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Abstract

At high temperatures under oxidizing environments, �tanium-based alloys form an oxide scale and dissolve large amount of oxygen in their
metallic matrix. Oxygen dissolu�on is a cause of embri�lement. Nitrogen is a secondary oxidant, which also dissolves in �tanium during
oxida�on in air. Oxida�on experiments of Ti-6Al-2Sn-4Zr-2Mo-0.1Si �tanium-based alloy at 650 °C for 1000 h in synthe�c air (20%O2-
80%N2) and in a mixture of 20%O2-80%Ar, showed that nitrogen reduces both oxide scale growth and oxygen dissolu�on. Atom probe
tomography revealed that nitrogen effect is due to the forma�on of an interfacial layer of nitride Ti2N but also to the forma�on of a
nitrogen rich a-Ti-based solid solu�on, which both act as diffusion barriers for oxygen because of their low oxygen solubility.
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1. Introduc�on

For several years, the use of �tanium-based alloys has been in full expansion in aircra� industry due to their high specific strength at low or
moderate temperatures (<500°C). However, in-service temperatures have increased leading to more severe oxida�on condi�ons. In addi�on
to oxide scale growth, oxygen dissolu�on within �tanium-based alloys takes place, leading to a loss of duc�lity [1, 2], which can be
detrimental to fa�gue resistance [3]. Moreover, working environments are also composed of nitrogen and pure �tanium can dissolve this
element up to 23 at.%. Nitrogen is known to decrease oxida�on kine�cs of �tanium and its alloys [4, 5]. A previous study [5] on Ti6242S
industrial alloy exposed to synthe�c air (N2-20%O2) and to a gas mixture of Ar-20%O2 at 650 °C for 100 h showed that a nitrogen rich
environment lead to a thinner and more compact oxide scale. This was accompanied by a lower content in oxygen in the metal at the oxide-
alloy interface (measured by EPMA) and by a lower overall oxygen dissolu�on within the alloy. Chaze and Coddet proposed three
hypotheses to explain the influence of nitrogen on the oxida�on of �tanium and Ti-X alloys (X = Al, Cr, Si) [4]. An oxide scale of TiO2 is
formed on the surface of the metal because �tanium oxides are more stable thermodynamically than nitrides. But nitrogen would be
incorporated in solu�on in the ru�le layer. As nitrogen diffuses faster in ru�le than in �tanium [6, 7], it should accumulate in the oxide next
to the oxide-metal interface [4]. Chaze and Coddet propose that nitrogen could decrease the anionic vacancies concentra�on in the oxide
and then could decrease the driving force for oxygen transport in the ru�le scale. The second hypothesis was that oxygen concentra�on in
the metal at the oxide-metal interface, i.e. the oxygen solubility limit in the metal, could be decreased by nitrogen dissolu�on within the
metal. Consequently, this would decrease the inward oxygen flux towards the metal bulk [4, 8]. The third proposed explana�on was to
consider that a nitride can form at the oxide-metal interface, as the oxygen par�al pressure is low enough to stabilize it at this interface. The
forma�on of such a protec�ve inner nitride layer was reported for binary alloys such as Ti-Cr and Ti-Si alloys for which it was claimed that
chromium and �tanium nitrides were detected by X-Ray Diffrac�on (XRD) respec�vely, but no XRD diagram was given by authors [9, 10].
However, nitrides were observed thanks to op�cal microscopy as a thin gold layer in Ti3Al [11] and this is o�en reported during TiAl
oxida�on, e.g. [12]. Recently, the forma�on of a Ti2N nitride was detected by XRD a�er 5h oxida�on in air at 700°C of shot peening Ti CP
grade 1 samples. Nuclear reac�on analysis (NRA) of these samples revealed a con�nuous N enrichment below the oxide scale [13]. No other
study was found in the literature to explain the nitrogen effect on the oxida�on behaviour of α or α-β �tanium-based alloys. No
characteriza�on was found with sufficient spa�al and chemical resolu�ons to quan�fy the levels of N and O in the enriched layers.

