nominal behavior of the system, here are the changes that we made in order to add failure modes:  Add graphically the SEED component at the top level and use inner and outer declarations twice, in order to transfer the seed from the top level to the class Hydrodevice (used to model both pumps and the valve) and from this class to the added failure modes.

Fig. 10 .

 10 Fig. 10. The two mutually exclusive failure modes in the class Hydrodevice.  Add graphically in the Hydrodevice class two failure modes and link them together in order to make them mutually exclusive: this is shown in Fig. 10.  Add inner and outer declarations for a variable temperature in order to make the temperature of the tank water accessible from the Hydrodevice class.  Add to the Hydrodevice class the function aa giving a multiplicative coefficient depending on temperature for the base failure rate lambda_hat and add the following equations, depicting how the failure rates of failure blocks depend on the temperature:

 Add instructions in the tank in order to define indicators of failures of the system. For example, these lines were added to detect a temperature reaching 100 degrees and stop the simulation:

when theta > 100 then failure_code := 3; end_time := time; terminate("Undesirable event Boiling"); end when;

This list of actions may look complicated, but as can be seen by comparison with the case of the network, it is due to the dependence of failure rates on the temperature.

V. SETTING UP A MONTE CARLO SIMULATION

A. Principle

Since for each simulation, the failures will be generated randomly based on a given seed, running the same model several times with automatic seeds will result in different execution trajectories. Therefore, it is not necessary to parametrize the model for each run.

In order to run multiple simulations and aggregate their results, a script is written using the OpenModelica scripting language API. The script has the following characteristics:

 To optimize performance the model is only built once and then the simulations are run multiple times using the same executable code.  The script can be parametrized to define the simulation time for running the simulations and the number of simulations run.  For each simulation only the final values of the variables we are using to calculate the failure probabilities of the model are read and stored in an array by the script.  To optimize performances, the .mat files containing full simulation results are not saved for any of the runs.  Once all the simulations are run, the probability of each type of failure is calculated for each time step (larger than the one used to simulate the model) and the results are saved as a .csv file.

B. Solving the Heated tank benchmark

Fig. 11 shows the evolution of the temperature for 3 different execution trajectories. The red trajectory is a successfully completed simulation, the blue trajectory is prematurely terminated because of an overflow failure and the green trajectory because of a boiling failure. To compare our results to previous publications, we are interested in the time at which the simulation is terminated and for simulations terminated prematurely, the type of failure that caused the termination. Therefore, for each run this information is stored in an array. This data is then used to calculate the failure probabilities for every hour.