To understand the nitrogen effect on oxida�on kine�cs, it is necessary to measure the nitrogen and oxygen dissolu�ons at the oxide-alloy
interface, and to observe the phase transforma�ons these elements can induce. As conven�onal methods such as micro-hardness or
electron probe microanalyses (EPMA) do not have sufficient spa�al and chemical resolu�ons, atom probe tomography (APT) was tested as a
possible mean to get a chemical analysis at the atomic scale. This technique has already been used for a sintered TA6V �tanium alloy to
understand the loss of duc�lity observed experimentally when an oxygen concentra�on of 0.33 at.% is reached [14].  Another work studied
the chemical composi�on of phases for a TA6V alloy produced by electron beam mel�ng (EBM) 3D-prin�ng, in order to explain the decrease
in its tensile strength [15]. Rug et al. tested several high resolu�on technics including atom probe [16]. They showed that it was possible to
measure the composi�on of a Ti-6Al-4V alloy containing 0.4 wt% O. They could also measure O (about 1 wt%, detected as TiO) and N
enrichment (about 0.4 wt%) 1-2 µm below a slightly oxidized surface.

However, APT has never been used to characterize the oxide-alloy interface of the �tanium-based alloys, with O and N dissolu�ons in the
metal which could reach up to 33 at% and 23 at% respec�vely. Indeed, this analysis may appear difficult as this interface is expected to be



insula�ng and very bri�le. In this work, we report a successful APT analysis of the oxide-alloy interface. The distribu�on of chemical
elements was studied at the oxide-alloy interface and in the zone just below it to understand the role of nitrogen on the oxida�on of
Ti6242S alloy.

2. Experimental

The material used in this study was the Ti6242S �tanium-based alloy. It was forged by Aubert and Duval (Pamiers, France). Table 1
summarizes its chemical composi�on determined by energy dispersive X-ray spectroscopy (EDX) for major elements and instrumental gas
analyses (IGA) for gas-forming elements (detec�on limits (wt.%): 0.5 ppm for hydrogen, 5 ppm for carbon, nitrogen and sulphur, 10 ppm for
oxygen) by Evans Analy�cal Group (Tournefeuille, France). Observa�on by scanning electron microscopy (SEM) of Ti6242S was performed
a�er etching in Kroll’s solu�on (1.4 vol.%, 2.5 vol.%, bal. H2O) using the backsca�ered electron (BSE) mode. It revealed a duplex
microstructure, which consisted of lamellar and globular α phase (light in SEM-BSE image) in a thin β phase (dark in SEM-BSE image) (Figure
1).

Table 1: Chemical composi�on of Ti6242S alloy

Element Ti Al Sn Zr Mo Si O N C S H

 % ppm

In weight Bal. 6.0 1.8 4.0 2.1 0.1 1200 <5 26 8.2 44

In atoms Bal. 10.5 0.7 2.1 1.0 0.2 3550 <17 103 12 2062

 

Figure 1: SEM observa�on of Ti6242S microstructure (BSE mode)

 

Samples used were thin plates of 15 x 10 x 1 mm3 ground before oxida�on using P240 SiC grinding paper. Then, they were cleaned with
acetone and ethanol under ultrasounds and weighed three �mes using a SARTORIUS GENIUS (ME2156P) balance (accuracy: 20µg).
Oxida�on treatments performed in a thermobalance for 100 h at 650 °C in synthe�c air and in Ar-20%O2 were prolonged to 1000 h in an
oxida�on bench with the same condi�ons of temperature and atmosphere. The flux of gaz was 8.5 ml/min corresponding to a gas velocity
of 4.5x10-4 m/s for tests in thermobalance. For long-term oxida�ons, the flux of gas was 100 ml/min and 51 ml/min which was equivalent
to 2.5x10-4 m/s and 1.2x10-4 m/s for synthe�c air and Ar-20%O2 respec�vely. Mass varia�ons were measured three �mes a�er several
exposure dura�ons using the SARTORIUS GENIUS balance.

Characteriza�on of the oxide-alloy interface was performed thanks to APT at IM2NP (Marseille, France). Before analyses, specimens were
prepared by focused ion beam (FIB) on a FEI HELIOS 600i dual beam using li�-out technique at IM2NP [17]. The micro-�ps were obtained by
following the annular milling method [18] in order to have an end radius of about 100 nm. APT analyses were carried out with a LEAP 3000x
HR at a temperature of 40 K, using a 100 kHz picosecond laser pulse with an energy between 0.5 and 1.2 nJ. IVAS 3.6.2 so�ware was chosen
to reconstruct data. Three specimens per atmosphere were successfully analysed.

3. Results and discussion

Oxida�on behaviour

The mass varia�ons obtained in synthe�c air a�er 1000 h at 650 °C were about 2.3 �mes lower than those in Ar-20%O2 (Figure 2). This
confirms our previous observa�ons a�er 100 h exposure (5). The oxide scale formed in Ar-20%O2 is much thicker than the oxide scale
formed in air (not shown here). The oxide scale formed in Ar-20%O2 is layered, whereas it is not when oxida�on is performed in air. An
important point is that oxygen concentra�on in the metal at the oxide-alloy interface, measured by EPMA, was 2 to 3 �mes higher in the Ar-
20%O2 gas mixture than in synthe�c air (Figure 3), a few micrometers away from the interface.



From these analyses, the mass gain associated to oxygen dissolu�on was calculated from the integrated surface area below the O
concentra�on profiles. The mass gain associated with the oxide scale was deduced from the difference between the total mass gain and the
one related to dissolu�on. To check the calcula�ons, the mass gain due to the external scale growth was also es�mated from its thickness.
As in our previous study [5], 1000 h oxida�on tests confirm that the mass gains associated to these two phenomena are both higher in Ar-
20%O2 than in synthe�c air (Figure 4).

Figure 2: Mass varia�on vs �me for Ti6242S alloy oxidized at 650 °C in flowing synthe�c air and Ar-20%O2 gas mixture

           

Figure 3: EPMA profiles for oxygen for Ti6242S oxidized at 650 °C for 1000 h in synthe�c air (squares, circles and con�nuous lines) and 20%O2–80%Ar
(triangles, diamonds and dashed lines)

 



Figure 4: Mass varia�ons associated to global oxida�on kine�cs, to oxygen dissolu�on in the alloy calculated from EPMA analyses and to oxide scale
growth calculated by difference for Ti6242S alloy oxidized at 650 °C for 1000 h in flowing synthe�c air and Ar-20%O2 gas mixture.

 

APT analyses were then performed on three micro-�ps for each atmosphere. The results obtained were similar for a given atmosphere,
therefore only one specimen for the Ar-20%O2 environment and two specimens for synthe�c air are presented in this paper (Figure 5).

 

Figure 5: SEM-FEG (Secondary Electron mode) observa�ons of micro-�ps obtained by FIB and analysed by APT for Ti6242S oxidized 1000 h at 650 °C in a.
Ar-20%O2, b. and c. synthe�c air

 

(



Concentra�on profiles were calculated from the APT data along cylinders taken perpendicular to the metal/oxide interface (Figure 6, Figure
7, Figure 9).

Two zones were observed in the micro-�ps related to the Ar-20%O2 exposure (Figure 6). The first one,  zone A, corresponds to the oxide
scale close to the metal/oxide interface. It was rich in �tanium and oxygen with about 50at%O. Two sub-zones could be observed: zones A1
and A2. Comparing with the Ti-O phase diagram, this could correspond to the two following oxides: stoichiometric a-TiO (50 at% O) and
defec�ve a-T1-xO (54at%O). The concentra�ons in O measured in zones A1 and A2 were resp. 49at% and 40at%, i.e. 10 to 25% of O could be
missing in the analysis. This deficit in O is often observed in APT [19].  The second one (zone B) was mainly composed of �tanium, oxygen
and aluminium. The oxygen content (29 at.%) was slightly below its theore�cal solubility limit of 33 at.% in pure �tanium. Once again, this
corresponds to 13% of O missing in the analysis. The aluminium concentra�on in zone B was about 8 at.% which is close to, but lower than
the one of the alloy. Because of this concentra�on in O and Al, and the fact that only li�le b-Ti gene element Mo is detected, this phase
should be the α-Ti phase saturated in oxygen, noted α-Ti(O) in this paper.

Figure 6: Concentra�on profiles in one micro-�p analysed by APT a�er oxida�on at 650 °C for 1000 h in Ar-20%O2

For the sample oxidized in synthe�c air, concentra�on profiles obtained in the longitudinal direc�on are shown in Figure 7. On the extreme
surface, which corresponds to the inner part of the oxide scale, high concentra�ons of oxygen, nitrogen and �tanium were measured,
sugges�ng an oxinitride phase (zone C). No defini�ve proof of the presence of an oxinitride can be given because of the composi�onal
gradient over a few nanometres. Below this, another zone enriched in �tanium and nitrogen and containing some oxygen was observed
(zone D). As the �tanium to nitrogen ra�o was equal to 1.6 and because an aluminium deple�on was no�ced in this area (Al solubility in
Ti2N nitride is close to zero [20]), this area could correspond to a Ti2N nitride layer, 20 nm thick. A third zone was composed of �tanium,
nitrogen and also aluminium. As the aluminium content was close to the one of the alloy (slightly more than 10 at%) with very li�le Mo, this
should be the α-Ti phase containing a great amount of nitrogen (up to 23 at.%). This latest value is large for the α-Ti phase which should
dissolved about 6 at% at 650°C but can dissolved up to 23 at% in pure α-Ti at 1050 °C [21]). Finally, Figure 7 reveals that α-Ti(N), saturated in
nitrogen, dissolved only 1 at.% of oxygen 20 or 30 nm below the oxide scale, whereas O concentra�on is about 10at% a�er oxida�on in air,
a few micrometers below the oxide scale, as seen in Figure 3. This is a very interes�ng observa�on, which shows that oxygen is rejected
from the metal below the oxide scale when this one contains large amounts of nitrogen. The growth of the very thin nitride and/or N-
saturated a-Ti(N) layers reject oxygen deeper in the metallic alloy.

 



Figure 7: Concentra�on profiles in one micro-�p analysed by APT a�er oxida�on at 650 °C for 1000 h in synthe�c air a. global and b. enlargement for the
60 first nanometres

 

From the comparison of the previous results (Figure 6 and Figure 7), it appears that a high concentra�on of 29 at.% in oxygen is found in the
α-Ti(O) phase just below the oxide scale, for the Ti6242S oxidized in Ar-20%O2 i.e. without nitrogen. This value is closed to the solubility
limit of oxygen in α-Ti. On the contrary, a �tanium nitride Ti2N and a solid solu�on enriched in nitrogen formed during oxida�on in synthe�c
air. These two phases contained low amounts of oxygen: 3-4 at.% for Ti2N and less than 1 at.% for α-Ti(N). Then, it is shown than �tanium
nitride Ti2N and α-Ti(N) could both act as a diffusion barrier for oxygen. This finding can explain the decrease of oxygen dissolu�on within
the alloy when oxidized in a nitrogen-rich atmosphere.

Among the three micro-�ps prepared a�er oxida�on in synthe�c air, one presented a zone rich in Ti and Mo (Figure 8 and Figure 9). It could
be the β-Ti phase, as molybdenum is known to segregate preferen�ally in this phase compared to the α-Ti phase. Besides, no Mo (less than
0.1 at.%) was detected in the α-Ti phase in the five other micro-�ps. On both sides of the β-Ti, a phase enriched in �tanium and nitrogen
formed, corresponding to the �tanium nitride Ti2N as already observed in the micro-�p related to synthe�c air (Figure 7). The presence of
this nitride was confirmed by the element par��oning. Indeed, if the phase around the β-Ti phase was α-Ti, Sn and Zr would be found
equally in both phases and Al and O would be strongly segregated in α-Ti. However, it was seen from this micro-�p that these four elements
were all preferen�ally segregated in the β-Ti phase. Therefore, it was most likely that the phase surrounding β-Ti corresponded to the
�tanium nitride Ti2N. It is worth no�ng that our analyses showed that oxygen solubility is higher in β-Ti than in Ti2N. A fourth zone that
contained about 20 at.% of N and 11 at.% of Al was observed deeper in the alloy. Knowing that nitrogen solubility in pure �tanium is 23 at.%
and that aluminium content in the alloy is 10 at.%, this area was iden�fied as a solid solu�on of Ti and N. However, it has to be men�oned
that the interface between Ti2N �tanium nitride and this solid solu�on was not obvious. 3D maps showed that each zone, iden�fied as Ti2N
and α-Ti(N), were single phased as only local changes in composi�on were observed.

 

Figure 8: Elemental mapping of molybdenum obtained from the micro-�p analysed by APT and containing the β-phase a�er oxida�on at 650 °C for 1000
h in synthe�c air



Figure 9: Concentra�on profiles in the micro-�p analysed by APT and containing the β-phase a�er oxida�on at 650 °C for 1000 h in synthe�c air

4. Conclusions

The effect of nitrogen on the oxida�on behaviour of Ti-6Al-2Sn-4Zr-2Mo-0.1Si �tanium-based alloy was studied at 650 °C for 1000 h in
synthe�c air (N2-20%O2) and in a mixture of Ar-20%O2. Results showed that nitrogen decreases the oxida�on kine�cs by decreasing the
oxide scale growth as well as the oxygen dissolu�on within the alloy. According to APT analyses, this is due to the forma�on of Ti2N �tanium
nitrides and of a nitrogen-rich �tanium-based solid solu�on, which both act as diffusion barriers. For oxida�on in Ar-20%O2, TiO �tanium
oxide and the solid solu�on α-Ti enriched in oxygen were iden�fied. These phase iden�fica�ons are summarized on Figure 10.

 

Figure 10 : Schema of micro-�ps analysed by APT a�er oxida�on at 650 °C for 1000 h a. in synthe�c air, b. in Ar-20%O2 and c. in synthe�c air with β-Ti
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